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A power law describes the magnitude of
adaptation in neural populations of primary
visual cortex

Elaine Tring1, Mario Dipoppa 1 & Dario L. Ringach 1,2

How do neural populations adapt to the time-varying statistics of sensory
input? We used two-photon imaging to measure the activity of neurons in
mouse primary visual cortex adapted to different sensory environments, each
defined by a distinct probability distribution over a stimulus set. We find that
two properties of adaptation capture how the population response to a given
stimulus, viewed as a vector, changes across environments. First, the ratio
between the response magnitudes is a power law of the ratio between the
stimulus probabilities. Second, the response direction to a stimulus is largely
invariant. These rules could be used to predict how cortical populations adapt
to novel, sensory environments. Finally, we show how the power law enables
the cortex to preferentially signal unexpected stimuli and to adjust the
metabolic cost of its sensory representation to the entropy of the
environment.

Sensory systems adapt their representations to the changing statis-
tics of the environment1–6, integrating stimulus history over multiple
timescales7–10. In the visual system, adaptation is distributed across
multiple brain regions comprising a hierarchical network, from the
retina to primary and high-level cortical areas3,11,12. In primary visual
cortex (area V1), adaptation has been studied extensively at the
single-cell level, providing a wealth of information about how tuning
curves, along different dimensions, are affected by a single adapting
stimulus13–36. Here, we adopt a complementary approach, measuring
and analyzing adaptation at the level of neural populations31 from a
geometric perspective37,38, using both simple and naturalistic
stimuli34. We show how such a strategy allows us to derive two
properties of adaptation that capture the transformation of sensory
representations between environments. First, we discovered that a
power law captures how themagnitudes of population responses are
linked across different sensory environments. Second, we find that
the directions of population responses are largely invariant. These
properties clarify how adaptation generates larger responses to
unexpected stimuli and maintains an efficient cortical
representation39,40.

Results
Describing adaptation at the population level
We developed a method to study how neural populations adapt in
different environments. Consider a finite stimulus set, S= si

� �
: We

define a visual environment, A, as one where the probability of
observing si is given by pA si

� �
. To examine howneurons adapt in this

environment, we present a rapid stimulus sequence by indepen-
dently drawing stimuli from pA si

� �
while recording their activity. We

define the vector rA si
� �

as themean response of the population over
repeated presentations of si in the environment A. The mean
population vector is computed at the optimal time delay between
stimulus and response (see Methods). Similarly, the responses of
the population to the same stimulus set can be measured in a dif-
ferent environment, B, where the probability of observing a stimu-
lus is dictated by pB si

� �
. This measurement yields another mean

population vector rB si
� �

. Given two environments, A and B, can we
describe how rA si

� �
relates to rB si

� �
? If so, can such a model predict

how the population will behave when it adapts to a new environ-
ment C? The main contribution of our study is to offer affirmative
answers to these questions.
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We applied this approach to study the responses of cortical
populations to a set of oriented sinusoidal gratings (Fig. 1, Methods).
Neural activity was recorded from layers 2/3 in primary visual cortex
using in vivo, two-photon imaging. In our initial set of experiments,
we used three different environments A, B and C defined by simple
distributions. Each row of panels in Fig. 2 illustrates the outcome of
one such experiment. All rows are formatted identically; thus, it
suffices to describe the results from the session depicted by the
panels in Fig. 2a. Here, the prior probability in environment A was a
uniform distribution, in B it as a von Mises distribution with con-
centration κ = 1:2 centered at 0°; in C, the von Mises distribution was
centered at the 90° (Fig. 2a(i)). The orientation tuning curve for each
neuron, averaged across all environments, was computed. One can
visualize the tuning curves of neurons in the population as a pseudo-
color image, where each column represents a tuning curve, and cells
are arranged according to their preferred orientation along the x-axis
(Fig. 2a(ii)). Each row, therefore, represents the average population
response to one orientation of the stimulus. Our analyses were based
on a sub-population of well-tuned neurons (see Methods)—however,
the phenomena we describe are robust to this selection (Supple-
mentary Fig. 1).

Response magnitudes follow a power law
We discovered that the magnitudes of responses between environ-
ments are linked via a power law. Denote by rX si

� �
the l2 norm (or

magnitude) of the response vector rX si
� �

, where X is one of the three
possible environments A,B,Cf g. Given data from two different
environments, X and Y , we observed that when plotting rX si

� �
=rY si

� �
against pX si

� �
=pY si

� �
, in double logarithmic coordinates, the

points fall on a straight line passing through the origin (Fig. 2a(iii),
solid lines indicate linear fit). In other words, the ratio between
the magnitude of the responses, and the ratio between the
stimulus probabilities, are related via a power law:
rX si
� �

=rY si
� �

= pX si
� �

=pY si
� �� �β. The best fit for the slope was β= �

0:38 (Fig. 2a(iii), inset). As a goodness-of-fit measure for the linear fit
we used the coefficient of determination R2, which equaled 0:97,
indicating that the power law provides an excellent description of
the data. As the slope (also the exponent in the power law) β is
negative, the environment where a stimulus was presented more
frequently generated a response with a lower magnitude—a classic
signature of adaptation.

