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A map of object space in primate 
inferotemporal cortex

Pinglei Bao1,2 ✉, Liang She1, Mason McGill3 & Doris Y. Tsao1,2,3 ✉

The inferotemporal (IT) cortex is responsible for object recognition, but it is unclear 
how the representation of visual objects is organized in this part of the brain. Areas 
that are selective for categories such as faces, bodies, and scenes have been found1–5, 
but large parts of IT cortex lack any known specialization, raising the question of  
what general principle governs IT organization. Here we used functional MRI, 
microstimulation, electrophysiology, and deep networks to investigate the 
organization of macaque IT cortex. We built a low-dimensional object space to 
describe general objects using a feedforward deep neural network trained on object 
classification6. Responses of IT cells to a large set of objects revealed that single IT cells 
project incoming objects onto specific axes of this space. Anatomically, cells were 
clustered into four networks according to the first two components of their preferred 
axes, forming a map of object space. This map was repeated across three hierarchical 
stages of increasing view invariance, and cells that comprised these maps collectively 
harboured sufficient coding capacity to approximately reconstruct objects. These 
results provide a unified picture of IT organization in which category-selective regions 
are part of a coarse map of object space whose dimensions can be extracted from a 
deep network.

Object recognition, the process by which distinct visual forms are 
assigned distinct identity labels, lies at the heart of our ability to make 
sense of the visual world. It underlies many neural processes that oper-
ate on objects, including consciousness, attention, visual memory, 
decision making, and language. Befitting the central importance and 
computational complexity of object recognition, a large volume of the 
brain, IT cortex, is dedicated to solving this challenge7.

One of the most striking features of IT is the existence of several  
distinct anatomical networks that are specialized for processing spe-
cific categories2,4,5 or stimulus dimensions8–11. However, these networks 
comprise only part of IT, and much of IT is not differentially activated 
by any known stimulus comparison. Here we investigate whether 
this ‘unexplained’ IT shows any functional specialization. Further-
more, beyond simply parcelling IT, we investigate whether there is 
an overarching general principle governing the anatomical layout of 
IT cortex.

Many previous studies have tried to address this latter question, but 
the answers obtained remain piecemeal. Early studies using electro-
physiology in monkeys suggested a columnar architecture for visual 
shape12, but the small field-of-view of electrophysiology precluded 
understanding the larger-scale organization of these columns. Later 
studies, using functional MRI (fMRI) in humans, proposed various 
schemes to explain large-scale IT organization including retinotopy13 
and real-world size14, but these proposals did not provide a complete 
account of IT organization and lacked ground-truth validation at the 
level of single units. Here, we combined fMRI, electrical microstimu-
lation, and electrophysiology in the same animals to investigate the 

organization of macaque IT at multiple scales, and found that a large 
portion of macaque IT cortex is topographically organized into a map 
of object space that is repeated three times.

Identifying a new IT network
To discover the functional specialization of still unexplained parts of 
IT cortex, one strategy would be to guess. However, lacking any good 
guesses, we decided to approach the problem from an anatomical 
perspective. We ran a large set of stimulus comparisons to localize 
face, body, scene, colour, and disparity patches in a specific monkey 
(M1) and thereby define the ‘no man’s land’ of IT cortex in this monkey: 
regions that were not identified by any known localizer (Fig. 1a, b). We 
then electrically microstimulated a random site within this no man’s 
land in central IT cortex15. This experiment revealed that the stimulated 
region (NML2) was connected to two other, discrete regions in IT (NML1, 
NML3) (Fig. 1b, Extended Data Fig. 1), forming a previously unknown 
anatomical network within no man’s land.

To understand the function of this new network, we first recorded the 
neural responses of cells in the three patches to 1,224 images, consisting 
of 51 objects each presented at 24 views belonging to 6 different catego-
ries (Extended Data Fig. 2a, b). Responses were remarkably consistent 
(Fig. 2a, Extended Data Fig. 3a–d). Cells in all three patches responded 
minimally to faces. Their preferred stimuli, while consistent across 
patches, were not confined to any one semantic category (Fig. 2a).

To investigate whether this network exists in every animal, we iden-
tified the five most- and least-preferred objects of the network based 
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on mean responses of cells recorded from monkey M1 (Fig. 2a). We 
presented these stimuli to monkey M1 in an fMRI experiment and 
confirmed that the resulting map overlapped that revealed by micro-
stimulation (Fig. 2e). We then presented these stimuli to three other 
monkeys (M2–M4) and found similar networks in all three animals 
(Fig. 2e). Single-unit recordings targeted to this network in monkey 
M2 revealed a response pattern that was highly consistent with that 
in monkey M1 (Fig. 2a) (Pearson correlation of the mean responses 
to each object between monkeys M1 and M2, r = 0.89, P < 10−16). This 
justifies referring to an ‘NML network’ across animals.

In the face patch network, neurons in posterior patches are 
view-specific whereas those in the most anterior patch are 
view-invariant16. We found a similar difference between the three NML 
patches in terms of their view invariance. Significantly more cells in 
NML3 were view-invariant than in NML1 (two-tailed t-test; t(137) = 5.10, 
P < 10−5; Extended Data Fig. 3e). Population similarity matrices to objects 
at different views also showed an increase in view invariance going 
anteriorly, with emergence of parallel diagonal stripes in the NML3 
similarity matrix (Fig. 3a (top), Extended Data Fig. 3f). Notably, many 
cells showed view invariance to objects that the monkey had not expe-
rienced, such as an aeroplane (Fig. 3b (top)).

Next, we investigated what is being coded by cells in this network. 
Scrutinizing the most- and least-preferred objects (Fig. 2a (bottom)), 
we noticed that all of the preferred objects contained thin protrusions, 
whereas the non-preferred objects were round. This suggested that 
one feature NML neurons might be selective for is high aspect ratio. We 
confirmed this using both responses to the original object image set 
(Extended Data Fig. 3g, see Methods) as well as a simplified stimulus 
set consisting of a line segment independently varied in aspect ratio, 
curvature, and orientation (Fig. 2f, Extended Data Fig. 2c). Thus a com-
mon preferred feature of cells in the NML network is high aspect ratio.

NML cells encode axes of object space
We next attempted to identify the relevant shape dimensions for the 
NML network in a systematic way that does not depend on subjective 
visual inspection. Until recently, this was difficult because of the lack 
of a computational scheme to parametrize arbitrary objects. Deep 
networks trained to classify objects provide a powerful solution to this 
problem17. They allow parametrization of arbitrary objects through 
computation of a few thousand numbers, the unit activations in a deep 
layer. To make the parametrization even more compact, one can per-
form principal components analysis (PCA) on these unit activations.

We built an object space by passing the stimulus set we presented 
to the monkey (Extended Data Fig. 2a, b) through AlexNet, a deep net-
work trained on object classification6, and then performing PCA on the 
responses of units in layer fc6 of this network (Extended Data Fig. 4a). 
The first principal component (PC) corresponds roughly to things 
with protrusions (spiky) versus those without (stubby) (Extended Data 
Fig. 4b). The second PC corresponds roughly to animate versus inani-
mate (note that we use ‘animate’ and ‘inanimate’ as shape descriptors 
without any semantic connotation). We determined that 50 object 
dimensions could explain 85% variance in the AlexNet fc6 response 
(Extended Data Fig. 4c) and thus used 50 dimensions in the remaining 
analyses. We then analysed the responses of cells in the NML network 
by computing a ‘preferred axis’ for each cell through linear regres-
sion, namely, the coefficients c in the equation R = c·f + c0, where R is 
the response of the cell, f is the 50D object feature vector, and c0 is a 
constant offset (see Methods).

Cells showed significant tuning to many of the 50 object dimen-
sions (Pearson correlation P < 10−3 between feature values and neural 
responses). On average, each cell was significantly tuned to seven 
dimensions. Notably, the preferred axis of each cell was stable to 
the precise image set (Extended Data Fig. 5a). The 50D linear object 
space model could explain 44.7% variance, or 53.3% of the explainable 
variance of NML neurons on average (Extended Data Fig. 5b); this is 
significantly higher than a Gaussian model and similar to a quadratic 
model (Extended Data Fig. 5c, d). Consistent with the high explained 
variance by the linear model, cell tuning along the preferred axis in the 
50D object space was ramp-shaped (Fig. 3c, top). Similar ramp-shaped 
tuning has previously been reported for face-selective cells18. NML 
neurons also showed approximately flat tuning along orthogonal axes 
(Extended Data Fig. 5e), another property that has been previously 
observed in face-selective cells18. Together, ramp-shaped tuning along 
the preferred axis and flat tuning along orthogonal axes implies that 
cells in the NML network are linearly projecting incoming objects, 
formatted as vectors in object space, onto specific preferred axes.

