
Article
Parametric control of flexi
ble timing through low-
dimensional neural manifolds
Highlights
d Dimensionality-constrained neural networks generalize to

novel stimuli in timing tasks

d Tonic inputs adjust speed of dynamics while preserving low-

dimensional structure

d Input control explains geometry of neural population activity

in frontal cortex

d Flexible adjustment of control inputs enables fast adaptation

to new environments
Beiran et al., 2023, Neuron 111, 739–753
March 1, 2023 ª 2022 Elsevier Inc.
https://doi.org/10.1016/j.neuron.2022.12.016
Authors

Manuel Beiran, Nicolas Meirhaeghe,

Hansem Sohn, Mehrdad Jazayeri,

Srdjan Ostojic

Correspondence
mjaz@mit.edu (M.J.),
srdjan.ostojic@ens.psl.eu (S.O.)

In brief

Beiran et al. investigate how neuronal

networks adapt to novel stimuli and

changing environments in flexible timing

tasks. By reverse-engineering trained

RNNs, they show that combining low-

dimensional activity and tonic control

signals enables generalization and fast

adaptation. They further identify

signatures of this mechanism in the

frontal cortex of monkeys.
ll

mailto:mjaz@mit.�edu
mailto:srdjan.ostojic@ens.psl.�eu
https://doi.org/10.1016/j.neuron.2022.12.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2022.12.016&domain=pdf

ll
Article

Parametric control of flexible timing
through low-dimensional neural manifolds
Manuel Beiran,1,2,8 Nicolas Meirhaeghe,3,4,8 Hansem Sohn,5,7 Mehrdad Jazayeri,5,6,* and Srdjan Ostojic1,9,*
1Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL University, 75005 Paris,

France
2Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
3Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
5McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
6Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
7Present address: Center for Neuroscience Imaging Research, Institute for Basic Science, Department of Biomedical Engineering,
Sungkyunkwan University, Suwon, Republic of Korea
8These authors contributed equally
9Lead contact
*Correspondence: mjaz@mit.edu (M.J.), srdjan.ostojic@ens.psl.eu (S.O.)

https://doi.org/10.1016/j.neuron.2022.12.016
SUMMARY
Biological brains possess an unparalleled ability to adapt behavioral responses to changing stimuli and en-
vironments. How neural processes enable this capacity is a fundamental open question. Previousworks have
identified two candidate mechanisms: a low-dimensional organization of neural activity and a modulation by
contextual inputs. We hypothesized that combining the two might facilitate generalization and adaptation in
complex tasks. We tested this hypothesis in flexible timing tasks where dynamics play a key role. Examining
trained recurrent neural networks, we found that confining the dynamics to a low-dimensional subspace al-
lowed tonic inputs to parametrically control the overall input-output transform, enabling generalization to
novel inputs and adaptation to changing conditions. Reverse-engineering and theoretical analyses demon-
strated that this parametric control relies on a mechanism where tonic inputs modulate the dynamics along
non-linear manifolds while preserving their geometry. Comparisons with data from behaving monkeys
confirmed the behavioral and neural signatures of this mechanism.
INTRODUCTION

Humans and animals can readily adapt and generalize their

behavioral responses to new environmental conditions.1–5 This

capacity has been particularly challenging to realize in artificial

systems,6–8 raising the question of what biological mechanism

might enable it. Twomechanistic components have been put for-

ward. A first proposed component is a low-dimensional organi-

zation of neural activity, a ubiquitous experimental observation

across a large variety of behavioral paradigms.9–12 Indeed, theo-

retical analyses have argued that, while high dimensionality

promotes stimulus discrimination, low dimensionality instead fa-

cilitates generalization to previously unseen stimuli and condi-

tions.13–20 A second suggested component is tonic inputs that

can help cortical networks modulate their outputs to stimuli

that appear in distinct behavioral context19,21–28 and thereby

generalize their responses to new circumstances. These two

mechanisms have so far been investigated separately in different

sets of simplified tasks, but they are not mutually exclusive and

could in principle have complementary functions. Whether and

how an interplay between low-dimensional dynamics and tonic
inputs might enable generalization and adaptation in more com-

plex cognitive tasks remains an open question.

Here, we address this question within the framework of timing

tasks that demand flexible control of the temporal dynamics of

neural activity.24,25,29–40 Previous studies have demonstrated

that a low-dimensional organization is a prominent feature of neu-

ral activity recorded during such tasks.24,33,34,36,37 Several of

those studies, moreover, found that tonic inputs that provide

contextual information allow networks to flexibly adjust their

output to identical stimuli.34,36 However, so far, the computational

roles of low-dimensional dynamics and contextual inputs were

only probed within the range on which the network was trained.

Going beyond previous studies, we instead hypothesized that

combining the two mechanisms by pairing contextual input sig-

nalswith low-dimensional dynamicsmight facilitate generalization

to novel inputs and adaptation to changing environments.

We investigate this hypothesis using a multidisciplinary

approach spanning network modeling, theory, and analyses of

neural and behavioral data in non-human primates. We analyzed

recurrent neural networks (RNNs) trained on a set of flexible

timing tasks where the goal was to produce a time interval
Neuron 111, 739–753, March 1, 2023 ª 2022 Elsevier Inc. 739

mailto:mjaz@mit.edu
mailto:srdjan.ostojic@ens.psl.eu
https://doi.org/10.1016/j.neuron.2022.12.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2022.12.016&domain=pdf

ll
Article
depending on various types of inputs.33,34,36 To investigate the

role of the dimensionality of neural trajectories, we exploited

the class of low-rank neural networks, in which the dimension-

ality of dynamics is directly constrained by the rank of the recur-

rent connectivity matrix.41–44 We then compared the perfor-

mance, generalization capabilities, and neural dynamics of

these low-rank RNNs with networks trained in the absence of

any constraint on the connectivity and the dimensionality of dy-

namics. We similarly contrasted networks with and without tonic

inputs.

We first show that low-rank RNNs, unlike unconstrained net-

works, are able to generalize to novel stimuli well beyond their

training range but only when paired with tonic inputs that provide

contextual information. Specifically, we found that, in low-rank

networks, tonic inputs parametrically control the input-output

transform and its extrapolation. Reverse-engineering the trained

networks revealed that tonic inputs endowed the system with

generalization by modulating the dynamics along low-dimen-

sional non-linear manifolds while leaving their geometry

invariant. Population analyses of neural data recorded in

behaving monkeys performing a time-interval reproduction

task36,40 confirmed the key signatures of this geometry-preser-

ving mechanism. In a second step, we show how the identified

mechanism allows networks to quickly adapt their outputs to

changing conditions by adjusting the tonic input based on the

temporal statistics. Direct confrontation of newly collected

behavioral and neural data with low-rank networks supported

the idea that contextual inputs are key to adaptation. All

together, our work brings forth evidence for the computational

benefits of controlling low-dimensional activity through tonic in-

puts and provides a mechanistic framework for understanding

the role of resulting neural manifolds in flexible timing tasks.

RESULTS

Generalization in flexible timing tasks
We trained RNNs on a series of flexible timing tasks in which net-

works received various contextual and/or timing inputs and had to

produce a time interval that was a function of those inputs

(Figures1Aand1B). Inall tasks, thenetworkoutputwasaweighted

sumof the activityof its units (seeSTARMethods). Thisoutputwas

required to produce a temporal ramp following an externally pro-

vided ‘‘Set’’ signal. The output time interval corresponded to the

time between the Set signal and the time at which the network

output crossed a fixed threshold.33,34,36 Inputs to the network

determined the target interval, and therefore the desired slope of

the output ramp, but the nature of inputs depended on the task

(Figure 1B). Our goal was to study which properties of RNNs favor

generalization, i.e., extend their outputs to inputs not seen during

training. We therefore examined the full input-output transform

performedby the trained networks (Figure 1C), andwe specifically

contrasted standard RNNs, which we subsequently refer to as

‘‘unconstrained RNNs,’’ with low-rank RNNs in which the connec-

tivity was constrained to minimize the embedding dimensionality

of the collective dynamics44 (Figure 1D).

We first examined the role of dimensionality for generalization

when a tonic input is present. We considered the Cue-Set-Go

(CSG) task,33 where the goal is to produce an output time interval
740 Neuron 111, 739–753, March 1, 2023
associatedwitha tonic input cue, the level ofwhich varies from trial

to trial (Figure 1B, top). Correctly performing this task required

learning the association between eachcue and target output inter-

val.We found that networkswith rank-two connectivity solved this

task with similar performance to unconstrained networks

(Figures 2A and S1) but led to lower-dimensional dynamics

(Figures 2A and 2B, top; see STAR Methods). During training, we

used four different input amplitudes that were linearly related to

their correspondingoutput intervals (fourdifferent color lines inFig-

ure 2A). We then examined how the two types of networks gener-

alized to previously unseen amplitudes. We found that both rank-

two and unconstrained networks were able to interpolate to cue

amplitudes in between those used for training (Figure 2C, top).