Response directions are approximately invariant
Next, we investigated the variability in the direction of population
responses to a stimulus between environments. First, we defined the
unit vectors r̂X si

� �
= rX si

� �
=krX si

� �k and computed the resultant,
�r si
� �

=
P

X2 A,B,Cf gr̂X si
� �

, representing the sum of responses across
environments. Then, we calculated the cosine distance between r̂X si

� �
and�r si

� �
for all stimuli andenvironments. The cosinedistance is defined

as one minus the cosine of the angle between the vectors. The dis-
tribution of these values provides an estimate of direction scatter,
which, in this experiment, had a mean �ds =0:026 (Fig. 2a(iv)). How can
we tell if this value is small or large? To assess the magnitude of the
scatter, we developed a “yardstick” that returns the change in the
orientation of a stimulus required to cause a shift in the direction of the
population response equal to scatter magnitude. We proceeded as
follows. First, we computed d 4θð Þ, defined as the average cosine dis-
tancebetweenpopulation responses evokedby stimuli that differ by4θ
deg (averagedacross environments). Then,wecalculated theequivalent
angular difference,4θeq, as the value of4θ for which d 4θð Þ equals the
mean scatter, �ds. This value is obtained from the point of intersection
between the horizontal line at �ds and the d 4θð Þ function (Fig. 2a(v)). In
this case, we obtain4θeq = 1:4 deg. This equivalent angle is indeed small
(across all experiments4θeq = 1:26 ±0:41,mean ± 1 SD), indicating that
the directions of population responses are approximately invariant
across environments under our experimental conditions.

The power law predicts response magnitudes in novel
environments
The measurements of responses in two environments are sufficient to
obtain an estimate of the power law exponent. For example, we can use
the data obtained in environments A and B to find the exponent β that
best fits the relation rA si

� �
=rB si

� �
= pA si

� �
=pB si

� �� �β. Suppose we now
want topredict themagnitudes rC si

� �
in anewenvironmentC,where the

distribution of stimuli is given by pC si
� �

. As the power law holds across
any two environments, we must have rC ðsiÞ=rBðsiÞ= ½pC ðsiÞ=pBðsiÞ�β, and
we can predict rCðsiÞ= rBðsiÞ½pCðsiÞ=pBðsiÞ�β. Similarly, we can generate a
prediction based on the responses in A, which yields
rCðsiÞ= rAðsiÞ½pCðsiÞ=pAðsiÞ�β. Finally, we can combine both estimates by
taking their geometric mean:

rA,B!C si
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA si
� �

rB si
� �q

pC si
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA si

� �
pB si

� �q	 
β
ð1Þ
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Fig. 1 | Experimental protocol. a Sessions included the presentation of three
environments, A, B, and C each associated with a different distribution over a
stimulus set. Stimulus sets were either sinusoidal gratings of different orientations
or brief natural movie segments. b A session consisted of six blocks, each con-
taining a unique permutation of all three environments. Each environment was
presented for 5min. Within an environment, stimuli were drawn from the corre-
sponding distribution and flashed at a rate of 3/s. The presentation protocol was
meant to mimic the changes of the retinal image during saccadic eye

movements18,35,51,64. A blank screen was shown for 1min between environments.
From one session to the next, the order of the permutations was randomized.
c Each session began with a coarse retinotopic mapping, where we determined the
average locations of receptive fields within different sectors of the field of view,
numbered 1–9. The bottom panel shows the center of the receptive fields for each
sector mapped on the computer monitor. The background image represents the
aggregate receptivefieldof the entirefieldof view.The red circle denotes its center.
The dashed circle represents the circular window used during visual stimulation.
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The notation rA,B!C indicates we are using data from environ-
ments A and B to predict the magnitudes of responses in C. As our
dataset contains three environments, we can also compute rA,C!B and
rB,C!A in a similar fashion. The measured versus predicted response
magnitudes show that the power law accurately predicts the magni-
tudes of the responses in a novel environment, with an R2 value of 0.95
(Fig. 2a(vi)). These results were remarkably consistent across experi-
mental sessions (Fig. 2b–e). Thus, adaptation at the population level is
satisfactorily captured by two simple rules: a power law for the mag-
nitudes and the approximate invariance of the direction across
environments.

Violations of population homeostasis are common
It has been suggested that one of the goals of adaptation is tomaintain
population homeostasis,meaning that the system adjusts itself to keep
the average firing rate of neurons constant between environments31.
We sought to test population homeostasis in our data. It can be shown
that neurons maintain a constant rate across environments if and only
if the function ΦX si

� �
=pX si

� �
rX si
� �

is constant for all environments
X2fA,B,Cg (see Methods). Comparing the shape of these functions
between environments offers a simple test of population homeostasis.
Plotting these functions immediately reveals they are far fromconstant
(Fig. 2a(vii)). Instead, within each environment, the shape of ΦX si

� �
resembles the shape of the probability distribution associated with X .

An alternative way to restate this result is to notice that home-
ostasis is nothing more than a power law with β=�1 (derivation in
Methods). The failure of homeostasis is then evident by the fact that
the experimental values of β fall in the �0:4,�0:15½ � range (Supple-
mentary Fig. 2). A similar failure of homeostasis is obtained if rX si

� �
represents the l1 norm instead of the l2 norm of the responses
(Fig. 2a(vii), solid versus dashed lines). The reason is that, in our
experiments, the l1 norm is proportional to the l2 norm (Fig. 2a(viii)).
We will return to discuss the cause underlying this relationship below.