Overall, the organization and code of the NML network are strikingly 
similar to those of the face patch network. The NML network consists of 
connected patches, cells within the network show a consistent pattern 
of selectivity, there is increasing view invariance along the network, and 
finally, single cells in the network represent object identity through an 
axis code. Thus there seems to be a clear structural parallel between the 
face network and the NML network. We therefore investigated whether 
additional networks in IT cortex follow the same scheme.

The body network follows the same scheme
We next recorded from the macaque body network, a set of regions 
adjacent to face patches that respond more to animate compared 
to inanimate objects4 (Fig. 2b), as well as the face network (Fig. 2c). 
Population similarity matrices showed increased view invariance 
in the most anterior body patch (Fig. 3a, b (middle), Extended Data 
Fig. 3e, f), consistent with a previous study19. Cells in the body network 
also showed ramp-shaped tuning along their preferred axes (Fig. 3c 
(middle), Extended Data Fig. 5a) and flat tuning along orthogonal 
axes (Extended Data Fig. 5e). Thus the body network follows the same 
general anatomical organization and coding scheme as the NML and 
face networks.

A general rule governing IT organization
The finding of three networks (NML, body and face) that all follow the 
same organization and coding scheme suggests that there might be 
a general principle that governs the organization of IT cortex. Recall 
that the first two axes of object space are roughly stubby versus spiky, 
and animate versus inanimate (Extended Data Fig. 4b). We noticed a 
remarkable relationship between these two axes and the selectivity of 
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Fig. 1 | Microstimulation reveals a new anatomical network in IT cortex.  
a, Stimulus contrasts used to identify known networks in IT (see Methods).  
b, Inflated brain (right hemisphere) for monkey M1 showing known IT networks 
mapped in this animal. Regions activated by microstimulation of NML2 are 
shown in yellow. All activation maps shown at a threshold of P < 10−3, not 
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Nature | Vol 583 | 2 July 2020 | 105

the NML, body, and face networks. Face patches prefer stubby animate 
objects; body patches prefer spiky, animate objects; and NML patches 
prefer spiky objects regardless of animacy (Fig. 2a). These observations 
made us wonder whether all of IT might be topographically organized 
according to the first two dimensions of object space (Fig. 4a), in the 
same way that retinotopic cortex is organized according to polar angle 
and eccentricity.

As a first step to test this hypothesis, we projected all the stimuli that 
we showed to the monkey onto the first two dimensions of object space, 

and marked the top 100 images for the NML, body, and face networks 
(Fig. 4b; orange, green, and blue dots). They approximately spanned 
three quadrants of the space. If IT cortex is indeed laid out according 
to the first two dimensions of object space, we predicted there should 
be a fourth network representing objects that project strongly onto the 
remaining unrepresented quadrant—namely stubby, inanimate objects 
without protrusions (for example, a USB stick or radio).

To test this prediction, we first ran an fMRI experiment with four 
blocks, corresponding to the four quadrants of object space (Fig. 4a). 
Comparison of stubby versus other blocks revealed a network that 
contained multiple patches selective for stubby objects (Fig. 4c). Elec-
trophysiology targeted to two of these patches revealed cells that were 
strongly selective for stubby objects (Fig. 2d), whose preferred axes 
occupied the previously unrepresented quadrant (Fig. 4b, magenta 
dots). The general properties of the stubby network were very similar 
to those of the NML, face, and body networks. Population similarity 
matrices showed increased view invariance in the most anterior stubby 
patch (Fig. 3a, b (bottom), Extended Data Fig. 3f). Cells in the stubby 
network also showed ramp-shaped tuning along their preferred axes 
(Fig. 3c (bottom), Extended Data Fig. 5a) and flat tuning along orthogo-
nal axes (Extended Data Fig. 5e). Thus, the hypothesis that IT is organ-
ized according to the first two dimensions of object space revealed a 
second new shape network.

One potential concern is that the 51 objects at 24 views that we used 
to assess the selectivity of cells in each network were too sparse and 
may not have allowed identification of the true selectivity of cells. We 
presented 1,593 completely different objects to a subset of cells in the 
NML, body, and stubby networks and found responses consistent with 
those to our original stimulus set (Extended Data Fig. 6a, b). In particu-
lar, preferred axes measured using the new stimuli segregated into three 
different regions of object PC1–PC2 space (Extended Data Fig. 6a), 
and the preferred stimuli of each network were qualitatively similar 
to those identified using the original stimuli (Extended Data Fig. 6b).

It might seem suspiciously serendipitous for IT to be organized 
according to the first two dimensions of an object space computed 
using a specific image set with a specific deep convolutional network. In 
fact, these first two axes do not depend strongly on the particular image 
set (Extended Data Fig. 4d–f) or network (Extended Data Fig. 4g–j) used 
to compute them (see Supplementary Information).

A map of object space
What is the anatomical layout of the face, body, NML, and stubby net-
works? An overlay of the four networks onto coronal slices and a cor-
tical flat map revealed a remarkably ordered progression (Fig. 4c, d; 
see Extended Data Fig. 7 for response time courses from each patch). 
There is a clear sequence from body to face to stubby to NML in both 
hemispheres that is repeated in the same order in posterior, middle, 
and anterior IT. This pattern was consistent across animals (Fig. 4c, 
d) and confirmed by quantitative analysis of the linear fit between 
patch-ordered label and cortical location of patch peak (P < 10−18 for 
posterior, middle, and anterior IT, Fig. 4e–g). This strikingly regular 
progression suggests the existence of a coarse map of object space 
that is repeated at least three times, with increasing view invariance 
at each stage.

These four networks, together with the disparity, scene, and colour 
networks, occupy about 53% of IT cortex, so additional networks may 
exist. Not all of the networks consisted of exactly three patches; for 
example, the stubby and NML networks each contained four patches 
(Fig. 4d, see Supplementary Information), and previous work has 
suggested that there are six face patches in each hemisphere, with 
some individual variability20. Thus, IT cortex may contain additional 
repetitions of the object space map. Furthermore, we emphasize that 
our study addresses IT organization at a coarse spatial scale and does 
not exclude the possibility of additional organization at finer spatial 
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monkeys M1, M2, M3, and M4 showing difference in activation in response to the 
five most-preferred versus five least-preferred objects determined from 
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result is also shown as a cyan overlay with threshold P < 10−3, uncorrected. Inset 
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from patches NML2 and NML3 of the NML network to a line segment that varied 
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ratio. Aspect ratio accounts for 22.8% of response variance on average across 
cells, curvature for 5.6% of variance, and orientation for 3.5% of variance.
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scales (Extended Data Fig. 8; see Supplementary Information). Record-
ings from multiple grid holes suggest that each patch spans 3–4 mm 
(Extended Data Fig. 8a–d). Although we failed to find clustering at 
finer scales within a patch (Extended Data Fig. 8e, f) or clustering for 
any dimensions beyond the first two (Extended Data Fig. 8g, h), it is 
possible that mapping techniques with higher spatial resolution may 
reveal additional substructure within patches.

If the first two dimensions of object space derived from a deep  
network are indeed meaningful in terms of brain representation, we 
should be able to design novel stimuli to identify the four networks. To 
this end, we generated three new image sets (silhouettes, fake objects, 
and deep dream images) with very different properties from those 
of the original image set of Fig. 4a. In each case, fMRI revealed four  
networks similar to those in Fig. 4c (Extended Data Fig. 6c–e).