However, only low-rank networks showed extrapolation (i.e., a

smooth monotonic input-output mapping) when networks were

probed with cue amplitudes beyond the training range. Specif-

ically, as the amplitude of the cue input was increased, low-rank

networks generated increasing output time intervals (Figure 2C,

see Figure S2 for additional examples of similarly trained net-

works), while unconstrained networks instead stopped producing

a ramping signal altogether (see Figure S1).

We next asked whether low-dimensional dynamics enable

generalization in absence of tonic inputs. We therefore turned

to a more complex task, Measure-Wait-Go (MWG), in which

the desired output was indicated by the time interval between

two identical pulse inputs (Figure 1B, bottom). The network

was required to measure that interval, keep it in memory during

a delay period of random duration, and then reproduce it after

the Set signal.

In this task, because the input interval is not encoded as a

tonic input, the network must estimate the desired interval by

tracking time between the two input pulses.We found that amin-

imal rank R = 3 was required for low-rank networks to match the

performance of unconstrained networks (Figures 2A, 2B, bot-

tom, and S1). We then examined how low-rank and uncon-

strained networks responded to input intervals unseen during

training. Both types of networks interpolated well to input inter-

vals in between those used for training. However, neither the

low-rank nor the unconstrained networks were able to extrapo-

late to intervals longer or shorter than those in the training set

(Figure 2C, bottom; see Figure S1 for the input-output curves

for different delays and Figure S2 for the same analysis on other

trained networks). Instead, themaximal output interval saturated

at a value close to the longest interval used for training, thereby

leading to a sigmoid input-output function.

Altogether, these results indicate that generalization does not

emerge from low dimensionality alone (MWG task) but depends

on the presence of tonic inputs (CSG task).

Combining contextual inputs in low-rank networks
enables parametric control of extrapolation
The key difference between the CSG and MWG tasks is that the

interval in the CSGwas specified by a tonic input, whereas in the

MWG task, it had to be estimated from two brief input pulses.

Because low-rank networks were able to extrapolate in the

CSG, but not the MWG, task, we hypothesized that the tonic

input in CSG may act as a parametric control signal allowing

extrapolation in low-rank networks.

A B C

D

Figure 1. Investigating generalization in flexible timing tasks using low-rank recurrent neural networks (RNNs)

(A) Flexible timing tasks. Top: on each trial, a series of timing inputs that depend on each task are presented to the network. After a random delay, a Set signal is

flashed, instructing the network to start producing a ramping output. The output time interval tout is defined as the time elapsed between the Set signal and the

time point when the output ramp reaches a predetermined threshold value. Bottom: we trained recurrent neural networks (RNNs) where task-relevant inputs (left)

are fed to the recurrently connected units. The network output is defined as a linear combination of the activity of recurrent units.

(B) Structure of tasks. We considered two tasks: Cue-Set-Go (CSG) and Measure-Wait-Go (MWG). In CSG (top), the amplitude of a tonic input cue (gray line),

present during the whole trial duration, indicates the time interval to be produced. In MWG (bottom), two input pulses are fed to the network (‘‘inp 1’’ and ‘‘inp 2’’),

followed by a random delay. The input time interval tin between the two pulses indicates the target output interval tout.

(C) Characterizing generalization in terms of input-output functions. We trained networks on a set of training samples (colored squares) such that a specific cue

amplitude (top, CSG task) or input interval tin (bottom, MWG task) corresponds to an output interval tout . We then tested how trained networks generalized their

outputs to inputs not seen during training, both within (interpolation, gray shaded region) and beyond (extrapolation) the training range, as illustrated with the

dotted line.

(D) To examine the influence of dimensionality, we compared two types of trained RNNs. Low-rank networks had a connectivity matrix J of fixed rank R, which

directly constrained the dimensionality of the dynamics.44 Such networks were generated by parametrizing the connectivity matrix as in Equation 2 and training

only the entries of the connectivity vectors mðrÞ and nðrÞ for r = 1.R. Unconstrained networks instead had full-rank connectivity matrices, where all the matrix

entries were trained.

ll
Article
To test this hypothesis, we designed an extension of theMWG

with a tonic contextual input, which we refer to as the Measure-

Wait-Go with Context (MWG + Ctxt). The MWG + Ctxt task was

identical to the original MWG task in that the network had to

measure an interval from two pulses, remember the interval

over a delay, and finally produce the interval after Set. However,

on every trial, the network received an additional tonic input that

specified the range of input intervals the network had to process

(Figure 3A). A low-amplitude tonic input indicated a relatively

shorter set of intervals (800–1,550 ms) and a higher tonic input,

a set of longer intervals (1,600–3,100 ms). Note that the func-

tional role of this tonic input is different from that of the CSG; in

CSG, the input specifies the actual interval, whereas in the
MWG + Ctxt task, it only specifies the underlying distribution.

The contextual input therefore provides additional information

that is not strictly necessary for performing the task but may

facilitate it.

Similar to what we found for the MWG task, both rank-three

and unconstrained networks were able to solve the MWG +

Ctxt task and reproduced input intervals sampled from both dis-

tributions (Figure S3). Building on what we had learned from

extrapolation in the CSG task, we reasoned that low-rank net-

works performing the MWG + Ctxt task may be able to use the

tonic input as a control signal, enabling generalization to interval

ranges outside those the networks were trained for. To test this

hypothesis, we examined generalization to both unseen input
Neuron 111, 739–753, March 1, 2023 741

A B C

Figure 2. Influence of the dimensionality of network dynamics on generalization

Top: CSG task; bottom: MWG task.

(A) Output of RNNs trained on four different time intervals. RNNs with minimal rank R = 2 (solid-colored lines) are compared with unconstrained RNNs (dashed

colored lines). The thin black lines represent the target ramping output. Note that the dashed colored lines overlap with the solid ones.

(B) Dimensionality of neural dynamics following the Set signal. Cumulative percentage of explained variance during the measurement epoch is shown as a

function of the number of principal components for rank-two networks (solid line) and unconstrained networks (dashed line). Inset: participation ratio of activity

during the whole trial duration (see STAR Methods), with mean and SD over 5 trained RNNs.

(C) Generalization of the trained RNNs to novel inputs in low-rank (left) and unconstrained (right) RNNs. Lines and the shaded area, respectively, indicate the

average output interval and the standard deviation estimated over ten trials per cue amplitude. In the CSG task (top row), the rank-two network interpolates and

extrapolates, while the unconstrained network does not extrapolate. In theMWG task (bottom row), both types of networks fail to extrapolate. The longest output

interval that each network can generate is close to the longest output interval learned during training. For visualization, the delay is fixed to 1500ms. See Figure S1

for additional delays and trained networks.

ll
Article
intervals and unseen contextual cues, comparing, as before,

low-rank and unconstrained networks.

As in the original MWG task, when the input intervals were

increasedbeyond the training range, theoutput intervals saturated

to amaximal value in both types of networks. The only notable dif-

ference was that, in low-rank networks, this maximal value de-

pended on the contextual input (Figure 3B, left) and was set by

the longest interval of the corresponding interval distribution, while

in unconstrained networks it did not depend strongly on context

(Figure 3B, right). More generally, in low-rank networks, the

contextual inputsmodulated the input-output function and biased

output intervals toward themeanof the corresponding input distri-

bution. This was evident from the distinct outputs the network

generated for identical intervals under the two contextual inputs

(Figure 3B, left), reminiscent of what has been observed in human

and monkey behavior in similar tasks.36,45,46 In contrast, uncon-

strained networks were only weakly sensitive to the contextual

cue and reproduced all intervals within the joint support of the

two distributions similarly (Figure 3B, right).

We next probed generalization to values of the contextual

input that were never presented during training. Strikingly, in

low-rank networks, we found that novel contextual inputs para-

metrically controlled the input-output transform, therefore

generalizing across context values (Figure 3C). In particular,

contextual inputs outside of the training range led to strong
742 Neuron 111, 739–753, March 1, 2023
extrapolation to unseen values of input intervals. Indeed, contex-

tual inputs larger than used for training expanded the range of

output intervals beyond the training range and shifted its

midpoint to longer values (Figure 3C, bottom left), up to a

maximal value of the contextual cue that depended on the

training instance (Figure S3). Conversely, contextual cues

smaller than used in training instead reduced the output range

and shifted itsmean to smaller intervals (Figure 3C, bottom right).

In contrast, in networks with unconstrained rank, varying contex-

tual cues did not have a strong effect on the input-output

transform, which remained mostly confined to the range of input

intervals used for training (Figure S3).

Altogether, our results indicate that, when acting on low-

dimensional neural dynamics, contextual inputs serve as con-

trol signals to parametrically modulate the input-output trans-

form performed by the network, thereby allowing for successful

extrapolation beyond the training range. In contrast, uncon-

strained networks learned a more rigid input-output mapping

that could not be malleably controlled by new contextual

inputs.