Orientation distributions are represented with limited
resolution
One difference between the data discussed up to this point, and an
earlier study of population homestasis31, is that the latter used
“peaked” distributions. In this condition, one orientation (the adapter)
has a higher probability than the remaining orientations, which are all
equally probable. Could this difference explain the lack of population
homeostasis in our data? To find out, we conducted measurements in
environments with peaked distributions (Fig. 3). We found that many
of the results remained unchanged, including the lack of population
homeostasis (Fig. 3a(vii)), the relative invariance of vector directions
(Fig. 3a(iv, v)), and the strong correlation between l2 and l1 norms
(Fig. 3(viii)). However, the power law no longer offered an adequate
description of the data (Fig. 3a(iii, vi)).
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Fig. 2 | Characterizing adaptation in neural populations. Each row (a–e) shows
results from a different experiment. Each column (i–viii) depicts separate analyses.
Axes are labeled in the top row (a) and, unless otherwise noted, they have the same
scale in all other rows (b–e). Columns represent: i the distribution of orientations
associated with each environment. ii Mean responses of cells to an orientation.
Each column in the image represents a tuning curve. Cells have been arranged
according to their preferred orientation. Responses are normalized to the max-
imum and displayed according to the colormap at the inset. iii Logarithmic plot of
the ratios between probabilities versus the ratio between magnitudes across the
three possible pairs of environments. Colors indicate the corresponding pairs. The
solid line represents the best-fitting line to the data (without intercept). Fit statistics
appear at the inset: β estimated slope, p is the statistical significance β, R2 is the
goodness of fit, and n is the total number of data points (the degrees of freedom of
the model is n� 1). iv Distribution of cosine distance scatter. The mean value
appears at the inset. vCalculation of the equivalent angulardistance. The estimated

value in each case is noted at the inset. vi Using the power law to predict magni-
tudes of population responses in a new environment. Best-fitting line (without
intercept) is shown as a solid line. Fit statistics appear at the inset: α estimated
slope,p is the p value ofα,R2 is the goodness offit, andn is the total number of data
points (the degrees of freedomof themodel is n� 1). Populationmagnitudes are in
arbitrary units. vii Testing for population homeostasis. In the case of homeostasis,
the functionΦ θð Þ ffi p θð Þr θð Þ should be constant (seeMethods). Solid lines and left
y-axis represent this calculation when the response magnitude is the l2 norm.
Dashed lines and right y-axis show the result if the magnitude is defined as the l1
norm. viii Correlation between the l2 and l1 norms across stimuli and environ-
ments. Norms are in arbitrary units. Solid line represents best linear fit (without
intercept). Fit statistics appear at the inset: β estimated slope, p is the statistical
significanceβ, R2 is the goodness offit, and n is the total number of data points (the
degrees of freedom of the model is n� 1).
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Seeking an explanation for this shortcoming, we reasoned that a
single adaptor is not expected to influence just neurons with an
orientation preference matching its orientation, but also cells with
nearby orientation preferences, as their tuning bandwidths are finite.
In other words, the cortex may be unable to faithfully represent a
“peaked” distribution with a sharp transition between neighboring
orientations. Instead, the responses may be consistent with the
population behaving according to a smoothed version of the actual
distribution: pκ

X θð Þ=pX θð Þ⊛hκ θð Þ, where hκ θð Þ is a von Mises kernel
with concentration κ and the operator ⊛ represents circular con-
volution. Indeed, whenwe repeated the analyses using pκ

X θð Þ insteadof
pX θð Þ, we found there is an intermediate value of κ that produces the
best linearfit between the ratios of responses and the ratios of stimulus
probabilities, as assessed by the R2 measure (Fig. 3a(ix, x)). Using the
optimal κ largely restores the power law relationship (Fig. 3a(xi)). In
this example, theR2 for the power law linear fit is vastly improved from
its original value of �0:25 to +0:79 after the smoothing correction.
Similarly, the R2 for the prediction of magnitudes in a new environ-
ment improved from an R2 of�0:21 to +0:72 (Fig. 3a(xii)). As onemay
expect, smoothing did not improve the predictions when the prob-
ability distributions were smooth to beginwith, like those in Fig. 2 (see
Supplementary Table 1).

Rules of adaptation apply to distributions drawn from
natural images
Next, we wondered if the power law relationship would capture the
data when environments are defined by a richer set of orientation
distributions, such as those found in natural images (Fig. 4a). Such
distributions can be skewed and havemultiple peaks of varying widths

with different relative amplitudes. To answer this question, we col-
lected data where environments were drawn from empirical distribu-
tions of natural image patches (seeMethods). Wewere able to observe
all the same phenomena (Fig. 4b–d). The goodness-of-fit could be
improved to a degree by smoothing, especially in cases where one or
more environments contained narrow peaks. Yet, the baseline per-
formance of the power law and its prediction were good from the
outset (R2 for the power law was 0:77 ±0:04, mean ± 1 SD). Direction
scatter remained small (1.10 ± 0.22 deg,mean± 1SD). A summary of the
fits across all our experiments is provided in Supplementary Fig. 2 and
Supplementary Table 1.