Explaining previous accounts of IT
The principle that IT cortex is organized according to the first two 
axes of object space provides a unified explanation for many previous 
observations concerning the functional organization of IT, including 
not only the existence of face1 and body areas3, but also gradients for 
representing animate versus inanimate and small versus large objects14 
(Extended Data Fig. 9a, b), a gradient for representing open versus 
closed topologies21 (Extended Data Fig. 9c), the curvature network11 
(Extended Data Fig. 9d), and the visual word form area22 (Extended 
Data Fig. 9e). Furthermore, within category-selective regions, the 
object space model explains activity better than the semantic category 
hypothesis23 (Extended Data Fig. 10). Overall, these results demonstrate 
the large explanatory power of the object space model.

Reconstructing general objects
We next investigated the richness of the feature space represented 
by cells in the four networks that comprise the map of object space. 
To quantify the object information available in the map of object 
space formed by the four networks, we attempted to decode object 

identity using the responses of cells from these networks. We used 
leave-one-object-out cross-validation to learn the linear transform that 
maps responses to features (Extended Data Fig. 11a, b). The explained 
variance for each dimension showed that many dimensions are coded 
in each network beyond the first two (Extended Data Fig. 11c), allow-
ing a target object to be identified among distractors (Extended Data 
Fig. 11d–f).

To directly visualize the information about object features that is 
carried by neurons in these four networks, we attempted to reconstruct 
general objects using neural activity. We passed decoded object feature 
vectors through a generative adversarial network trained to invert layer 
fc6 of AlexNet24. Reconstructions were impressively accurate in details 
(Fig. 5a). Figure 5b shows the distribution of normalized reconstruc-
tion distances between the actual and best possible reconstructions 
(see Methods). As a second method to recover objects from neural 
activity, we searched a large auxiliary object database for the object 
with a feature vector closest to that decoded from neural activity. This 
method also yielded recovered images that picked up many fine struc-
tural details (Extended Data Fig. 11g). Overall, these results suggest that 
the four networks of the IT object space map are sufficient to encode a 
reasonably complete representation of general objects, and thus the 
number of networks used to solve general object recognition need not 
be astronomically high.

Discussion
We have shown that IT contains a coarse map of object space that is 
repeated three times, with increasing invariance at each stage. This 
map consists of at least four regions that tile object space. This map 
parsimoniously accounts for the previously reported face and body 
networks, as well as two new networks: the NML network and the stubby 
network. Single cells in each of the four networks use a coding principle 
similar to that previously identified for the face network—projection 
of incoming objects, formatted as points in object space, onto a pre-
ferred axis. The four networks that comprise the IT object-topic map, 
together with the scene, colour, and disparity networks, cover about 
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53% of IT. Pooling responses across the four networks enabled rea-
sonable reconstruction of general objects, suggesting that these four 
networks provide a basis that spans general object space. By showing 
that the modular organization previously thought to be unique to a 
few categories may actually extend across a much larger swath of IT, 
we provide a powerful new map for experiments that require spatially 
specific interrogation of object representations.

It remains unknown whether borders between the patches are con-
tinuous or discrete25, as fMRI-guided single-unit recording is not ideal 
for mapping sub-millimetre-scale structure. If the borders turn out to 
be continuous, this would imply that the entire notion of IT modular-
ity may be an artefact of limited field of view. On the other hand, if the 
borders turn out to be discrete, this would suggest that additional 

factors (for example, extensive experience with specific categories26) 
may support the formation of uniquely specialized modules of cortex. 
The coarse map of object space identified here provides a foundation 
for future fine-scale mapping studies to tackle this question.

The finding that neurons in IT are clustered according to axis similar-
ity resonates with recent approaches to unsupervised learning of object 
representations that seek optimal clustering of data in low-dimensional 
embeddings27. It will be important to understand why IT physically clus-
ters neurons with similar axes—something not currently implemented 
in deep networks. One possible reason is that physical clustering may 
help to refine object representations through lateral inhibition and 
aid object identification in clutter28.

Our results cast the face patch system in a new light. Previously, 
it was thought that the face system, with its striking clustering of 
face-selective cells, was a unique evolutionary consequence of the 
importance of face recognition to primate social behaviour. Here we 
show that the face system arises naturally from the statistical structure 
of object space. One prediction is that face-deprived animals should 
still show a network specialized for round objects (for example, clocks, 
apples), even if it is not specialized for faces per se. Selectivity for addi-
tional features may develop with face experience26.

Our hypothesis that IT cortex is organized according to the first 
two dimensions of object space makes multiple new predictions. We 
have already confirmed several of these, including the existence of 
the stubby network (see Supplementary Information). Additional new 
predictions are that lesions in any part of IT should lead to agnosias 
in specific sectors of object space29, and that other brain regions that 
contain face patches may also harbour maps of object space30. Finally, 
it will be important to discover whether remaining unaccounted-for 
regions of IT can be explained within the same general framework of 
a map of object space.
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in the rectangular boxes were used for mapping the four networks shown  
in c, d using fMRI. b, All the stimuli used in the electrophysiology experiments 
(Extended Data Fig. 2a, b) projected onto the first two dimensions of object 
space (grey circles). For each network, the top 100 preferred images are marked 
(body network: green, face network: blue, stubby network: magenta, NML 
network: orange). Numbers in parentheses indicate the number of neurons 
recorded from each network. c, Coronal slices from posterior, middle, and 
anterior IT of monkeys M3 and M4 showing the spatial arrangement of the four 
networks (maps thresholded at P < 10−3, uncorrected). Here, the networks were 
computed using responses to the stimuli in a. d, As in c, showing the four 
networks in monkeys M3 and M4 overlaid on a flat map of the left hemisphere.  
e, Left, spatial profiles of the four patches along the cortical surface within 
posterior IT for data from two hemispheres of four animals. The y-axis shows the 
normalized significance level for each comparison of each voxel, and the x-axis 
shows the position of the voxel on the cortex (see Methods). Right, anatomical 
locations of the peak responses plotted against the sequence of quadrants in 
object space. f, g, As in e for voxels from middle IT (f) and anterior IT (g).
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Methods

Five male rhesus macaques (Macaca mulatta) between 5 and 8 years 
old were used in this study. All procedures conformed to local and US 
National Institutes of Health guidelines, including the US National 
Institutes of Health Guide for Care and Use of Laboratory Animals. All 
experiments were performed with the approval of the Caltech Institu-
tional Animal Care and Use Committee.

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and investigators were not blinded 
to allocation during experiments and outcome assessment.

Visual stimuli
Stimuli for electrophysiology experiments. Three different stimu-
lus sets were used. 1) A set of 51 objects from 6 different categories, 
each presented at 24 different views (Extended Data Fig.  2a, b).  
Except for face models, other 3D models were downloaded from https://
www.3d66.com. Face 3D models were generated by Facegen (Singular 
Inversions) software using random parameters. The images at 24 views 
for each object were generated using 3dMax (Autodesk) software. 
Each image was presented for 250 ms interleaved with 150 ms of a grey 
screen. Each image was presented 4–8 times. 2) A set of line segments 
that varied along three dimensions: curvature, aspect ratio, and orien-
tation (Extended Data Fig. 2c). Each image was presented for 150 ms 
interleaved with 150 ms of a grey screen. Each image was presented 
6–8 times. 3) A set of object images consisting of 1,392 different im-
ages downloaded from www.freepngs.com. We also included 201 face 
images from the FEI database (https://fei.edu.br/~cet/facedatabase.
html). Thus there were 1,593 images in total (Extended Data Fig. 2d). 
Each image was presented for 150 ms interleaved with 150 ms of a grey 
screen. Each image was presented 4–8 times.

Localizer for NML network. Preferred and non-preferred objects 
were identified from electrophysiological responses recorded in 
the NML network of monkey M1 (Fig. 2a, top) by computing average, 
baseline-subtracted responses in the window [60 220] ms after stimu-
lus onset (the baseline was computed from the window [–25 25] ms), 
averaging across all 24 views. The localizer contained three types of 
block. Block 1 contained images of the five most-preferred objects 
each at eight views (0° rotation in the y–z space, first row in Extended 
Data Fig. 2b). Block 2 contained images of the five least-preferred  
objects each at eight views. Block 3 contained images of five objects 
that belonged to the animal category each at eight views. A block con-
taining phase-scrambled noise patterns preceded each stimulus block 
(using the images shown in blocks 1–3). To construct phase-scrambled 
images, we performed fast Fourier transform (FFT) on images, added 
a random phase to each frequency component, and then performed 
an inverse FFT. During the fMRI experiment, stimuli were presented 
in 24-s blocks at an interstimulus interval of 500 ms. In each scan, 
the order of the stimulus blocks was fixed as follows: preferred  
objects, non-preferred objects, animals, non-preferred objects,  
animals, preferred objects, animals, preferred objects, non-preferred 
objects. In addition, a block containing phase-scrambled 
noise was added at the end of each scan. Each scan lasted 456 s.  
Four monkeys were tested with this localizer, and 6–9 scans  
were performed for each monkey.