Non-linear activity manifolds underlie contextual
control of extrapolation
To uncover the mechanisms by which low-rank networks imple-

ment parametric control for flexible timing, we examined the

A rank threeB unconstrainedMeasure-Wait-Go + Ctxt

C

ra
nk

 th
re

e

extrapolation (+) extrapolation (-)interpolation

Figure 3. Control and extrapolation in the Measure-Wait-Go task with contextual cues

(A) Task design. Input time intervals tin used for training (colored squares) are sampled from two distributions. A contextual cue, present during the whole trial

duration, indicates from which distribution (red or blue lines) the input interval was drawn. After training, we probed novel contextual cues (dashed lines).

(B) Generalization to time intervals not seen during training when using the two trained contextual cues (red and blue lines). Contextual cues modulate the input-

output function in law-rank networks (left) but not in unconstrained networks (right). Lines and shading indicate average output interval tout and standard deviation

for independent trials. Inset: range of output intervals that the networks can produce in the different contexts. Black lines indicate the midpoint.

(C) Generalization in the low-rank network when using contextual cues not seen during training (context values shown in bottom insets). Top: effects of contextual

inputs above (left), within (center), and below (right) the training range. Bottom: modulation of the range of output intervals as a function of the trained and novel

contextual cues (colored and gray lines, respectively). See Figure S2 for additional RNNs.

ll
Article
underlying low-dimensional dynamics.44,47,48 In low-rank net-

works, the connectivity constrains the activity to be embedded

in a low-dimensional subspace,41,43,44 allowing for a direct visu-

alization. Examining the resulting low-dimensional dynamics for

networks trained on flexible timing tasks, in this section we show

that the neural trajectories are attracted to non-linear manifolds

along which they slowly evolve. The dynamics on, and structure

of, these manifolds across conditions determine the extrapola-

tion properties of the trained networks. Here, we summarize

this reverse-engineering approach and the main results. Addi-

tional details are provided in the STAR Methods.

Low-dimensional embedding of neural activity

The RNNs used to implement flexible timing tasks consisted ofN

units, with the dynamics for the total input current xi to the i-th

unit given by:
t
dxi
dt

= � xi +
XN
j = 1

Jij4ðxjÞ +
XNin

s = 1

I
ðsÞ
i usðtÞ+ hiðtÞ: (Equation 1)

Here4ðxÞ = tanhðxÞ is the single neuron transfer function, Jij is the
strength of the recurrent connection fromunit j to unit i, and hiðtÞ is
a single-unit noise source. The networks receivedNin task-depen-

dent scalar inputs usðtÞ for s = 1;.;Nin, each along a set of feed-

forward weights that defined an input vector IðsÞ = fIðsÞi gi = 1.N

across units. Inputs usðtÞ were either delivered as brief pulses

(Set signal, input interval pulses in the MWG task) or as tonic sig-

nals that were constant over the duration of a trial (cue input in

the CSG task, contextual input in the MWG + Ctxt task).

The collective activity in the network can be described in terms

of trajectories xðtÞ = fxiðtÞgi = 1.N in the N-dimensional state
Neuron 111, 739–753, March 1, 2023 743

A B

C D

F

E

G H

Figure 4. Reverse-engineering RNNs trained on flexible timing tasks
(A) The temporal activity of different units in the network (left) can be represented as a trajectory in state space (right, thick red line). In low-rank networks,

trajectories are embedded in a lower dimensional space (red shaded plane, see Equation 3). For instance, in a rank-two network, in absence of input, this

embedding space is spanned by connectivity vectorsmð1Þ andmð2Þ, so that neural trajectories can be parametrized by two recurrent variables k1 and k2 and their

dynamics represented in terms of a flow field (arrows, see Equation 4).

(B) External inputs increase the dimensionality of the embedding space. Here, a single input is added; the embedding subspace is now three-dimensional: two

dimensions for the recurrent subspace and one dimension for the input I. A tonic input (black arrow) shifts the recurrent subspace (m(1)�m(2)) along the input

direction and modifies the flow field.

(C–E) RNN trained on the CSG task. Stable fixed points: color-filled dots; unstable fixed points, white dots.

(C) Dynamical landscape in the embedding subspace of trained rank-two network (small arrows), and neural trajectory for one trial (black line, ucue = 0). The red

line represents the non-linear manifold to which dynamics converge from arbitrary initial conditions (Figure S4). The trial starts at the bottom left stable fixed point.

The Set pulse initiates a trajectory toward the opposite stable fixed point, which quickly converges to the slow manifold (see Figure S5A) and evolves along it.

(D) Manifolds generated by a trained RNN for different amplitudes of the cue (colored lines: cues used for training, black dashed lines: cues beyond the training

range). Left: 2D projections of themanifolds onto the recurrent subspace. The gray line is the projection of the readout vector on the recurrent subspace. Right: 3D

visualization of the manifolds in the full embedding subspace, spanned bym(1),m(2), and Icue. The shaded blue region indicates the section of the manifolds along

which neural trajectories evolve when performing the task. Any state on the manifold can be determined by the polar coordinate q. Increasing the cue amplitude,

even to values beyond the training range (black dashed lines), keeps the geometry of manifolds invariant.

(E) Speed along the manifold as a function of the polar angle q. The speed along the manifold is scaled by the cue amplitude, even beyond the training range.

Shaded blue region is as in (D).

(F) RNN trained on the MWG task. Left: the dynamics in the embedding subspace of the trained rank-three network generated a spherical manifold to which

trajectories were quickly attracted (Figure S4). Right: distance of trajectories solving the task to the manifold’s surface.

(G) RNN trained on the MWG+Ctxt task. Spherical manifolds on the recurrent subspace for two different contextual cues (red: fast context, uctxt = 0; blue: slow

context, uctxt = 0.1) are shown.

(H) The contextual cue modulates the speed of dynamics along the manifold. The colormap shows the difference in speed on the manifold’s surface between the

two contexts. In the region of the manifold where trajectories evolve (red and blue lines), the speed is lower for stronger contextual cues (slow context). A stronger

contextual amplitude slows down the non-linear manifold in the region of interest (see also Figure S5).

ll
Article
space, where each axis corresponds to the total current received

by one unit (Figure 4A). In low-rank networks, the connectivity

constrains the trajectories to reside in a low-dimensional linear

subspace of the state space41,43,44 that we refer to as the

embedding space.12 In a rank-R network, the recurrent connec-

tivity can be expressed in terms of R pairs of connectivity vectors
744 Neuron 111, 739–753, March 1, 2023
mðrÞ = fmðrÞ
i gi = 1.N and nðrÞ = fnðrÞi gi = 1.N for r = 1.R, which

together specify the recurrent connections through

Jij =
1

N

XR
r = 1

m
ðrÞ
i n

ðrÞ
j : (Equation 2)

ll
Article
The connectivity vectors, as well as the feedforward input vec-

tors IðsÞ, define specific directions within theN-dimensional state

space that determine the network dynamics. In particular, the

trajectories are confined to the embedding space spanned by

the recurrent connectivity vectorsmðrÞ and the feedforward input

vectors IðsÞ (Figure 4A). The trajectories of activity xðtÞ can there-

fore be parameterized in terms of Cartesian coordinates along

the basis formed by the vectors mðrÞ and IðsÞ:41,43,44

xðtÞ =
XR
r = 1

krðtÞmðrÞ +
XNin

s = 1

vsðtÞIðsÞ: (Equation 3)

The variables k = fkrgr = 1.R and v = fvsgs = 1.Nin
represent,

respectively, activity along the recurrent and input-driven sub-

spaces of the embedding space.33 The dimensionality of the

embedding space is therefore R+Nin, where R dimensions

correspond to the recurrent subspace andNin to the input-driven

subspace. The evolution of the activity in the network can then

be described in terms of a dynamical system for the recurrent

variables k driven by inputs v:43,44

t
dk

dt
ðtÞ = Fðk; vÞ: (Equation 4)

In Equation 4, for constant inputs, the non-linear function F de-

scribes the dynamical landscape that determines the flow of the

low-dimensional activity in the recurrent subspace (Figure 4A).

Pulse-like inputs instantaneously shift the position of activity in

the embedding space such that the transient dynamics in be-

tween pulses are determined by this dynamical landscape.

Instead, tonic cue inputs, such as the signals used in the CSG

and MWG + Ctxt tasks, shift the recurrent subspace within the

embedding space and thereby modify the full dynamical land-

scape (Figure 4B). The low-dimensional embedding of neural tra-

jectories can therefore be leveraged to explore the dynamics of

trained recurrent neural networks by directly visualizing the

dynamical landscape and the flow of trajectories in the recurrent

subspace instead of considering the full, high-dimensional

state space.