Rules of adaptation apply to natural movie sequences
We conducted a series of experiments where the stimulus set con-
sisted of 18 movie sequences selected from nature documentaries
(Methods). Movies were randomly assigned an identification number
from 1 to 18. The stimuli were not matched for luminance or contrast.
We used the same environmental distributions as in our experiments
with natural orientation distributions. The same phenomena could
be observed under these conditions (Fig. 5a–c). The scatter in the
direction of population vectors remained small, the power law still
applied, and it predicted the responses in novel environments
accurately. In these data, too, we observed a violation of
population homeostasis. The exponents in the power law were
somewhat smaller (�0:19 ±0:03,mean± 1SD) compared to gratings
(�0:25 ±0:06,mean± 1SD) and this difference was significant (Wil-
coxon rank sum test, p=4:4× 10�12). Thus, it appears that the expo-
nent in the power law depends, in part, on the stimulus set. Notice that
the two sets differed strongly in the distribution of cosine distances
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between the responses. Movies evoked responses with pairwise cosine
distances larger than 0:4, while gratings contain many pairs of stimuli
differing by less than 20 deg, which evoke similar population respon-
ses with distances smaller than 0:4 (Figs. 2–4(iv)). These differences,
we conjecture below, may be related to the difference in exponents
obtained for different stimulus classes. Nevertheless, the power law
still captured the behavior of cortical populations under adaptation to
complex movie sequences.

Adaptation is relatively fast and sensitive to spatial phase
Finally, we investigated the dynamics of the adaptation and its
dependence on spatial phase using the sinusoidal grating dataset
(Fig. 6a–c). For each environment, we computed the magnitude of the
responses to an orientation given that the stimulus preceding it by T s
differed in orientation by Δθ, which we denote by r Δθ,Tð Þ. We define
the modulation function asmðΔθ,TÞ= rðΔθ,TÞ=rðΔθ,T1Þ. Here, T1 is a
sufficiently large time. AplotofmðΔθ,TÞ shows that the responses have
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relatively fast dynamics. Stimuli presented more than 2sec into the
past do not longer influence the magnitude of population responses41.
We repeated a similar analysis to examine themodulatory influence of
the immediately preceding stimulus as a function of both relative
orientation and relative spatial phase. Clearly, the population response
is sensitive to spatial phase, as themaximum suppression results when
the previous stimulus matched both the orientation and phase of the
present one (Fig. 6c, note that spatial phases are incongruent for dif-
ferent orientations).

Computational implications of the power law
What insights about the computational role of cortical adaptation can
we gain from the power law relationship? To simplify our discussion,
let us assume that in a uniform environment, U, where all stimuli
have the same probability, the responses magnitudes are also the
same. Then, according to the power law, we can write
rX si
� �

=rU si
� �

= pX si
� �

=pU si
� �� �β. We are assuming rU si

� �
= rU and

pU si
� �

= 1= Sj j, where Sj j is the number of stimuli in our set. Hence,
log rX si

� �
=A+β logpX si

� �
, where A is a constant. From an information

theoretic point of view42, IX si
� �

=�logpX si
� �

represents the informa-
tion content or “surprise” of observing si in the environment X . We can
then write log rX si

� �
=A�β IX si

� �
. Thus, the logarithm of the response

magnitude is linearly related to the “surprise”of observing si. Note that
β<0, so the larger the surprise the larger the response. This relation-
ship allows us to appreciate how adaptation enables the cortex to
signal unexpected, deviant, novel, or odd-ball stimuli43–46 (all terms
referring to stimuli with a low probability of appearance within an
environment).

How does the metabolic cost of the representation change as a
function of the predictability (or entropy) of the environment in a

population that follows a power law?We define the metabolic cost for
an environment X as CX = E rX si

� �� �
, with the expectation taken over

the distribution pX si
� �

. To simplify the analysis, we consider the class
of environments defined by von Mises distributions. In this case, we
can find close-form expressions for the entropy andmetabolic cost for
a population with exponent β (Methods). In the case of a non-adapting
population (β =0) or when the population adapts perfectly (β= �1),
the metabolic cost is constant with the entropy of the environment
(Fig. 6d). Instead, for intermediate values �1 <β<0, where we have
partial (or “soft”) adaptation, the cortex adjusts the metabolic cost of
its representation to the predictability of the environment (Fig. 6e,
black curve). For values of β in the ð�0:4,�0:2Þ range, typical of our
data, metabolic cost can be well approximated as a linear function of
the entropy (Fig. 6d, solid curves, and Fig. 6e, red curve). Maximum
modulation is attained for β= �0:85, while approximate linearity of
metabolic cost with entropy is attained for β>�0:5 (Fig. 6e). In the
soft adaptation regime of our data (Fig. 6e, shaded rectangle), a pre-
dictable environment (with low entropy) will be coded with a lower
metabolic cost than an unpredictable one (with high entropy) and the
relationshipwill be close to linear. Theseproperties are consistentwith
the principles of efficient cortical encoding39,40.