Localizer for body network. The localizer contained eight types  
of block, each consisting of 16 images taken from the following  
8 categories: monkey bodies, animals, faces, fruits, hands, man-made 
objects, houses, and scenes. Stimuli were presented in 24-s blocks at 
an interstimulus interval of 500 ms. In each run, the eight blocks were 
each presented once, interleaved with phase-scrambled noise pat-
terns (computed using images from the eight object blocks). A block 
containing phase-scrambled noise was added at the end of each scan. 

Each scan lasted 408 s. Four monkeys were tested with this localizer, 
and 6–9 scans were performed for each monkey.

Localizer for stubby network. The localizer contained four types of 
block, each consisting of 20 images taken from the four quadrants 
of object PC1–PC2 space (Fig. 4a). The images were selected from an 
image set containing 19,300 background-free object images (http://
www.freepngs.com). The images were passed through AlexNet, and 
projected to object PC1–PC2 space built using the original 1,224  
images (see ‘Building an object space using a deep network’). Then 
20 different images were selected from each of the four quadrants 
of object PC1–PC2 space, each with a polar angle roughly centred on 
the respective quadrant. The images were presented in 24-s blocks 
at an interstimulus interval of 500 ms. In each run, the four blocks 
were each presented twice, interleaved with phase-scrambled noise  
patterns (computed using images from the four object blocks). A block 
containing phase-scrambled noise was added at the end of each scan. 
Each scan lasted 408 s. Four monkeys were tested with this localizer, 
and 6–18 scans were performed for each monkey.

Localizer for face network. The localizer contained five types of block, 
consisting of faces, hands, technological objects, vegetables/fruits, and 
bodies. Face blocks were presented in alternation with non-face blocks. 
Stimuli were presented in 24-s blocks at an interstimulus interval of  
500 ms. In each run, the face block was repeated four times and each 
of the non-face blocks was shown once. Blocks of grid-scrambled 
noise patterns preceded each stimulus block. A block containing 
grid-scrambled noise was added at the end of each scan. Each scan 
lasted 408 s. Additional details were as described previously32. Four 
monkeys were tested with this localizer, and 5–12 scans were performed 
for each monkey.

Localizer for scene network. The localizer contained ten types of 
block: five scene blocks and five non-scene blocks. Stimuli were pre-
sented in 24-s blocks at an interstimulus interval of 500 ms. In each run, 
the ten blocks were each presented once, interleaved with blocks of 
grid-scrambled noise. Additional details were as previously described5. 
Two monkeys were tested with this localizer, and 8–12 scans were  
performed for each monkey.

Localizer for colour network. The localizer contained two types of 
block: a colour block and a grey block. The colour block consisted of an 
equiluminant red/green colour grating (2.9 cycles/degree, drifting at 
0.75 cycles/s), while the grey block consisted of an identical black–white 
grating. Stimuli were presented in 24-s blocks, 16 blocks to a run. Each 
scan lasted 432 s. Additional details were as previously described8,33. 
Four monkeys were tested with this localizer, and 8–14 scans were  
performed for each monkey.

Localizer for 3D network. The 3D localizer contained two sets of 
blocks. One set of blocks contained 3D shapes generated by ran-
dom dot stereograms, including curved shapes such as ripples and  
saddles and simple flat shapes such as stars and squares. The other set 
of blocks contained random dots presented at zero disparity. The two 
sets of blocks were interleaved, and each block lasted 24 s. The images 
were presented at an interstimulus interval of 500 ms. Each scan lasted  
600 s. Monkeys viewed the stimuli through red–green glasses. Four 
monkeys were tested with this localizer, and 5–12 scans were performed 
for each monkey.

Silhouette experiment. The localizer contained four types of block, 
each consisting of 20 images taken from the four quadrants of object 
PC1–PC2 space (Extended Data Fig. 6c). The images were selected from 
an image set containing 19,300 background-free object images (images 
from http://www.freepngs.com). The images were first binarized by 

https://www.3d66.com/
https://www.3d66.com/
http://www.freepngs.com
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setting any pixel that belonged to the object to 0 and any pixel that 
did not belong to the object to 1. Images were then passed through 
AlexNet and projected to object PC1–PC2 space built using the original  
1,224 images (see ‘Building an object space using a deep network’). 
Then, 20 different images were selected from each of the four quadrants 
of object PC1–PC2 space. The images were presented in 24-s blocks 
at an interstimulus interval of 500 ms. In each run, the four blocks 
were each presented twice, interleaved with blocks only showing a 
background with fixation point. A block containing a background 
with fixation point was added at the end of each scan. Each scan lasted  
408 s. Three monkeys were tested with this localizer, and 12–24 scans 
were performed for each monkey.

Fake object experiment. The experiment was largely identical to the 
silhouette experiment, but with different stimuli. We used a deep GAN24 
to generate ‘fake object’ images (Extended Data Fig. 6d). The GAN was 
trained to generate images using response patterns in AlexNet layer fc6. 
To generate fake objects, we first passed an image set containing 19,300 
real object images through Alexnet; for each object image, a 4,096-unit 
response pattern for layer fc6 was generated. We randomly selected 
pairs of different patterns, and evenly and randomly recombined these 
pairs into new patterns34. Each new pattern was passed into the GAN to 
generate one fake object image. Twenty thousand new ‘fake objects’ 
were generated, and four groups of stimuli (twenty images per group) 
were selected from this set on the basis of their projection onto PC1–PC2 
space. Three monkeys were tested with this localizer, and 10–32 scans 
were performed for each monkey.

Deep dream experiment. The experiment was largely identical to the 
silhouette experiment, but with different stimuli. We used deep dream 
techniques (Matlab 2017b, Deep Learning Toolbox, deepdreamIm-
age function) to generate images projecting strongly onto the four 
quadrants of object space. Instead of performing gradient ascent 
on activity of a single fc6 unit, four groups of images were generated 
through gradient ascent on activation of four fictive units (PC1 + PC2, 
PC1 − PC2, −PC1 − PC2, −PC1 + PC2), corresponding to linear weighted 
sums of fc6 units (Extended Data Fig. 6e). For each fictive unit, 20 dif-
ferent images were generated after 100 iterations of gradient ascent, 
starting with different Gaussian noise patterns. We further confirmed 
that the images projected to extreme coordinates in PC1–PC2 space by 
passing the images through AlexNet and projecting the resulting fc6 
response pattern onto PC1–PC2 space. Three monkeys were tested 
with this localizer, and 12–22 scans were performed for each monkey.

fMRI scanning and analysis
Five male rhesus macaques were trained to maintain fixation on a small 
spot for a juice reward. Eye position was monitored using an infrared 
camera (ISCAN) sampled at 120 Hz. Monkeys were scanned in a 3T TIM 
(Siemens, Munich, Germany) magnet equipped with AC88 gradient 
insert while passively viewing images on a screen. Feraheme contrast 
agent was injected to improve the signal/noise ratio for functional 
scans. A single-loop coil was used for structural scans at isotropic  
0.5 mm resolution. A custom eight-channel coil was used for functional 
scans at isotropic 1 mm resolution. Further details about the scanning 
protocol were as described previously35.

MRI data analysis. Surface reconstruction based on anatomical  
volumes was performed using FreeSurfer36 after skull stripping using 
FSL’s Brain Extraction Tool (University of Oxford). After applying these 
tools, segmentation was further refined manually.