Non-linear manifolds within the embedding space

In low-rank networks, the neural trajectories reside in the low-

dimensional embedding space, but they do not necessarily

explore that space uniformly. Examining networks trained on

flexible timing tasks, we found that neural trajectories quickly

converged to lower-dimensional, non-linear regions within the

embedding space. We refer to these regions as non-linear mani-

folds,12 and we devised methods to identify them from network

dynamics (STAR Methods and Figure S4). We next describe

these manifolds and their influence on dynamics and computa-

tions for networks trained on individual tasks.

Cue-Set-Go task

For rank-two networks that implemented the CSG task, the

recurrent subspace was of dimension two and was parameter-

ized by Cartesian coordinates k1 and k2 (Figure 4C). In a given

trial, corresponding to a fixed cue amplitude, we found that the

dynamical landscape on this recurrent subspace displayed an

attractive ring-like manifold on which the dynamics were slow

(Figure 4C, red line). This manifold connected two stable fixed
points through two intermediate saddle points (Figure 4C, red

and white dots, respectively). At trial onset, the neural activity

started at one first stable fixed point and was then pushed by

the Set pulse above a saddle point. This generated a neural tra-

jectory in the recurrent subspace (Figure 4C, black line) that was

quickly attracted to the ring-like manifold (Figures S4 and S5)

and subsequently followed slow dynamics along this manifold

toward the second stable fixed point. The position on this non-

linear manifold therefore represented the time since the Set

pulse and was directly transformed into a ramping output by

the readout of the network.

Different trials in the CSG task correspond to different ampli-

tudes of the tonic input cue that shift the position of the recurrent

subspacewithin the embedding space andmodulate the dynam-

ical landscape on it (Figure 4D). For each value of the cue ampli-

tude, we found that trajectories evolved along parallel ring-like

manifolds, which together formed a two-dimensional cylinder

when visualized in the three-dimensional embedding space

defined by k1, k2, and the input cue as a third coordinate (Fig-

ure 4D, right). The shape of the ring-like manifolds and the posi-

tion of fixed points were largely invariant, but the amplitude of

thecuecontrolled the speedof thedynamics alongeach ring (Fig-

ure 4E) and, thereby, the slope of the ramping output that deter-

mined the output interval (Figure 2A). Because of the cylindrical

geometry, extending cue amplitudes to values outside of the

training rangepreserved the overall structure of themanifold (Fig-

ure 4D, black dashed lines) and thereby ensured lawful extrapo-

lation of the required outputs. The modulation of speed along a

low-dimensional manifold of invariant geometry therefore sub-

serves the contextual control of extrapolation in the CSG task.

Measure-Wait-Go task

For rank three networks that implemented the MWG task, the

recurrent subspace was three-dimensional. Within that sub-

space, we found that the trajectories were attracted to a spher-

ically shaped manifold, only diverging from its surface during the

fast transient responses to the input pulses (Figures 4F and S4).

The neural dynamics underlying the basic MWG task could

therefore be described in terms of trajectories along a non-linear

manifold in a manner analogous to individual trials in the CSG

task. During the measurement period, the two input pulses that

defined the input time interval led to trajectories that quickly

converged to a localized region on the spherical manifold where

the speed was minimal (Figure S5). This region played the role of

a line attractor, the position along which encoded the input time

interval during the delay period. The subsequent Set input then

generated trajectories that evolved toward the other side of the

sphere at speeds set by the initial condition on the line attractor,

therefore leading to ramp signals with varying slopes (Figure S1).

Crucially, the line attractor that encoded the input interval occu-

pied a bounded region on the sphere so that any input interval

outside of the training range converged to one of the extremities

of the attractor. Thus, the finite limits of the line attractor lead to a

sigmoidal input-output function where the output intervals were

saturated to the bounds of the training range, as seen in

Figure 2C.

For the extended MWG + Ctxt task, the additional tonic

contextual inputs modified the flow of the dynamics in the

three-dimensional recurrent space. In a manner analogous to
Neuron 111, 739–753, March 1, 2023 745

ll
Article
the CSG task, increasing the amplitude of the contextual input

largely preserved the shape and position of the attractive spher-

ical manifold (Figure 4G) while scaling the speed of the dynamics

on it (Figure 4H). The contextual input thereby controlled the

speed of trajectories of activity and parametrically modulated

the input-output transform performed by the network. This effect

extended to values of contextual inputs well beyond the trained

region and thereby controlled extrapolation to previously unseen

values for both input intervals and contextual inputs.

In summary, reverse-engineering low-rank networks trained

on the CSG and MWG tasks revealed that, in both tasks, extrap-

olation beyond the training range relied on a mechanism based

on an invariant geometry of underlying neural activity manifolds,

the dynamics along which were parametrically controlled by

tonic inputs.

Controlling the geometry and dynamics on non-linear
manifolds
Our reverse-engineering analysis revealed that parametric con-

trol of extrapolation in trained low-rank networks relied onmodu-

lating dynamics over non-linear manifolds of invariant geometry.

To further unravel how the properties of recurrent connectivity

and tonic inputs, respectively, contribute to controlling the ge-

ometry of, and dynamics on, non-linear activity manifolds, we

investigated simplified, mathematically tractable networks. In

such networks, a mathematical analysis allows us to directly

infer dynamics from the connectivity and input parameters and

to synthesize networks that perform specific computa-

tions,41–44,49 thereby demonstrating that the mechanisms identi-

fied through reverse-engineering are sufficient to implement

generalization in flexible timing tasks.

We considered the restricted class of Gaussian low-rank

RNNs41,43,44 where for each neuron i, the set of components

fmðrÞ
i ; n

ðrÞ
i gr = 1.R and fIðsÞi gs = 1.Nin

along connectivity and input

vectors are drawn randomly and independently from a zero-

mean multivariate Gaussian distribution (Figure S6A). Unlike

trained low-rank networks, which in principle depend on a high

number of parameters (order N), these simplified networks are

fully specified by a few parameters (order ð2R+NinÞ2) that corre-
spond to the entries of the covariance matrix of the underlying

Gaussian distribution or, equivalently, the matrix of pairwise

overlaps between connectivity and input vectors (STAR

Methods). We therefore investigated how this overlap structure

determines the dynamics that underlie computations.

Generating slow manifolds through recurrent

connectivity

We first focused solely on recurrent interactions and investigated

which type of overlap structure between connectivity vectors

generates slow attractivemanifolds, as seen in trained networks.

In particular, we analyzed how the position of the fixed points

and speed along manifolds depend on the overlap matrix. As re-

ported in previous studies41,43,50 and detailed in the STAR

Methods, a mean-field analysis shows that in the limit of large

networks, attractive manifolds arise when the overlap matrix is

diagonal and its non-zero entries are equal to each other and suf-

ficiently strong (Figure S6B). More precisely, for a rank R

network, such a symmetry in the overlap matrix induces an

attractive R-dimensional spherical manifold in neural space
746 Neuron 111, 739–753, March 1, 2023
where each point on the manifold is an attractive fixed point

(see STAR Methods). Accordingly, for rank-two networks, this

structure leads to a continuous ring attractor embedded in a

plane, and for rank-three networks it leads to a spherical

attractor.

The mean-field analysis formally holds in the limit of infinitely

large networks. Dynamics in networks of finite size can be

described by adding random perturbations to the overlap matrix

describing the connectivity, which is therefore never perfectly di-

agonal. Perturbations away from a diagonal overlap structure

break up the continuous attractor such that only a small number

of points on it remain exact fixed points of the dynamics (Fig-

ure S6C). On the remainder of the original continuous attractor,

the flow of the dynamics, however, stays very slow even for rela-

tively large deviations from a diagonal overlap structure. For rank

two connectivity, the continuous attractor predicted by the

mean-field analysis therefore leads to a ring-like manifold on

which slow dynamics connect stable fixed points and saddles

(Figure S6C, middle), as seen in trained low-rank networks

(Figures 4C and 4D). Specific deviations from a diagonal overlap

matrix, moreover, determine the precise position of the fixed

points on themanifold. In particular, a weak off-diagonal compo-

nent in the overlap matrix rotates the position of saddle points

and brings them closer to stable fixed points (Figure S6D). This

type of structure leads to long transient trajectories from a saddle

to a fixed point, analogous to those underlying ramping signals in

trained networks (Figure 4C).

Controlling dynamics through tonic inputs

We next examined how a tonic cue, i.e., a constant external input

along an input vector I, impacts the geometry of recurrently gener-

atedmanifoldsand thedynamicsonthem. Inparticular,westudied

whatpropertiesof the input vectorsand recurrentconnectivitypro-

duce a change in dynamics such as the one observed in the CSG

task (Figure 4D) landscape. Our mean-field analysis showed that

thegeometrical arrangement between the input vector I and recur-

rent vectors, asquantifiedby their overlaps,was the key factor that

determined the effect of the input on the manifold. We therefore

distinguishedbetween non-specific inputs forwhich the input vec-

tor was orthogonal to all connectivity vectors, and subspace-spe-

cific inputs, for which the input vector was correlated with the

recurrent connectivity structure.