These findings still hold if rX si
� �

represents the l1 norm rather
than the l2 norm in the definition of metabolic cost, as our data show
the two norms are proportional to each other. What is the root of this
relationship? If we assume the population contains a set of homo-
geneous tuning curves, the distribution of responses for any given
orientation (horizontal slices through the individual panels of Fig. 2(ii))
will be the same for each orientation. Our data show that adaptation
simply changes the amplitude of these vectors. Thus, for any stimulus
and environment, the distribution of activity over the population will
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be one among a family of scaled distributions f r=s
� �

=s. One can easily
verify this leads to norms that are proportional to each other. The
constant of proportionality depends only on the shape of the dis-
tribution. A similar argument can be used for the case of natural ima-
ges, assuming the tuning of the population tiles the Fourier domain
and the fact that natural images have 1=f amplitude spectra.

Finally, to appreciate the degree towhich homeostasis is achieved
for the different values of β we can plot the magnitude of the popu-
lation changes as a function of orientation in the case of a von Mises
distribution (Fig. 6e) (see Methods). Perfect adaptation is attained for
β= �1, which generates a constant magnitude for all orientations. No
adaptation corresponds to the case β =0, where the magnitudes are
modulated according to the orientation probability distribution.
The range of experimental adaptation values corresponds to β in the
ð�0:4,�0:2Þ range (Fig. 6e, solid curves), which provides partial
adaptation.

Discussion
We studied the adaptation of cortical populations in different statis-
tical environments and found that their behavior can be summarized
by twoproperties. First, the ratio of responsemagnitudes to a stimulus
is linked to the ratio of its prior probabilities via a power law. Second,
the directions of the responses are largely invariant between envir-
onments. These relationships could be used to predict the behavior of
neural populations exposed to novel environments. The same set of
phenomena were obtained with environments defined by natural,
orientation distributions, and with stimulus sets composed of natural
image sequences. The power law seemingly failed in environments
defined by peaked distributions (Fig. 3). However, the relationship
could be restored using a smoothed estimate of the empirical dis-
tributions in the environment. The power law offered some insights

into the role of adaptation, revealing a neural population’s ability to
signal low-probability stimuli with large response magnitudes and to
adjust the metabolic cost of the representation to the predictability of
the environment. A limitation of the present studies is that the range of
log pX si

� �
=pY si

� �� �
was largely limited to ½�1, 1�. Investigating if the

power law holds for larger ranges will require increasing the experi-
mental time or restricting the measurements to only two
environments.

When our findings are compared to the seminal work of Benucci
et al.31, we find some discrepancies and some points of agreement.
First, we observed a robust violation of population homeostasis in all
our conditions, including environments with peaked distributions that
matched their conditions (Fig. 3), where the probability of adaptor was
∼0:36. Our results, instead, more closely resemble the deviations
from homeostasis these authors reported when the probability of the
adaptor was 0:5 (see their Supplementary Fig. 4). It is possible that
homeostasis in mice holds only when the “dynamic range” of the
environments, defined as maxi p si

� �
=mini p si

� �
, is smaller than the

ones we tried so far. However, clear violations of homeostasis are also
observed in environments with natural orientation distributions
(Fig. 4) and with natural movie sequences (Fig. 5). Thus, we think that
population homeostasis is not the sole driving force of adaptation
under natural conditions. A reason for a population to adopt a “soft
adaptation” regime is that, only under such conditions, the metabolic
cost is adjusted as a function of the stimulus entropy. Under perfect
adaptation, metabolic cost is independent of the predictability of sti-
muli in the environment.

Benucci et al. proposed a model where the activity is modulated
by two gain factors: one applied to the tuning curves of neurons, and
another applied to the population response magnitudes. They noted
that the modulation of response magnitudes was the dominant
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component (see their Supplementary Fig. 6). Notably, in 4 out of 5
cases where the adaptor had a probability of 0:5, a change in the gain
of the population alonewas sufficient to explain adaptation—therewas
nomeasurable change in the gain of the tuning curves. The dominance
of the population gain is consistent with the property of direction
invariance and our own supplementary analyses (Supplementary
Fig. 3). Moreover, the gain functions that explained adaptation in their
peaked environmentswerebroadGaussians, which is analogous to our
finding that adaptation in the orientation domain behaves according
to a smoothed distribution. The dynamics of adaptation we report
(Fig. 6) are very similar to their estimates, both leading to integration
windowsof ∼ 2 s (see their Supplementary Fig. 5). It is possible that our
discrepancies are due to the use of different species and methodolo-
gies. They recordedmultiunit activity in cat areas 17 and 18 using Utah
arrays covering 4× 4mm2 of cortex, with electrodes arranged in a grid
with 400 µm spacing. In contrast, we used single-cell, two-photon
imaging inmouse primary visual cortex, with neurons located within a
field of view of 730 µm×445 µm in size. Future comparisons between
imaging and electrophysiological data using the same experimental
methods described here should clarify if population magnitudes are
being distorted during imaging47.