Analysis of functional volumes was performed using the FreeSurfer 
Functional Analysis Stream37. Volumes were corrected for motion and 
undistorted based on acquired field map. The resulting data were ana-
lysed using a standard general linear model. For the scene contrast, 
the average of all scene blocks was compared to the average of all 

non-scene blocks. For the face contrast, the average of all face blocks 
was compared to the average of all non-face blocks. For the colour 
contrast, the colour block was compared to the non-colour blocks. For 
the body contrast, monkey body and animal blocks were compared to 
all other blocks. For the stubby contrast, the stubby, inanimate object 
block was compared to three other blocks. For the 3D contrast, the 3D 
shape blocks were compared to zero disparity blocks. For the micro-
stimulation contrast, blocks with concomitant electrical stimulation 
were compared to blocks without stimulation. All the contrasts were 
performed with a non-paired two-sided t-test. P value was not adjusted 
for multiple comparisons.

To determine the area of TE and TEO in each subject, we first 
co-registered the MRI volume for each subject to a monkey atlas38. 
Then each subject’s TE and TEO were defined using the atlas.

To quantify the reproducibility of patch progression on the cortical 
surface, we plotted significance values for the four stimulus com-
parisons defining the four networks in Fig. 4c along three paths in 
posterior, middle, and anterior IT tracing the centre of the grey matter, 
spanning the following ranges: 1) lower bank of STS and inferotemporal 
gyrus at AP position 3; 2) lower bank of STS and inferotemporal gyrus 
at AP position 13; 3) antero-dorsal (TEad) and antero-ventral (TEav) 
parts of area TE at AP position 18. Non-significant responses (P > 10−3) 
were set to 0.

Microstimulation
The stimulation protocol followed a block design. We interleaved 
nine blocks of fixation-only with eight blocks of fixation plus elec-
trical microstimulation; we started and ended with a block without 
microstimulation. Each block lasted 32 s. During microstimulation 
blocks we applied one pulse train per second, lasting 200 ms with 
a pulse frequency of 300 Hz. Bipolar current pulses were charge  
balanced, with a phase duration of 300 μs and a distance between 
the two phases of 150 μs. We used a current amplitude of 300 μA. 
Stimulation pulses were delivered using a computer-triggered pulse 
generator (S88X; Grass Technologies) connected to a stimulus isolator 
(A365, World Precision Instruments). All stimulus generation equip-
ment was stored in the scanner control room; the coaxial cable was 
passed through a wave guide into the scanner room. We obtained  
30 scans for monkey M1.

Single-unit recording
Tungsten electrodes (1–20 MΩ at 1 kHz, FHC) were back-loaded into 
plastic guide tubes. The guide tube length was set to reach approxi-
mately 3–5 mm below the dura surface. The electrode was advanced 
slowly using a manual advancer (Narishige Scientific Instrument, 
Tokyo, Japan). Neural signals were amplified and extracellular action 
potentials were isolated using the box method in an on-line spike sort-
ing system (Plexon, Dallas, TX, USA). Spikes were sampled at 40 kHz. 
All spike data were re-sorted using off-line spike sorting clustering 
algorithms (Plexon). We recorded data from every neuron encoun-
tered. Only well-isolated units were considered for further analysis; 
otherwise, every neuron was included for analysis. Electrodes were 
lowered through custom angled grids that allowed us to reach the 
desired targets; custom software was used to design the grids and plan 
the electrode trajectories39.

Behavioural task
Monkeys were head fixed and passively viewed the screen in a dark 
Wisconsin box. Stimuli for electrophysiology were presented on a 
CRT monitor (DELL P1130). The screen size covered 27.7 × 36.9 visual 
degrees and stimulus size spanned 5.7°. The fixation spot size was 0.2° 
in diameter. Images were presented in random order using custom 
software. Eye position was monitored using an infrared eye tracking 
system (ISCAN). Juice reward was delivered every 2–4 s if fixation was 
properly maintained.



Data analysis
Computing view-identity similarity matrices. For each network, 
we first identified the 11 most-preferred objects by computing aver-
age, baseline-subtracted responses in the window [60 220] ms after 
stimulus onset (the baseline was computed from the window [−25 25] 
ms), averaging across all 24 views. We then used responses to these  
11 most-preferred objects at 24 views (264 images in total) for the analy-
sis. A 264 × 264 similarity matrix of Pearson’s correlation coefficients 
was computed between the population response vector from each 
patch to each of the 264 stimuli. Owing to size limitations, only the first 
88 × 88 (first 8 views) are shown in Fig. 3a. To compute view-invariant 
identity selectivity as a function of time (Extended Data Fig. 3f), at 
each time point t between 0 and 400 ms following stimulus onset, in 
increments of 50 ms, a similarity matrix was computed from mean 
responses between t − 25 and t + 25 ms. We then calculated a ‘same 
object correlation value’ as the average of correlation values between 
the same object across different views (solid traces in Extended Data 
Fig. 3f), and a ‘different object correlation value’ as the average of  
correlation values between different objects across same and different 
views (dashed traces in Extended Data Fig. 3f).

Building an object space using a deep network. The stimulus set 
consisting of 51 objects at 24 different views (1,224 images) was fed 
into the pre-trained network AlexNet6. Then the responses of 4,096 
nodes in layer fc6 were extracted to form a 1,224 × 4,096 matrix. PCA 
was performed on this matrix, yielding 1,223 PCs, each of length 4,096. 
To further reduce the dimensionality of the object space, we retained 
only the first 50 PCs, which captured 85% of the response variance 
across AlexNet fc6 units. The first two dimensions accounted for 27% 
of the response variance across AlexNet fc6 units.

To test the robustness of object PC1–PC2 space to the particular set 
of 1,224 images used to build it (Extended Data Fig. 4d, e), over multi-
ple iterations we randomly picked 1,224 images from a new database 
(http://www.freepng.com) containing 19,300 background-free object 
images. The 1,224 images were fed into Alexnet, and we followed the 
same procedure to build a new object space, which we call PC1′–PC2′ 
space. The original 1,224 images were passed through Alexnet, and 
the vector of fc6 unit activations was projected onto both PC1–PC2 
space and PC1′–PC2′ space. Thus we have a set of 1,224 coordinates 
in both PC1–PC2 space and PC1′–PC2′ space. We then determined the 
best affine transform of PC1′–PC2′ space so that the coordinates of the 
1,224 images in the two spaces would have minimum distance using 
linear regression.
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where (xi,1 xi,2) is the coordinate of image i in PC1–PC2 space, and 
(x x′ ′i i,1 ,2) is the coordinate of image i in PC1′–PC2′ space. After match-
ing, we calculated the Pearson’s correlation r between PC1 and affined 
transformed PC1′, and PC2 and affine transformed PC2′. We used a 
similar procedure to test the robustness of object PC1–PC2 space to 
the particular network used to compute it (Extended Data Fig. 4i).

Quantifying the aspect ratio of objects. The aspect ratio of an object 
(Extended Data Fig. 3g) was defined as a function of perimeter P and 
area A:

P
πA

Aspect ratio =
4

2

P was measured by the number of pixels lying on the object image’s 
boundary, and was computed using the Matlab bwboundaries function. 

The area was measured by the number of pixels that belonged to the 
object, and was computed using the Matlab regionsprops function.

Computing the preferred axis of an IT cell. The number of spikes in a 
time window of 60–220 ms after stimulus onset was counted for each 
stimulus. To estimate the preferred axis, we used linear regression to 
compute the coefficients c in the equation R = c·F + c0, where R is the 
response vector of the cell to the set of images, F is the matrix of 50D 
object feature vectors for the set of images, and c0 is a constant offset. 
Using this definition of preferred axis, cells will necessarily show an 
increasing firing rate for increasing value of projection onto the pre-
ferred axis. To generate Fig. 3c, we randomly picked half the stimulus 
trials to compute the preferred axis for each cell, and then used the 
held-out data to plot the responses shown.

Computing tuning along dimensions orthogonal to the preferred 
axis. To compute tuning along orthogonal dimensions (Extended Data 
Fig. 5e, black traces), for each neuron we first computed the preferred 
axis. There are 49 dimensions spanning the subspace orthogonal to this 
preferred axis. To find the longest orthogonal axis in this 49D subspace, 
we first represented each of the 1,224 images in our stimulus set as a 
50D vector in object space, and subtracted the preferred axis of the 
cell from each of these image feature vectors, to obtain a set of feature 
vectors lying in the 49D orthogonal subspace. We performed PCA on 
this set of 1,224 vectors, and picked the top PC. This PC represents the 
axis orthogonal to the preferred axis of the cell that captures the largest 
variation in the images. For each cell, the tuning curve of the cell along 
this axis was computed.