Non-specific inputs modify both the dynamics on the manifold

and its geometry in neural state space (Figures 5A and 5B, top

row). In particular, increasing the amplitude of non-specific inputs

shrinks the radius of the activity manifold until it eventually col-

lapses. In contrast, for subspace-specific inputs, varying the input

amplitude modulates the speed of the dynamics (similar to non-

specific inputs, Figure 5B) but, importantly, keeps approximately

invariant the geometry of the manifold and the position of fixed

points on it (Figure 5A, bottom). Subspace-specific inputs there-

fore reproduce the mechanism of speed modulation on invariant

manifolds found when reverse-engineering trained networks.

Based on the mechanism identified using the mean-field anal-

ysis, we hypothesized that the input components required to

produce flexible timing behavior are those specific to the recur-

rent subspace. We tested this prediction on the low-rank neural

networks trained on the CSG task and MWG task with context.

We perturbed the trained input vectors in two ways; we either

A B C

Figure 5. Effect of tonic cue inputs on the geometry of, and dynamics on, manifolds

Top: non-specific cue orthogonal to the recurrent connectivity vectors. Bottom: specific cue input within the subspace of recurrent connectivity vectors.

(A) Projection of manifolds on the recurrent subspace (bottom left inset) and on the 3D embedding subspace (right). Different colors correspond to different cue

amplitudes. Solid lines indicate the manifold location (colored dots: stable fixed points, white dots: saddle points).

(B) Speed along the manifold, parametrized by the polar angle, along the shaded blue section indicated in (A).

(C) Performance in the CSG (left) andMWG+Ctxt tasks (right) when either only non-specific (top) or only subspace-specific (bottom) components of the cue of the

trained RNN are kept after training.

ll
Article
kept only input components specific to the connectivity sub-

space and removed all others or kept only input components

orthogonal to the connectivity subspace. As predicted, keeping

only the non-specific components of the input vectors

completely hindered the computation (Figure 5C, top). In

contrast, removing all non-specific components from the input

vectors in the trained networks did not strongly affect the perfor-

mance of the network (Figure 5C, bottom). These results show

that subspace-specific input vectors were required to solve

timing tasks.

The mean-field analysis of simplified Gaussian low-rank net-

works allowed us to synthesize networks in which tonic inputs

control dynamics over non-linear manifolds of invariant geome-

try. Going one step further, we next capitalized on these insights

to directly design networks that perform the CSG and MWG

tasks based on this mechanism by setting connectivity parame-

ters without training (Figure S7). Such minimal network models

demonstrate that the mechanisms identified by reverse-engi-

neering trained networks are indeed sufficient for implementing

the flexible timing tasks over a large range of inputs.

Signatures of the computational mechanism in
neural data
Our analyses of network models point to a putative mechanism

for rapid generalization in timing tasks. Specifically, generaliza-

tion emerges when inputs are paired with a low-dimensional

contextual signal that is parametrically adjusted to the range of

possible inputs. To test for the presence of this computational

strategy in the brain, we turned to empirical data recorded during

flexible timing behavior. We analyzed neural population activity

in the dorsomedial frontal cortex (DMFC) of monkeys performing
the ‘‘Ready-Set-Go’’ (RSG) task, a time interval reproduction

task analogous to the MWG + Ctxt task but without a delay

period.36,40 In this task, animals had tomeasure and immediately

reproduce different time intervals. The feature that made this

task comparable to the MWG + Ctxt task was that the time inter-

val on each trial was sampled from one of two distributions (i.e., a

‘‘fast’’ and a ‘‘slow’’ context), and the color of the fixation spot

throughout the trial explicitly cued the relevant distribution,

thereby providing a tonic contextual cue.

Previous studies have reported on several features of neural

dynamics in this task.36,40 In particular, it was found that during

the measure of the intervals, population activity associated

with each context evolves along two separate trajectories

running at different speeds.While this observation is qualitatively

consistent with the contextual speed modulations seen in our

network models, it is by itself insufficient to validate the hypoth-

esized mechanism, a tonic contextual input controlling the low-

dimensional dynamics. To firmly establish the connection be-

tween our model and the neural data, we thus devised a new

set of quantitative analyses aimed at directly comparing their

dynamics.24

To guide our comparison between the model and the data, we

focused on three main signatures of the low-rank networks. Our

first observation was that the neural trajectories associated with

the two contexts remain separated along a relatively constant

dimension throughout the measurement epoch of the task.

Indeed, as we have shown above, the contextual input translates

the manifold of activity along a ‘‘context dimension’’ that is

orthogonal to the subspace in which the trajectories evolve

(Figure 6A, top left). This translation was also visually manifest

in the data: the empirical trajectories associated with the two
Neuron 111, 739–753, March 1, 2023 747

PC1

PC2

PC3

A B C

Figure 6. Signatures of the computational mechanism in neural data

Comparison between a low-rank network trained on the MWG + Ctxt task (top) and neural data in a time-reproduction task36,40 (bottom).

(A) Left: projections on the first principal components of the activity during the measurement epoch. Different trajectories correspond to different input intervals;

colors denote the two contexts. Right: mean (in absolute value) and standard deviation of the angle between vectors separating trajectories. Control corresponds

to the same analysis with shuffled context categories.

(B) Left: 2D projection of activity orthogonal to the context axis. Trajectories evolve along a non-linear manifold that is invariant across contexts. Right: average

distance between trajectories during the measurement epoch after removing the projection onto context dimension. The distance is computed between each

average context trajectory (no ctxt; red: fast ctxt; blue: slow ctxt) and the reference trajectory (the slow ctxt). The estimate of the distance for the reference

trajectory (blue) with itself uses different subsets of trials to quantify the noise. The control consists of removing the projection of the activity on a random direction

(see STAR Methods).

(C) Left: average speed of trajectories during the measurement epoch as a function of the projection onto the context dimension. In the RNN, the grey line shows

the same analysis for context amplitudes not seen during training. There is amonotonic relation between the speed of neural activity duringmeasurement and the

projection of the activity onto the context dimension. Right: speed estimation shown as the time elapsed until reaching a reference state (given by the average

trajectory in the slow context). Trajectories from the context different from reference evolve faster after an initial transient at equal speeds. Error bars indicate

99% confidence interval.

ll
Article
contexts appeared to evolve in parallel, as shown by a 3D projec-

tion of the dynamics (Figure 6A, bottom left). To rigorously

assess the degree of parallelism of the trajectories in higher di-

mensions, we computed the angle between the vectors sepa-

rating the two trajectories at different time points (STAR

Methods). We expected this angle to be small if the dimension

separating the trajectories remained stable over time. Consistent

with our initial observations, we indeed found that in the low-rank

networks this angle remained close to zero (Figure 6A, top right).

When we performed the same analysis on the neural data, we

found a similar degree of parallelism between the trajectories

(Figure 6A, bottom right): in both the model and the data, the

angle remained far from 90� for at least 500ms (Figure S8A), indi-

cating that the context dimension was largely stable over time.

Our second observation was that the neural trajectories in the

low-rank networks were invariant across contexts and overlap-

ped in the recurrent subspace (Figure 6B, left). We visually found

a similar invariance in the neural data after projecting out the

context dimension (Figure 6B, bottom left). To quantify this ef-

fect, we calculated the distance between trajectories once the

projection of the activity along the previously identified context

dimension was removed (see STAR Methods). For comparison,

we also calculated the distance between trajectories when

removing the projection on a random dimension of the state

space (see Figure S8B for the time-resolved distances). We

found that, both in the networks and the data, the distance

was largely reduced to zero once the context dimension was
748 Neuron 111, 739–753, March 1, 2023
removed (Figure 6B, right), thus demonstrating a similar degree

of invariance in the dynamics.

A final key signature of the low-rank networks was that the

speed of dynamics during measurement depended on context:

faster in the fast context, slower in the slow context. We

measured speed by calculating the amount of change in neural

activity in small periods of time. In parallel, we projected the ac-

tivity onto the context dimension estimated at the beginning of

measurement. We found that there was amonotonic relation be-

tween the activity along the context dimension and the speed of

trajectories, based on the slow and fast contexts (blue and red

crosses, Figure 6C, right). In addition, in the low-rank networks,

we were able to establish the full functional relation between

speed and projection on context for context amplitudes not

seen during training (gray line, Figure 6C, right).

Direct neural speed estimates are, however, a measure sensi-

tive to the noise level of the activity. To better compare neural

speed in the network and the recordings, we used ‘‘kinematic

analysis of neural trajectories’’ (KiNeT), which provides a finer-

grain analysis based on relative time elapsed to reach a certain

state (see STAR Methods24). Using this technique first on the

networks we confirmed that there are strong speed modulations

between different contexts. Furthermore, speed modulations

only appeared once the transient signal from the beginning of

measurement faded out, roughly 200 ms following Ready (Fig-

ure 6C, top). Applying the same technique to the neural data,

we observed that the empirical trajectories also diverged in

ll
Article
terms of speed only after about 200 ms following the Ready

signal (Figure 6C, bottom).