We note that the well-documented shifts in the preferred orien-
tation of neurons away from an adapting stimulus (e.g., ref. 15) are
consistent with the modulation of population responses and direction
invariance. To appreciate this point, consider a homogenous popula-
tion of neural responses in a uniform environment (Fig. 7a). Here, the
rows represent the population responses and the columns the tuning
curves of the population. Let us assume the presence of an adaptor at
90° modulates the population responses (Fig. 7b). The cortical
responses under adaptation leave the direction of population vectors
invariant (Fig. 7c). If we plot the preferred orientation of the tuning
curves (the columns of Fig. 7c), we notice that neurons with preferred
orientations near the adaptor will have their flanks closer to the
adaptor decaymore rapidly than those facing away (Fig. 7d, f), causing
a shift in their preferred orientation relative to the uniform environ-
ment (Fig. 7e). Thus, shifts in the preferred orientation of individual
neurons between environments and the invariance of population
directions coexist in our model of adaptation.

The approximate invariance of response directions allows a
downstreamdecoder to performwell despite being “unaware”48 of the
state of adaptation of primary visual cortex. A decoder could learn a
single, average map between stimulus orientation and a response
direction, θ ! r̂ θð Þ. Given the direction of a new response r̂n in an
unknown environment, the decoder could estimate the stimulus
orientation as θ̂n = argminθ dðr̂n,r̂ θð ÞÞ, where d �,�ð Þ is the cosine dis-
tance between the arguments. Approximate direction invariance
means such a decoder is likely to perform well across different envir-
onments. We emphasize this does not mean the decoder will be

unbiased. While the scatter in response direction across environments
is small, the deviations are not random and have a structure associated
with the distribution in each environment that contributes to biases
and changes in discriminability in unaware decoders49. Direction
invariance under our experimental conditions is likely the result of
short presentation times aimed atmimicking the changes in the retinal
image due to saccadic eye movements. One may expect stronger
departures from direction invariance in conditions involving longer
adaptation times50.

We observed that the exponent in the power law is stimulus
dependent—on average, data obtained with movie clips were
described by exponents of smaller absolute magnitude compared to
gratings of different orientations. We speculate this may be due to
the degree towhich different stimuli generate activity in the same set
of neurons. Pairs of sinusoidal gratings differing by 10° in orientation
probably stimulate similar sets of neurons. This can be inferred by
the fact that the average cosine distance between the population
activity in this case is approximately 0.15 (Fig. 2 (v)). In contrast, the
cosine distance between any two pairs of movie clips was larger than
0.5, meaning that different movies generated very different patterns
and, therefore, would adapt independent set of neurons. Future
experiments could explore if there is a relationship between the
exponent and the pairwise cosine distance a stimulus set evokes in
single populations.

The circuit implementing the power law is still under investiga-
tion. The power law behavior and its relatively fast dynamics (con-
sistent with what has been reported in previous studies11,35,51) suggest a
possible involvement of synaptic depression11,16,17,35, although intrinsic
cell properties could also play a role52,53. It is worth exploring, for
example, to what extent the depression of thalamocortical synapses54

could already generate a power law behavior. A normalization network
may also be able to explain our findings55,56, although the fact that the
phenomenon is phase sensitive (Fig. 6c) does not align well with the
notion that the normalization signal is pooled over many cortical
neurons57, as this would render it phase invariant. Lastly, it has not
been established if adaptation can be explained exclusively as a feed-
forward circuit or requires the use of top-down signals58.

There are other important questions raised by our study. Can the
model be extended to capture how the covariance of the responses
and discriminability of stimuli are affected by adaptation? How does
contrast sensitivity change between different environments? How do
contrast and stimulus probability interact to yield a response magni-
tude? Can the power law describe adaptation in neural populations in
other brain regions and sensorymodalities?Whilemuch remains to be
explored, the present analyses show that studying the responses of
cortical populations at the population level can yield important
insights into the signal-processing goals of adaptation and, potentially,
other visual computations.
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Fig. 7 | Consistency of direction invariance with shifts in preferred orientation
and tuning curve skewness. a Responses of a homogenous population in a uni-
formenvironment.bModulation function evokedby anadaptor at 90°. Each row in
(a) is multiplied by its corresponding gain to yield the responses of the population
under adaptation in (c. d), Examples of a few tuning curves (columns of (c)) under

adaptation. Solid curves show two tuning curves near the adaptor. The flanks of the
tuning curves closer to the adaptor fall more rapidly than those facing away,
shifting their preferred orientations. e Shifts in the preferred orientation of tuning
curves under adaptation relative to the uniform environment. fCircular skewness63

of tuning curves after adaptation.
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Methods
Experimental model and subject details
The procedures in the experiments described here were approved by
UCLA’s Office of Animal Research Oversight (the Institutional Animal
Care andUseCommittee) andwere in accordwith guidelines set by the
U.S. National Institutes of Health. A total of four mice, one male (one)
and three female, aged P35–56, were used. Animals were a cross
between TRE-GCaMP6s line G6s2 (Jackson Lab, https://www.jax.org/
strain/024742) and CaMKII-tTA (https://www.jax.org/strain/007004).
In our analyses, we report data pooled over sex, as we did not observe
any obvious differences in the exponent of the power law between
male and female datasets (Supplementary Table 1, Wilcoxon
test, p=0:18).