Quantifying consistency of a cell’s preferred axis. The consistency 
of the preferred axis of each cell (Extended Data Fig. 5a) was measured 
as follows: in each iteration, the whole image set (1,224 images) was 
randomly split into two subsets of 612 images, and a preferred axis 
was calculated using the responses to each subset. Then the Pearson 
correlation (r) was calculated between the two. This was repeated  
100 times, and the consistency of preferred axis for the cell was defined 
as the average r value across 100 iterations.

Quantifying explained variance along an object dimension. In Ex-
tended Data Fig. 11b, c, the explained variance R2 was determined by 
the difference between the reconstructed feature value y′i and the real 
object feature value yi:

( )
( )

R
y y

y y
= 1 −

∑ − ′

∑ −

i i

i

2 1
1224 2

1
1224 2

Quantifying explained variance in single neuron firing rate and 
model comparison. In Extended Data Fig. 5b–d, to compute explained 
variance we first fit responses to a set of 1,593 objects (Extended Data 
Fig. 2d) using the axis model and then tested it on responses to a dif-
ferent set of 100 objects. To obtain high signal quality, the 100 objects 
were repeated 15–30 times. In Extended Data Fig. 5c, d, we compared 
three different models: (1) the axis model, which assumed the  
50D features are combined linearly; (2) a Gaussian model, defined  
as x x( )R ae= σ−( − ) /0

2 2
; and (3) a quadratic model, defined as R  =   

a(x − x0)2 + b(x – x0) + c. The percentage of explainable variance in re-
sponses to 100 objects explained by each model was used to quantify 
the quality of fit. In Extended Data Fig. 5b, for each cell the explained 
variance R2 was determined by the difference between the predicted 
responses r ′i and real observed responses to 100 test images ri:
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r r

r r
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For calculating the upper bound of explained variance (y-axis values 

in Extended Data Fig. 5b), different trials of responses to the stimuli were 
randomly split into two halves. The Pearson correlation (r) between the 
average responses from two half-splits across images was calculated 
and corrected using the Spearman–Brown correction:

r
r

r
′ =

2
1 +

The square of r′ was considered as the upper bound of the explained 
variance.

k-means cluster analysis. To determine whether neurons in the same 
network are grouped as a cluster based on their preferred axes, we ap-
plied k-means analysis on the entire population of neurons recorded 
in the four networks (Extended Data Fig. 8g, h). The distance between 
each pair of neurons was calculated as the Pearson’s correlation be-
tween preferred axes of the neurons in the 50D space. To determine 
the optimal number of clusters, we calculated the Calinski–Harabasz 
value (CH) for different numbers of clusters (k).

k
B k n k
w k k

CH( ) =
( ) × ( − )
( ) × ( − 1)

B(k) is the between-cluster variation, w(k) is the within-cluster vari-
ation, n is the number of neurons, and k is the cluster number. The 
larger the value of CH, the better the cluster model is. To check whether 
clusters exist beyond the first two PCs, k-means analysis was performed 
by defining the distance between a pair of neurons as the correlation 
in preferred axes in 48 dimensions after removing the first two PCs in 
the original 50D object space.

Decoding analysis. We found that cells in each IT network were  
performing linear projection onto specific preferred axes (Fig. 3c, 
Extended Data Fig. 5a, e) and could be well modelled by the equation 
R = c·f + c0, where R is the vector of responses of different neurons,  
c is the matrix of weighting coefficients for different neurons, f is the 
vector of feature values in the object space, and c0 is the offset vector. 
This suggests that by simply inverting this equation, we should be able 
to decode the vector of feature values in the object space from the IT 
response vector: f = R·c′ + c0′. We first used responses to all but one of 
the objects (1,224 – 24 = 1,200 images) to fit c′ and c0′. Then the linear 
model was applied to responses to the remaining object for each of 
the 24 views to compute the predicted feature vector (Fig. 5, Extended 
Data Fig. 11).

To quantify overall decoding accuracy (Extended Data Fig. 11d–f), 
we randomly selected a subset of N object images from the set of 
1,224 images and compared their actual object feature vectors to the 
reconstructed feature vector for one image (‘target’) in the set of 1,224 
using Euclidean distance. If the object feature vector with the small-
est distance to the reconstructed object feature vector portrays the 
actual target, the decoding is considered correct. We repeated the 
procedure 100 times for each of the 1,224 object images to estimate 
decoding accuracy.

Object reconstruction. To reconstruct objects from neural activity 
(Fig. 5), we used a pre-trained GAN24. For each image, a 50D object  
feature vector was reconstructed from neural activity elicited by that 
image; then the resulting 50D feature vector was transformed back into 
an fc6 layer pattern using the Moore–Penrose pseudoinverse. Finally, we 
passed this fc6 response pattern to the generative network to generate 
reconstructed images. Since the generative network cannot perfectly 
reconstruct images from AlexNet fc6 layer responses, for comparison 
we also reconstructed each image using (1) its original fc6 response pat-
tern and (2) the original fc6 response pattern projected onto the 50D 

object space; the latter constitutes the best possible reconstruction. 
We computed a ‘normalized distance’ to quantify the reconstruction 
accuracy for each object:

fc fc

fc fc

66 66

66 66
Normalized distance =

−

−
,

recon original

best possible recon original

Where fc6recon is the fc6 response pattern to the reconstruction obtained 
using neural data, fc6original is the fc6 response pattern to the original 
image shown to the monkey and fc6best possible recon is the fc6 response 
pattern to the best possible reconstruction.

As an alternative to directly reconstructing images using a GAN,  
we recovered images using an auxiliary database (Extended Data 
Fig. 11g, h). We passed an image set containing 18,700 background-free 
object images (http://www.freepngs.com) and 600 face images (FEI 
database), none of which had been shown to the monkey, through 
AlexNet, and projected these images to the object space computed 
using our original stimulus set of 1,224 images. For each image, the 
object feature vector reconstructed from neural activity was compared 
with object feature vectors for images from the new image set. The 
image in the new image set with the smallest Euclidean distance to the 
reconstructed object feature vector was considered as the ‘reconstruc-
tion’ of this object feature vector.

To take into account the fact that the object images used for recon-
struction did not include any of the object images shown to the monkey, 
setting a limit on how good the reconstruction can be, we computed a 
‘normalized distance’ to quantify the reconstruction accuracy for each 
object. We defined the normalized reconstruction distance for an image as

Normalized distance =
−

−
,

recon original

best possible recon original

v v

v v

where vrecon is the feature vector reconstructed from neuronal 
responses, voriginal is the feature vector of the image presented to the 
monkey, and vbest possible recon is the feature vector of the best possible 
reconstruction. A normalized distance of one means that the recon-
struction has found the best solution possible.

Object specialization index computation. To quantify whether a par-
ticular object is better represented by a particular network compared 
to other networks (Extended Data Fig. 11i), for each of 1,224 objects and 
each of three networks (body, NML, stubby), we computed a specializa-
tion index SIij that measures how much better decoding accuracy for 
object i computed from activity in network j is compared to decoding 
accuracy for object i computed across all other networks using the 
same number of neurons:

SI =
DA − DA ~
DA + DA ~

,ij
i j i j

i j i j

, ,

, ,

where DAi,j is the decoding accuracy for object i computed using N 
random neurons from network j, and DAi,~j is the decoding accuracy for 
object i computed using N random neurons from all networks except 
j. SIij quantifies how specialized network j is for representing object i.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data that support the findings of this study are available from the 
lead corresponding author (D.Y.T.) upon reasonable request.
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Extended Data Fig. 1 | Time courses from NML1-3 during microstimulation 
of NML2. a, Sagittal (top) and coronal (bottom) slices showing activation in 
response to microstimulation of NML2. Dark track shows electrode targeting 

NML2. b, Time courses of microstimulation (black) together with fMRI 
response (red) from each of the three patches of the NML network.