Altogether, these quantitative analyses show that neural activ-

ity exhibited the key signatures of parametric control by a low-

dimensional input predicted from computational modeling and

theory, suggesting that the dynamics of neural trajectories in

the cortex may be optimized to facilitate generalization.

Adaptation to changing input statistics
Our comparison of the network model with neural data argues

that flexible timing across contexts is controlled by a tonic input

that flexibly modulates the network’s dynamics. So far, we

focused on the situation where the two contexts were explicitly

cued and well-known to the animals, and we assumed that the

corresponding level of the control input was instantaneously

set by an unspecified mechanism. A key question is, however,

how the value of this control input can be adaptively adjusted

following uncued changes in input data. In this section, we pro-

pose a simple mechanism to dynamically update the contextual

input based on the input interval statistics and compare the pre-

dictions of this augmented model with behavioral and neural

data from a new monkey experiment.

To allow the model to infer changes in context from the recent

history of measured intervals, we hypothesize that the network

continuously represents and updates an estimate of the mean

of the interval distribution. Indeed, previous work has shown

that adjusting neural dynamics based on the mean interval

may provide the substrate for adapting to new interval statis-

tics.40 Inspired by this result, we assume that the amplitude of

the contextual input linearly encodes the mean input interval

and is adjusted on every trial based on a ‘‘prediction error,’’

i.e., the difference between the measured interval and the cur-

rent estimate of the mean (Figure 7A). The adjustment of the

contextual input can thus be formulated as a simple auto-regres-

sive process that continuously tracks the statistics of the inter-

vals (see STAR Methods).

A direct consequence of thismechanism is that the network be-

comes sensitive to local variations in the statistics of the intervals

within a given context and adapts its output accordingly. In partic-

ular, the network’s output on a given trial is biased toward the

input interval of the previous trial (Figure 7B). Strikingly, we found

a similar tendency in monkeys trained on a single context (Fig-

ure 7B, right): animals respond generally faster following a short

interval and slower following a long interval. Note that this history

effect is abolished in the networks when the updating of the con-

trol input is turned off (Figure 7B,middle), indicating that this effect

specifically emerges from contextual input adjustments.

These behavioral results suggest that animals may rely on an

updatingmechanism similar to that implemented in the networks

to remain tuned to changing stimulus statistics. To test the pre-

dictions of the model directly at the level of neural dynamics, we

developed a novel experiment that combined context-based

and adaptation-based timing. Each session was divided in two

parts. In the first part, animals reproduced measured intervals

under the same conditions as previously, i.e., they were exposed

to two alternating interval distributions explicitly cued via the co-

lor of the fixation spot. In the second part of the experiment,

following an uncued switch, the distribution corresponding to
one of the two contexts was covertly changed to an intermediate

distribution, while the color of the fixation point remained un-

changed (Figure 7C, left). The specific predictions of our model

were that: (i) the level of the pre-stimulus contextual input adapts

to an intermediate value along the identified contextual axis; (ii)

the speed of the dynamics following the Ready pulse adjusts ac-

cording to the level of the contextual input.

We analyzed DMFC population activity in this task and

compared it to the predictions of our low-rank networks, similar

to Figure 6C, left. As expected, in the RNNs, after the switch, the

network learned the new value of the contextual input, and this

value was associated with an intermediate value of speed (Fig-

ure 7C, gray dots). The same key findings were observed in the

neural data: we projected population activity post-switch along

the context dimension defined pre-switch and found that this pro-

jection, aswell as the speedof dynamics,was adjusted to interme-

diate values appropriate for the new distribution (Figure 7C, right).

This result isparticularlynotable,since itdemonstratesanon-trivial

match between neural data and our low-rank networks con-

strained toadapt via changes ina tonic input thatencodescontext.

Overall, these analyses provide compelling evidence that a

low-dimensional input control strategy provides an efficient

way to promote both generalization and adaptability for flexible

timing, and it is likely at play in the brain.

DISCUSSION

Examining recurrent neural networks trained on a set of flexible

timing tasks, we show that controlling low-dimensional dy-

namics with tonic inputs enables a smooth extrapolation to in-

puts and outputs well beyond the training range. Reverse-engi-

neering and theoretical analyses of the recurrent networks

demonstrated that the underlying mechanism for generalization

relied on a specific geometry of collective dynamics. Within a

given condition, collective dynamics evolved along non-linear

manifolds, while across conditions, tonic cues modulated the

manifolds along an orthogonal direction. This modulation para-

metrically controlled the speed of dynamics on the manifolds

while leaving their geometry largely invariant. We demonstrated

that this mechanism leads to fast adapting responses in chang-

ing environments by adjusting the amplitude of the tonic input

while reusing the same recurrent local network. Population ana-

lyses of neural activity recorded while monkeys adaptively

solved time-interval reproduction tasks confirmed the key geo-

metric and dynamic signatures of this mechanism.

At the algorithmic level, the RNNs that generalized to novel

stimuli suggested a computational principle for dynamical

tasks that makes a clear separation between recurrent dy-

namics and two types of inputs based on their function and

timescale. First, the scaffold for time-varying dynamics is

crafted by recurrent interactions that generate manifolds in

neural state-space. Second, on the level of individual trials,

fast inputs place neural trajectories at the suitable locations in

state-space that allow time-varying responses to unfold. Third,

tonic inputs, which are constant during the trial duration, pro-

vide the parametric control of the dynamics on the manifold

by shifting trajectories to different regions of state-space.

These tonic inputs can, however, vary at the timescale of trials
Neuron 111, 739–753, March 1, 2023 749

A

B

C

Figure 7. Adaptation to a change in statistics of input intervals

(A) Extended model, in which the context signal amplitude is updated in each trial proportionally to the difference between the input interval and the predicted

input interval tpred (see STAR Methods).

(B) Effect of contextual input adjustments in a single-context task. Left: task structure of a session: randomly interleaved trials from a single distribution. Black line

indicates the predicted input interval at every trial. Center: bias in the output interval of a trained RNN as a function of the interval presented in the previous trial

(colored dots). The control data correspond to the same trained RNNwith constant context signal. Straight lines connecting the dots were added for visualization.

Right: behavioral bias in monkeys performing a timing task. Insets show the distribution of input intervals, highlighting its mean value, tin.
(C) Effect of contextual input adjustments in a two-context adaptation task. Left: task structure of a session: trials are structured into alternating blocks. In each

block, trials are randomly drawn from different distributions (slow and fast contexts, bottom). At some point, there is an uncued transition to a novel distribution,

consisting of a single input interval, ranging between the means of the slow and fast contexts. Center: speed of neural activity in the RNN vs. the projection of

neural activity onto the estimated context dimension during the measurement epoch (see STAR Methods). Right: same analysis in the neural data. In the novel

uncued context (grey dot), the speed and projection onto context are adjusted to values between the slow and fast contexts.

ll
Article
and encode the contextual information necessary to adapt to

the changing statistics of the environment.40 We expect that

this principle of a separation of inputs along different behavior-

ally relevant timescales extends to other parametric forms of

control,6,51,52 and provides a fundamental building block for

neural networks that implement more complex internal models

of the external world.

A key objective of computational modeling is tomake falsifiable

predictions in experimental recordings; our work on RNNs sup-

plies predictions for both generalization and adaptation. We

performed experiments on primates that directly test some of
750 Neuron 111, 739–753, March 1, 2023
the predictions on adaptation. We found a behavioral bias toward

previous trials, compatible in our model with a predictive error

signal required for adaptation. At the level of neural recordings,

in line with the modeled tonic input controlling neural speed, we

found that neural trajectories in dorsomedial frontal cortex adap-

tively varied along a contextual axis that determined the speed of

neural dynamics. On the other hand, we did not have the data for

validating our predictions on generalization (i.e., zero-shot

learning). Nevertheless, based on the adaptation results, we

expect that when animals generalize, their neural activity adjusts

the tonic input within a single trial. This change in the input to

Table 1. Parameters for trained RNNs

Number of units N 1,000

Single-unit t 100 ms

Standard deviation hi 0.08

Integration step Dt 10 ms

Initial g0 0.8

Initial s0 0.8

ll
Article
the local network could be provided either through an external

input present during the whole trial duration (e.g., an explicit in-

struction, or context cue as inSohnet al.36) or some transient input

that is mapped onto a tonic input in the brain (e.g., in reversal

learning paradigms, where the contextual input reflects the infer-

ence of sudden switches in the environment53,54).