Surgery
Imaging is performed by visualizing activity through chronically
implanted cranial windows over primary visual cortex. Carprofen is
administered pre-operatively (5mg/kg, 0.2mL after 1:100 dilution).
Mice are anesthetized with isoflurane (4–5% induction; 1.5–2% sur-
gery). Core body temperature is maintained at 37.5 °C. Eyes were
coated with a thin layer of ophthalmic ointment during the surgery.
Anesthetized mice are mounted in a stereotaxic apparatus using blunt
ear bars placed in the external auditory meatus. A portion of the scalp
overlying the two hemispheres of the cortex is then removed to
expose the skull. The skull is dried and covered by a thin layer of
Vetbond. After the Vetbond dries (15min), we affix an aluminum
bracket with dental acrylic. The margins are sealed with Vetbond and
dental acrylic to prevent any infections. A craniotomy is performed
over monocular V1 on the left hemisphere using a high-speed dental
drill. Special care is taken to ensure that the dura is not damaged
during the process. Once the skull is removed, a sterile 3mmdiameter
cover glass is placed directly on the exposed dura and sealed to the
surrounding skull with Vetbond. The remainder of the exposed skull
and the margins of the cover glass are sealed with dental acrylic. Mice
are allowed to recover on a heating pad. When alert, they are trans-
ferred back to their home cage. Carprofen is administered post-
operatively for 72 h. Mice are allowed to recover for at least 6 days
before the first imaging session.

Two-photon imaging
We conducted imaging sessions in awake animals starting 6–8 days
after surgery. Mice are positioned on a running wheel and head-
restrained under a resonant, two-photon microscope (Neurolabware,
Los Angeles, CA) controlled by Scanbox acquisition software and
electronics (Scanbox, Los Angeles, CA). The light source was a
Coherent Chameleon Ultra II laser (Coherent Inc, Santa Clara, CA).
Excitation wavelength was set to 920nm. The objective was an ×16
water immersion lens (Nikon, 0.8NA, 3mm working distance). The
microscope frame rate was 15.6 Hz (512 lines with a resonant mirror at
8 kHz). The field of view was 730 µm×445 µm. The objective was tilted
to be approximately normal on the cortical surface. Images were
processed using a standard pipeline consisting of image stabilization,
cell segmentation and signal extraction using Suite2p (https://suite2p.
readthedocs.io/)59. A custom deconvolution algorithm was used60. A
summary of the experiments, including summaries of the analyses, are
presented in Supplementary Table 1.

Visual stimulation
We used a Samsung CHG90 monitor positioned 30 cm in front of the
animal for visual stimulation. The screen was calibrated using a Spec-
trascan PR-655 spectro-radiometer (Jadak, Syracuse, NY), generating
gamma corrections for the red, green, and blue components via a
GeForce RTX 2080Ti graphics card. Visual stimuli were generated by a
custom-written Processing 4 sketch using OpenGL shaders (see http://
processing.org). At the beginning of each experiment, we obtained a

coarse retinotopymap as follows. The field of viewwas split into a 3 × 3
grid (Fig. 1c, top) and the average fluorescence in each sector was
computed in real time. The screen was divided into a 5 × 18 grid. We
randomly selected a location on the grid and presented a contrast-
reversing 4× 4 checkerboard for 1 sec. Within a block, each grid loca-
tion was stimulated once. A total of 5 blocks were used. The data were
analyzed to produce an aggregate receptive fieldmap for each sector.
The centers of each of these receptive fields are shown in the bottom
panel of Fig. 1c for one experiment. The grand average of the receptive
fields appears as the background in the same figure. The center of the
population receptive field is used to center the location of our stimuli
in these experiments. We endeavored to center the population at an
elevation of around 0°, which allowed us to maximize the circular
window through which we presented the stimulus (dashed circle
in Fig. 1c).

The grating experiment consisted of the presentation of 100%
sinusoidal gratings of 0.04 cpd using the protocol depicted in Fig. 1.
The orientation domain was discretized in steps of 10°, leading to 18
orientations in the stimulus set. The spatial phases at each orientation
were uniformly randomized from 0 to 360° in steps of 45°. When
computing the mean population vector for a given stimulus, we
averaged across spatial phases, thus minimizing the effect of eye
movements on our analyses. A total of 5400 trials (6 blocks of 5min
each at 3 stim per s) were collected for each environment. For a uni-
form environment, this results in an average of 300 trials per orien-
tation. For a non-uniform environment, where some orientations
appeared rarely, the total number of trials could be around 50. The
appearance of a new stimulus on the screen was signaled by a TTL line
sampled by themicroscope. As a failsafe, we also signaled the onset of
the stimulus by flickering a small square at the corner of the screen.
The signal of a photodiode was sampled by the microscope as well.

Natural orientation distributions
We collected natural images from the UCLA campus (see samples in
Fig. 4a). Images were converted to grayscale and the gradient of the
image ∇I x,yð Þ was computed at each location. We computed the dis-
tribution of themagnitude of the gradient across the entire image and
set a threshold at the 90th percentile of the distribution. The angle of
the gradient for the pixels with magnitudes exceeding the threshold
was collected. A smooth distribution in the orientation domain was
then obtained via kernel density estimation61, where the kernel was a
von Mises distribution with κ = 5. The result was discretized to yield a
probability distribution over angles ranging from 0 to 170 in steps of
10. A library of 150 distributionswas generated by this procedure, each
distribution derived from one of the natural images. In each experi-
ment, we randomly selected three distributions and accepted them if
(a) the minimum probability of a stimulus across all environments
exceeded 0.03 (to ensurewewould have a reasonable number of trials
for all orientations) and (b) the cosine distance between the distribu-
tions was larger than 0.25 for any of the three pairs (to ensure that the
distributions were sufficiently different from each other). If the test
failed, we repeated the procedure until a random pick satisfied the
criteria.