Extended Data Fig. 2 | Stimuli used in electrophysiological recordings.  
a, Fifty-one objects from six categories were shown to monkeys. b, Twenty-four 
views for one example object, resulting from rotations in the x–z plane 
(abscissa) combined with rotations in the y–z plane (ordinate). c, A line segment 

that was parametrically varied along three dimensions was used to test the 
hypothesis that cells in the NML network are selective for aspect ratio: 4 aspect 
ratio levels × 13 curvature levels × 12 orientation levels. d, Thirty-six example 
object images from an image set containing 1,593 images.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Additional neuronal response properties from 
different patches. a1, Average responses to 51 objects across all cells from 
patch NML2 plotted against those from patch NML1. The response to each 
object was defined as the average response across 24 views and across all cells 
recorded from a given patch. b1, As in a1 for NML3 against NML2. c1, As in a1 for 
NML3 against NML1. a2, b2, c2, As in a1, b1, c1 for three patches of the body 
network. a3, As in a1 for Stubby3 against Stubby2. d, Similarity matrix showing 
the Pearson correlation values (r) between the average responses to 51 objects 
from 9 patches across 4 networks. e, Left, cumulative distributions of view-
invariant identity correlations for cells in the three patches of the NML 
network. Right, as on left for cells in the three patches of the body network. For 
each cell, the view-invariant identity correlation was computed as the average 
across all pairs of views of the correlation between response vectors to the  
51 objects at a pair of distinct views. The distribution of view-invariant identity 
correlations was significantly different between NML1 and NML2 (two-tailed  
t-test, P < 0.005, t(118) = 2.96), NML2 and NML3 (two-tailed t-test, P < 0.005, 

t(169) = 2.9), Body1 and Body2 (two-tailed t-test, P < 0.0001, t(131) = 6.4), and 
Body2 and Body3 (two-tailed t-test, P < 0.05, t(126) = 2.04). *P < 0.05, **P < 0.01. 
f1, Time course of view-invariant object identity selectivity for the three 
patches in the NML network, computed using responses to 11 objects at 24 
views and a 50-ms sliding response window (solid lines). As a control, time 
courses of correlations between responses to different objects across different 
views were also computed (dashed lines) (see Methods). f2, As in f1 for body 
network. f3, As in f1 for stubby network. g, Top, average responses to each 
image across all cells recorded from each patch plotted against the logarithm 
of aspect ratio of the object in each image (see Methods). Pearson r values are 
indicated in each plot (all P < 10−10). The rightmost column shows results with 
cells from all three patches grouped together. Bottom, As on top, with 
responses to each object averaged across 24 views, and associated aspect 
ratios also averaged. The rightmost column shows results with cells from all 
three patches grouped together.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Building an object space using a deep network.  
a, A diagram illustrating the structure of AlexNet6. Five convolution layers are 
followed by three fully connected layers. The number of units in each layer is 
indicated below each layer. b, Images with extreme values (highest: red, lowest: 
blue) of PC1 and PC2. c, The cumulative explained variance of responses of 
units in fc6 by 100 PCs; 50 dimensions explain 85% of variance. d, Images in the 
1,593-image set with extreme values (highest: red, lowest: blue) of PC1 and PC2 
built using the 1,593 image set after affine transform (see Methods). Preferred 
features are generally consistent with those computed using the original image 
set shown in b. However, PC2 no longer clearly corresponds to an animate–
inanimate axis; instead, it corresponds to curved versus rectilinear shapes.  
e, Distributions showing the canonical correlation value between the first two 
PCs obtained by the 1,224-image set and the first two PCs built by other sets of 
images (1,224 randomly selected non-background object images, left: PC1, 
right: PC2; see Methods for details). The red triangles indicate the arithmetic 
mean of the distributions. f, We passed 19,300 object images through AlexNet 
and built PC1–PC2 space using PCA. Then we projected 1,224 images onto this 

PC1–PC2 space. The top 100 images for each network are indicated by coloured 
dots (compare Fig. 4b). g, Decoding accuracy for 40 images using object spaces 
built by responses of different layers of AlexNet (computed as in Extended Data 
Fig. 11d). There are multiple points for each layer because we performed PCA 
before and after pooling, activation, and normalization functions. Layer fc6 
showed the highest decoding accuracy, motivating our use of the object space 
generated by this layer throughout the paper. h, To compare IT clustering 
determined by AlexNet with that by other deep network architectures, we first 
identified the layer of each network that gave the best decoding accuracy, as in 
g. The bar plot shows decoding accuracy for 40 images in the 9 different 
networks using the best-performing layer for each network. i, Canonical 
correlation values between the first two PCs obtained by Alexnet and first two 
PCs built by eight other deep-learning networks (labelled 2–9). The layer of 
each network that yielded the highest decoding accuracy for 40 images was 
used for this analysis. The name of each network and layer can be found in j.  
j, As in Fig. 4b using PC1 and PC2 computed from eight other networks.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Neurons across IT perform axis coding. a1, The 
distribution of consistency of preferred axis for cells in the NML network 
(see Methods). a2, As in a1 for the body network. a3, As in a1 for the stubby 
network. b, Different trials of responses to the stimuli were randomly split into 
two halves, and the average response across half of the trials was used to 
predict that of the other half. Percentage variances explained, after Spearman–
Brown correction (mean 87.8%), are plotted against that of the axis model 
(mean 49.1%). Mean explainable variance for 29 cells was 55.9%. c, Percentage 
variances explained by a Gaussian model plotted against that of the axis model. 
d, Percentage variances explained by a quadratic model plotted against that of 

the axis model. Inspection of coefficients of the quadratic model revealed a 
negligible quadratic term (mean ratio of 2nd-order coefficients/1st-order 
coefficient, 0.028). e1, Top, red line shows the average modulation along the 
preferred axis across the population of NML1 cells. The grey lines show, for 
each cell in NML1, the modulation along the single axis orthogonal to the 
preferred axis in the 50D object space that accounts for the most variability. 
The blue line and error bars represent the mean and s.d. of the grey lines. 
Middle, bottom, analogous plots for NML2 and NML3, respectively. e2, As in e1 
for the three body patches. e3, As in e1 for the two stubby patches.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Similar functional organization is observed using a 
different stimulus set. a, Projection of preferred axes onto PC1 versus PC2 for 
all neurons recorded using two different stimulus sets (left, 1,593 images from 
freepngs image set; right, the original 1,224 images consisting of 51 objects × 24 
views). The PC1–PC2 space for both plots was computed using the 1,224 images. 
Different colours encode neurons from different networks. b, Top 21 preferred 
stimuli based on average responses from the neurons recorded in three 
networks to the two different image sets. c1, Four classes of silhouette images 
that project strongly onto the four quadrants of object space. c2, Coronal slices 
from posterior, middle, and anterior IT of monkeys M2 and M3 showing the 

spatial arrangement of the four networks revealed using the silhouette images 
in c1 in an experiment analogous to that in Fig. 4a. d1, Four classes of ‘fake 
object’ images that project strongly onto the four quadrants of object space. 
Note that fake objects that project onto the face quadrant no longer resemble 
real faces. d2, As in c2 with fake object images from d1. e1, Four example stimuli 
generated by deep dream techniques that project strongly onto the four 
quadrants of object space. e2, As in c2 with deep dream images from e1. The 
results in c–e support the idea that IT is organized according to the first two 
axes of object space rather than low-level features, semantic meaning, or image 
organization.
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Extended Data Fig. 7 | Response time courses from the four IT networks spanning object space. Time courses were averaged across two monkeys. To avoid 
selection bias, odd runs were used to identity regions of interest, and even runs were used to compute average time courses from these regions.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Searching for substructure within patches. a, Axial 
view of the Stubby2 patch, together with projections of three recording sites.  
b, Mean responses to 51 objects from neurons grouped by recording sites 
shown in a (same format as Fig. 2a (top)). c, Axial view of the Stubby3 patch, 
together with projections of two recording sites. d, Mean responses to  
51 objects from neurons grouped by recording sites shown in c. e, Projection of 
preferred axis onto PC1–PC2 space for neurons recorded from different sites 
within the Stubby2 patch. There is no clear separation between neurons from 
the three sites in PC1–PC2 space. The grey dots represent all other neurons 
across the four networks. f, As in e for cells recorded from two sites in the 
Stubby3 patch. g1, Projection of preferred axes onto PC1–PC2 space for all 
recorded neurons. Different colours encode neurons from different networks. 
g2, As in g1, but the colour represents the cluster to which the neurons belong. 
Clusters were determined by k-means analysis, with the number of clusters set 
to four, and the distance between neurons defined by the correlation between 