We have shown that low-dimensional recurrent dynamics can

be flexibly controlled by a tonic input that varies along one

dimension. It remains an open question how low-dimensional

the dynamics need to be in order to be controllable with an

external tonic input. In our case, we enforced theminimal dimen-

sionality required to solve the task (up to three dimensions for the

MWG task) and showed that networks generalize when provided

with a tonic input. In the other extreme, trained networks without

any dimensionality constraint did not generalize with a tonic

input. These results suggest that flexible cognitive tasks that

require more time to be learned are either high-dimensional

and require additional mechanisms beyond a tonic input for

generalization or that the extra time is needed to reduce the

dimensionality of the network dynamics. These insights provide

a test bed to develop more efficient learning curricula for RNNs

and eventually animal training, not only in terms of generalization

but also learning speed. The minimal dimensionality was

achieved by directly constraining the rank of the connectivity

matrix in each task.44 The low-rank connectivity has the added

advantage of providing an interpretable mathematical frame-

work for the analysis of network dynamics.41–43 However, it is

possible that variations in the implementation of the RNNs,

such as specific types of regularization in unconstrained net-

works55 and other details of the learning algorithm or neural

architecture may equally constrain neural activity to low-dimen-

sional dynamics and induce comparable or better generalization.

From that point of view, the minimal rank constraint used here

can be seen as a particular type of inductive bias7,56–58 for tem-

poral tasks.

How andwhere tonic inputs are originated remains to be eluci-

dated. The electrophysiology data in this study were recorded

exclusively from dorsomedial frontal cortex, while the RNN

model is agnostic to the origin of the tonic inputs. Thalamic ac-

tivity has been found to be a candidate for the tonic input that

flexibly controls cortical dynamics.33,59,60 Nevertheless, when

the tonic input provides contextual information, as in the

MWG + Ctxt task, other cortical and subcortical brain areas

are likely recruited to provide a signal that integrates statistics

from past events.39,61 Concurrently, contextual modulation of

firing rates has been characterized in different areas of prefrontal

cortex.21,40,62 Whether this contextual information is integrated

and broadcast in a localized cortical region or emerges from
distributed interactions of multiple brain areas will need to be

determined by causal perturbation experiments across brain

regions.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Recurrent neural network dynamics

B Training

B Flexible timing tasks for RNNs

B Performance measure in timing tasks

B Dimensionality of neural activity

B Analysis of trained RNNs

B Non-linear manifolds

B Mean-field low-rank networks

B Analysis of dynamics in mean-field low-rank networks

B Behavioral task

B Neural data

B Geometrical analyses of neural trajectories

B Adaptation experiment in monkeys

B Inference of context signal

B Linear decoders

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

neuron.2022.12.016.

ACKNOWLEDGMENTS

M.B., M.J., and S.O. were supported by the CRCNS project PIND, funded

through the National Institutes of Health (NIMH: 1R01MH122025-01) and

French Agence Nationale de la Recherche (ANR-19-NEUC-0001-01). M.B.

was supported by the Ecole de Neurosciences de Paris. N.M. was supported

by a Whitaker Health Sciences Fund Fellowship. H.S. was supported by a

BBRF Young Investigator grant. S.O. was supported by the program ‘‘Ecoles

Universitaires de Recherche’’ ANR-17-EURE-0017.M.J. was supported by the

Simons Foundation, the McKnight-Endowment Fund for Neuroscience, and

the McGovern Institute. The authors would like to thank Adrian Valente for dis-

cussions and the software library for training recurrent neural networks, devel-

oped initially for Dubreuil et al.44 The authors would also like to acknowledge

and thank Alexandra Ferguson for her involvement in the design of the behav-

ioral task in monkeys and early feedback on the analyses of trained recurrent

neural networks.

AUTHOR CONTRIBUTIONS

M.B., M.J., and S.O. conceived the study of recurrent neural networks. M.B.

trained, simulated, and analyzed the networks. N.M., H.S., andM.J. conceived

the in vivo experiments. H.S. and N.M. collected the behavioral and electro-

physiological data. N.M. analyzed the physiology data. M.J. and S.O. super-

vised the project. All authors were involved in interpreting the results and

contributed to the writing of the manuscript.
Neuron 111, 739–753, March 1, 2023 751

https://doi.org/10.1016/j.neuron.2022.12.016
https://doi.org/10.1016/j.neuron.2022.12.016

ll
Article
DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research. While citing

references scientifically relevant for this work, we also actively worked to pro-

mote gender balance in our reference list.

Received: November 13, 2021

Revised: September 23, 2022

Accepted: December 8, 2022

Published: January 13, 2023

REFERENCES

1. Markman, E.M. (1989). Categorization andNaming in Children (MIT Press).

2. Körding, K.P., andWolpert, D.M. (2004). The loss function of sensorimotor

learning. Proc. Natl. Acad. Sci. USA 101, 9839–9842.

3. Courville, A.C., Daw, N.D., and Touretzky, D.S. (2006). Bayesian theories

of conditioning in a changing world. Trends Cognit. Sci. 10, 294–300.

4. Lake, B.M., Salakhutdinov, R., and Tenenbaum, J.B. (2015). Human-level

concept learning through probabilistic program induction. Science 350,

1332–1338.

5. Monosov, I.E. (2020). How outcome uncertainty mediates attention,

learning, and decision-making. Trends Neurosci. 43, 795–809.

6. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., and Gershman, S.J. (2017).

Building machines that learn and think like people. Behav. Brain Sci.

40, e253.

7. Sinz, F.H., Pitkow, X., Reimer, J., Bethge, M., and Tolias, A.S. (2019).

Engineering a less artificial intelligence. Neuron 103, 967–979.

8. Saxe, A., Nelli, S., and Summerfield, C. (2021). If deep learning is the

answer, what is the question? Nat. Rev. Neurosci. 22, 55–67.

9. Gao, P., Ganguli, S., Battaglia, F.P., and Schnitzer, M.J. (2015). On

simplicity and complexity in the brave new world of large-scale neurosci-

ence. Curr. Opin. Neurobiol. 32, 148–155.

10. Gallego, J.A., Perich, M.G., Miller, L.E., and Solla, S.A. (2017). Neural

Manifolds for the Control of Movement. Neuron 94, 978–984.

11. Saxena, S., and Cunningham, J.P. (2019). Towards the neural population

doctrine. Curr. Opin. Neurobiol. 55, 103–111.

12. Jazayeri, M., and Ostojic, S. (2021). Interpreting neural computations by

examining intrinsic and embedding dimensionality of neural activity.

Curr. Opin. Neurobiol. 70, 113–120.

13. DiCarlo, J.J., and Cox, D.D. (2007). Untangling invariant object recogni-

tion. Trends Cognit. Sci. 11, 333–341.

14. DiCarlo, J.J., Zoccolan, D., and Rust, N.C. (2012). How does the brain

solve visual object recognition? Neuron 73, 415–434.

15. Rigotti, M., Barak, O., Warden, M.R., Wang, X.J., Daw, N.D., Miller, E.K.,

and Fusi, S. (2013). The importance of mixed selectivity in complex cogni-

tive tasks. Nature 497, 585–590.

16. Fusi, S., Miller, E.K., and Rigotti, M. (2016). Why neurons mix: High dimen-

sionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74.

17. Chung, S., Lee, D.D., and Sompolinsky, H. (2018). Classification and

Geometry of General Perceptual Manifolds. Phys. Rev. X 8, 031003.

18. Cayco-Gajic, N.A., and Silver, R.A. (2019). Re-evaluating Circuit

Mechanisms Underlying Pattern Separation. Neuron 101, 584–602.

19. Bernardi, S., Benna, M.K., Rigotti, M., Munuera, J., Fusi, S., and Salzman,

C.D. (2020). The Geometry of Abstraction in the Hippocampus and

Prefrontal Cortex. Cell 183, 954–967.e21.

20. Nogueira, R., Rodgers, C.C., Bruno, R.M., and Fusi, S. (2021). The geom-

etry of cortical representations of touch in rodents. Preprint at bioRxiv.

https://doi.org/10.1101/2021.02.11.430704.
752 Neuron 111, 739–753, March 1, 2023
21. Rigotti, M., Rubin, D.B.D., Morrison, S.E., Salzman, C.D., and Fusi, S.

(2010). Attractor concretion as a mechanism for the formation of context

representations. Neuroimage 52, 833–847.

22. Mante, V., Sussillo, D., Shenoy, K.V., and Newsome,W.T. (2013). Context-

dependent computation by recurrent dynamics in prefrontal cortex.

Nature 503, 78–84.

23. Saez, A., Rigotti, M., Ostojic, S., Fusi, S., and Salzman, C.D. (2015).

Abstract Context Representations in Primate Amygdala and Prefrontal

Cortex. Neuron 87, 869–881.

24. Remington, E.D., Egger, S.W., Narain, D., Wang, J., and Jazayeri, M.

(2018). A Dynamical Systems Perspective on Flexible Motor Timing.