Movie sequences
Movies clips were selected fromhigh resolution nature documentaries
found on the internet. Movie clips were selected to avoid transition
between scenes. A stimulus set was constructed by randomly selecting
18movie clips 333msec in length. Thus, the size of the stimulus setwas
the same as that used in the grating experiments. Movie clips were
ordered randomly and assigned a unique ID from 1 to 18. These movie
clips were considered analogous to the set of gratings having orien-
tations spanning 0 to 170°. To define an environment over themovies,
weused the sameclassof probability distributions for this set aswedid
for natural orientation distributions. This kept some statistical features
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constant across two incongruent sets of stimuli (gratings andmovies),
such as the entropy of the environments. The experimental session for
the movies was identical to that using gratings in all respects (Fig. 1)
except that insteadofflashed sinusoidal gratings, the individual stimuli
represented shot movie sequences.

Optimal stimulus-response delay
For each environment, we calculated the magnitude of the population
response T microscope frames after the onset of the stimulus, whereT
ranged from –2 to 15. The frame rate of the microscope was 15.53
frames/s. The time to peakof these curves agreed for all environments.
In other words, the dynamics were not dependent on the statistics of
the environment.We therefore averaged themagnitudes across all the
three environments and defined the optimal stimulus-response delay
as the time (in microscope frames) between the onset of the stimulus
and the peak response magnitude of the population. This calculation
was the same for gratings and for movie sequences.

Analysis of population homeostasis
Note that the average firing rate of the population in an environment X
is given by �rX =

P
ipX si

� �
rX si
� �

, which can be written as
�rX =

P
ipX si

� �
rX si
� �

r̂ si
� �

. Here, we have dropped the subscript from
the unit vector, as directions are invariant across environments.
Population homeostasis holds if the vector �rX =k for all environments
X , where k is a constant. Assuming the vectors r̂ si

� �
are linearly inde-

pendent, there is a unique way to write k as a linear combination of
r̂ si
� �

, which we write as k=
P

ikir̂ si
� �

(we can safely assume k is in the
span of fr̂ si

� �g, otherwise, the mean rate cannot equal k). Hence,
�rX =

P
ipX si

� �
rX si
� �

r̂ si
� �

=
P

ikir̂ si
� �

. By coefficient matching, we con-
clude that homeostasis holds if and only if the function
ΦX si

� � ffi pX si
� �

rX si
� �

= ki for all environments X . In other words,
when homeostasis holds, we have that pX si

� �
rX si

� �
= ki =pY si

� �
rY si
� �

,
which implies rX si

� �
=rY si

� �
= ½pX si

� �
=pY si

� ���1. This means that
homeostasis is a particular case of the power law with β= �1.

Entropy and metabolic cost
Consider the case where orientation is distributed according to a von
Mises distribution, p θð Þ= 1=2πI0 κð Þ� �

exp κ cosθð Þ. The entropy of a
vonMises distribution is known tobeH κð Þ= ln 2πI0 κð Þ� �� κI1 κð Þ=I0 κð Þ.
The cost can be calculated as C κð Þ= E r θð Þ� �

= EfA p θð Þβg=
2πAI0 1 + βð Þκð Þ= 2πI0 κð Þ� �1 +β

: Here, Iv �ð Þ represents the modified Bes-
sel function of the first kind.We selected the gain A so that for the cost
was equal to one for an environment with an entropy of one. To find
out how cost depends on entropy we plot the parametric curve
H κð Þ,C κð Þð Þ for κ 2 0, 10½ � (Fig. 6d).

Incidentally, wepoint out that there is onemeasureof activity that
is a linear function of the entropy of the environment. We previously
showed that log rX si

� �
=A�β IX si

� �
, where IX si

� �
is the surprise of sti-

mulus si. If we take expectations on both sides, we obtain
E log rX si

� �� �
=A�β E logpX si

� �� �
=A�βHX , where HX is the entropy

of the environment X .

Statistics and reproducibility
We conducted experiments by independently measuring the adapta-
tion of neural populations in the visual cortex in 23 different instances
(see Supplementary Table 1). The goodness of fit of linear models was
evaluated using the R2 statistic (the coefficient of determination62).
Results were statistically significant (p values less than 10�4) and
consistent across individual experiments. As the study did not involve
different groups undergoing different treatments, there was no need
for randomization or blind assessment of outcomes. Data selection
was used to analyze neurons that showed well-tuned behavior with a
circular variance63 of less than 0.5. However, this choice has little effect
on the outcome of our analyses. The same results are obtained if we,
instead, work with the entire population (see Supplementary Fig. 1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data including the mean responses of the population for each
experiment can be found in the Figshare repository at https://figshare.
com/s/47275dd78f37230f7c83.

Code availability
Sample code describing the structure of the database and the repli-
cation of some of our analyses can be found along with the data at
https://figshare.com/s/47275dd78f37230f7c83.
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