preferred axes in the 50D object space (see Methods). Comparison of g1 and g2 
reveals highly similarity between the anatomical clustering of IT networks and 
the functional clustering determined by k-means analysis. g3, Calinski–
Harabasz criterion values were plotted against the number of clusters for k-
means analysis performed with different numbers of clusters (see Methods). 
The optimal cluster number is four. h1, As in g1 for projection of preferred axes 
onto PC3 versus PC4. h2, As in h1, but the colour represents the cluster to which 
the neurons belong. Clusters were determined by k-means analysis, with the 
number of clusters set to four, and the distance between neurons defined by 
the correlation between preferred axes in the 48D object space obtained by 
removing the first two dimensions. The difference between h1 and h2 suggests 
that there is no anatomical clustering for dimensions beyond the first two PCs. 
h3, As in g3, with k-means analysis in the 48D object space. By the Calinski–
Harabasz criterion, there is no functional clustering for higher dimensions 
beyond the first two.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | The object space model parsimoniously explains 
previous accounts of IT organization. a1, The object images used in ref. 14 are 
projected onto PC1–PC2 space (computed as in Fig. 4b, by first passing each 
image through AlexNet). A clear gradient from big (red) to small (blue) objects 
is seen. a2, As in a1, for the inanimate objects (big and small) used in ref. 40.  
a3, As in a1, for the original object images used in ref. 41. a4, As in a1, for the 
texform images used in ref. 41. b2–4, Projection of animate and inanimate 
images from original object images (b2, b3) and texforms (b4). c, Left, 
coloured dots depict projection of stimuli from the four conditions used in  
ref. 21. Right, example stimuli (blue, small object-like; cyan, large object-like; 

red, landscape-like; magenta, cave-like). d, Left, grey dots depict 1,224 stimuli 
projected onto object PC1–PC2 space; coloured dots depict projection of 
stimuli from the four blocks of the curvature localizer used in ref. 11. Right, 
example stimuli from the four blocks of the curvature localizer (blue, real-
world round shapes; cyan, computer-generated 3D sphere arrays; red, real-
world rectilinear shapes; magenta, computer-generated 3D pyramid arrays).  
e, Images of English and Chinese words are projected onto object PC1–PC2 
space (black diamonds), superimposed on the plot from Fig. 4b. They are 
grouped into a small region, consistent with their modular representation by 
the visual word form area.



Extended Data Fig. 10 | Object space dimensions are a better descriptor of 
response selectivity in the body patch than category labels. a, Four classes 
of stimuli: 1, body stimuli that project strongly onto the body quadrant of 
object space (bright red); 2, body stimuli that project weakly onto the body 
quadrant of object space (dark red); 3, non-body stimuli that project equally 
strongly as group 2 onto the body quadrant of object space (dark blue); and 4, 
non-body stimuli that project negatively onto the body quadrant of object 
space (bright blue). b, Predicted response of the body patch to each image from 

the four stimulus conditions in a, computed by projecting the object space 
representation of each image onto the preferred axis of the body patch 
(determined from the average response of body patch neurons to the 1,224 
stimuli). c, Left, fMRI response time course from the body patches to the  
four stimulus conditions in a. Centre, mean normalized single-unit responses 
from neurons in Body1 patch to the four stimulus conditions. Right, mean local 
field potential from Body1 patch to the four stimulus conditions. Shading 
represents s.e.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Object decoding and recovery of images by 
searching a large auxiliary object database. a, Schematic illustrating the 
decoding model. To construct and test the model, we used responses of m 
recorded cells to n images. Population responses to images from all but one 
object were used to determine the transformation from responses to feature 
values by linear regression, and then the feature values of the remaining object 
were predicted (for each of 24 views). b, Model predictions plotted against 
actual feature values for the first PC of object space. c, Percentage explained 
variances for all 50 dimensions using linear regression based on the responses 
of four neural populations: 215 NML cells (yellow); 190 body cells (green);  
67 stubby cells (magenta); 482 combined cells (black). d, Decoding accuracy as 
a function of the number of object images randomly drawn from the stimulus 
set for the same four neural populations as in c. Dashed line indicates chance 
performance. e, Decoding accuracy for 40 images plotted against different 
numbers of cells randomly drawn from same four populations as in c.  

f, Decoding accuracy for 40 images plotted as a function of the numbers of PCs 
used to parametrize object images. g, Example reconstructed images from  
the three groups defined in h. In each pair, the original image is shown on the 
left, and image reconstructed using neural data are shown on the right.  
h, Distribution of normalized distances between predicted and reconstructed 
feature vectors. The normalized distance takes account of the fact that the 
object images used for reconstruction did not include any of the object images 
shown to the monkey, setting a limit on how good the reconstruction can be 
(see Methods). A normalized distance of one means that the reconstruction has 
found the best solution possible. Images were sorted into three groups on the 
basis of normalized distance. i, Distribution of specialization indices SIij across 
objects for the NML (left), body (centre) and stubby (right) networks 
(see Methods and Supplementary Information). Example objects for each 
network with SIij ≈ 1 are shown. Red bars, objects with SIij significantly greater 
than 0 (two-tailed t-test, P < 0.01).
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Custom code used and datasets generated and/or analysed during the current study are available from the corresponding author upon request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen in a manner commensurate with similar previous studies.

Data exclusions We recorded single-unit data from every neuron encountered. Only well-isolated units were considered for further analysis; otherwise, every 
neuron was included for analysis. 

Replication Results were replicated across animals for each experiment.

Randomization The stimuli were shown in a random order.

Blinding Investigators were not blinded to experimental groups due to the nature of the experiments. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Five male rhesus macaques (Macaca mulatta) of 5-8 years old were used in this study

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve field-collected samples.

Ethics oversight All procedures conformed to local and US National Institutes of Health guidelines, including the US National Institutes of Health 
Guide for Care and Use of Laboratory Animals. All experiments were performed with the approval of the Caltech Institutional 
Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Block design

Design specifications During the fMRI experiment, stimuli were presented in 24 s blocks at an interstimulus interval of 500 ms

Behavioral performance measures Monkey's eye position was monitored using an infrared eye tracking system (ISCAN). Juice reward was delivered every 
2–4 s if fixation was properly maintained (within a 3.4 degree square window).
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Acquisition

Imaging type(s) Functional and anatomical imaging

Field strength 3 Tesla

Sequence & imaging parameters T1-weighted anatomical volumes  were measured with MP-RAGE sequence( TR 2,300 ms; IR 1,100 ms; TE 3.37 ms; 0.5 
mm isotropic voxels) . EPI volumes were acquired in an AC88 gradient insert (Siemens)  TR was 2000 ms,TE was 17 ms, 
voxels were 1 × 1 × 1 mm with an no gap between slices. Matrix size was (96, 96, 64) (read [x], phase [y], slice [z]), the 
field of view was 96 × 96 mm in-plane. Flip angle was 80°.

Area of acquisition Whole brain 

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Surface reconstruction based on anatomical volumes was performed using FreeSurfer (Massachusetts General Hospital) 
after skull stripping using FSL’s Brain Extraction Tool (University of Oxford). After applying these tools, segmentation was 
further refined manually.Analysis of functional volumes was performed using the FreeSurfer Functional Analysis Stream 
(Massachusetts General Hospital). Volumes were corrected for motion and undistorted based on acquired field map.

Normalization To concatenate different scans, each voxel's responses were percentage transformed with 0 mean value

Normalization template We did not normalize any imaging data into template. All the analysis were done in the single subject's original space.

Noise and artifact removal We remove the  linear or quadratic trends in the timeseries.

Volume censoring Motion noises were removed by putting the motion parameters as the regressors in the GLM analysis.

Statistical modeling & inference

Model type and settings The analysis used only first-level analysis.

Effect(s) tested We ran t-tests between different conditions within each single subject.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

All the analyses were done using voxel-wise inference.

Correction We did not apply any multiple-comparison correction in the fMRI imaging analysis. We set p value at 0.001.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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