Trends Cognit. Sci. 22, 938–952.

25. Cueva, C.J., Saez, A., Marcos, E., Genovesio, A., Jazayeri, M., Romo, R.,

Salzman, C.D., Shadlen, M.N., and Fusi, S. (2020). Low-dimensional dy-

namics for working memory and time encoding. Proc. Natl. Acad. Sci.

USA 117, 23021–23032.

26. Badre, D., Bhandari, A., Keglovits, H., and Kikumoto, A. (2021). The dimen-

sionality of neural representations for control. Curr. Opin. Behav. Sci.

38, 20–28.

27. Flesch, T., Juechems, K., Dumbalska, T., Saxe, A., and Summerfield, C.

(2022). Orthogonal representations for robust context-dependent task

performance in brains and neural networks. Neuron 110, 1258–1270.e11.

28. Naumann, L.B., Keijser, J., and Sprekeler, H. (2022). Invariant neural sub-

spaces maintained by feedback modulation. Elife 11, e76096.

29. Buonomano, D.V., andMaass, W. (2009). State-dependent computations:

spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10,

113–125.

30. Mello, G.B.M., Soares, S., and Paton, J.J. (2015). A scalable population

code for time in the striatum. Curr. Biol. 25, 1113–1122.

31. Gouvêa, T.S., Monteiro, T., Motiwala, A., Soares, S., Machens, C., and

Paton, J.J. (2015). Striatal dynamics explain duration judgments. Elife 4,

e11386.

32. Merchant, H., and Averbeck, B.B. (2017). The computational and neural

basis of rhythmic timing in medial premotor cortex. J. Neurosci. 37,

4552–4564.

33. Wang, J., Narain, D., Hosseini, E.A., and Jazayeri, M. (2018). Flexible

timing by temporal scaling of cortical responses. Nat. Neurosci. 21,

102–110.

34. Remington, E.D., Narain, D., Hosseini, E.A., and Jazayeri, M. (2018).

Flexible Sensorimotor Computations through Rapid Reconfiguration of

Cortical Dynamics. Neuron 98, 1005–1019.e5.

35. Gámez, J., Mendoza, G., Prado, L., Betancourt, A., and Merchant, H.

(2019). The amplitude in periodic neural state trajectories underlies the

tempo of rhythmic tapping. PLoS Biol. 17, e3000054.

36. Sohn, H., Narain, D., Meirhaeghe, N., and Jazayeri, M. (2019). Bayesian

Computation through Cortical Latent Dynamics. Neuron 103, 934–947.e5.

37. Egger, S.W., Remington, E.D., Chang, C.J., and Jazayeri, M. (2019).

Internal models of sensorimotor integration regulate cortical dynamics.

Nat. Neurosci. 22, 1871–1882 1871–1882.

38. Bi, Z., and Zhou, C. (2020). Understanding the computation of time using

neural network models. Proc. Natl. Acad. Sci. USA 117, 10530–10540.

39. Monteiro, T., Rodrigues, F.S., Pexirra, M., Cruz, B.F., Gonçalves, A.I.,

Rueda-Orozco, P.E., and Paton, J.J. (2021). Using temperature to analyse

the neural basis of a latent temporal decision. Preprint at bioRxiv. https://

doi.org/10.1101/2020.08.24.251827.

40. Meirhaeghe, N., Sohn, H., and Jazayeri, M. (2021). A precise and adaptive

neural mechanism for predictive temporal processing in the frontal cortex.

Neuron 109, 2995–3011.e5.

41. Mastrogiuseppe, F., and Ostojic, S. (2018). Linking Connectivity,

Dynamics, and Computations in Low-Rank Recurrent Neural Networks.

Neuron 99, 609–623.e29.

http://refhub.elsevier.com/S0896-6273(22)01089-3/sref1
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref2
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref2
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref3
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref3
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref4
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref4
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref4
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref5
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref5
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref6
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref6
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref6
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref7
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref7
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref8
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref8
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref9
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref9
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref9
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref10
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref10
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref11
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref11
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref12
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref12
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref12
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref13
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref13
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref14
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref14
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref15
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref15
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref15
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref16
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref16
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref17
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref17
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref18
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref18
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref19
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref19
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref19
https://doi.org/10.1101/2021.02.11.430704
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref21
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref21
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref21
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref22
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref22
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref22
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref23
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref23
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref23
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref24
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref24
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref24
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref25
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref25
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref25
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref25
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref26
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref26
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref26
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref27
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref27
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref27
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref28
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref28
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref29
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref29
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref29
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref30
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref30
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref31
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref31
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref31
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref32
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref32
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref32
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref33
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref33
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref33
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref34
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref34
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref34
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref35
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref35
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref35
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref36
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref36
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref37
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref37
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref37
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref38
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref38
https://doi.org/10.1101/2020.08.24.251827
https://doi.org/10.1101/2020.08.24.251827
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref40
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref40
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref40
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref41
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref41
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref41

ll
Article
42. Schuessler, F., Dubreuil, A., Mastrogiuseppe, F., Ostojic, S., and Barak, O.

(2020). Dynamics of random recurrent networks with correlated low-rank

structure. Phys. Rev. Research 2, 013111.

43. Beiran, M., Dubreuil, A., Valente, A., Mastrogiuseppe, F., and Ostojic, S.

(2021). Shaping Dynamics With Multiple Populations in Low-Rank

Recurrent Networks. Neural Comput. 33, 1572–1615.

44. Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F., and Ostojic, S.

(2022). The role of population structure in computations through neural dy-

namics. Nat. Neurosci. 1–12.

45. Jazayeri, M., and Shadlen, M.N. (2010). Temporal context calibrates inter-

val timing. Nat. Neurosci. 13, 1020–1026.

46. Jazayeri, M., and Shadlen, M.N. (2015). A Neural Mechanism for Sensing

and Reproducing a Time Interval. Curr. Biol. 25, 2599–2609.

47. Sussillo, D., and Barak, O. (2013). Opening the black box: Low-dimen-

sional dynamics in high-dimensional recurrent neural networks. Neural

Comput. 25, 626–649.

48. Vyas, S., Golub, M.D., Sussillo, D., and Shenoy, K.V. (2020). Computation

Through Neural Population Dynamics. Annu. Rev. Neurosci. 43, 249–275.

49. Pollock, E., and Jazayeri, M. (2020). Engineering recurrent neural networks

from task-relevant manifolds and dynamics. PLoS Comput. Biol. 16,

e1008128.

50. Pereira, U., and Brunel, N. (2018). Attractor Dynamics in Networks with

Learning Rules Inferred from In Vivo Data. Neuron 99, 227–238.e4.

51. Hardy, N.F., Goudar, V., Romero-Sosa, J.L., and Buonomano, D.V. (2018).

A model of temporal scaling correctly predicts that motor timing improves

with speed. Nat. Commun. 9, 4732.

52. Rajalingham, R., Piccato, A., and Jazayeri, M. (2022). Recurrent neural

networks with explicit representation of dynamic latent variables can

mimic behavioral patterns in a physical inference task. Nat. Commun.

13, 5865.

53. Izquierdo, A., Brigman, J.L., Radke, A.K., Rudebeck, P.H., and Holmes, A.

(2017). The neural basis of reversal learning: an updated perspective.

Neuroscience 345, 12–26.

54. Sarafyazd, M., and Jazayeri, M. (2019). Hierarchical reasoning by neural

circuits in the frontal cortex. Science 364, eaav8911.

55. Sussillo, D., Churchland, M.M., Kaufman, M.T., and Shenoy, K.V. (2015). A

neural network that finds a naturalistic solution for the production of mus-

cle activity. Nat. Neurosci. 18, 1025–1033.

56. Neyshabur, B., Tomioka, R., and Srebro, N. (2015). In Search Of The Real

Inductive Bias: On The Role Of Implicit Regularization In Deep Learning

(ICLR (Workshop)).
57. Bordelon, B., and Pehlevan, C. (2021). Population codes enable learning

from few examples by shaping inductive bias. Preprint at bioRxiv.

https://doi.org/10.1101/2021.03.30.437743.

58. Canatar, A., Bordelon, B., and Pehlevan, C. (2021). Spectral bias and task-

model alignment explain generalization in kernel regression and infinitely

wide neural networks. Nat. Commun. 12, 2914.

59. Rikhye, R.V., Gilra, A., and Halassa, M.M. (2018). Thalamic regulation of

switching between cortical representations enables cognitive flexibility.

Nat. Neurosci. 21, 1753–1763.

60. Logiaco, L., Abbott, L.F., and Escola, S. (2021). Thalamic control of cortical

dynamics in a model of flexible motor sequencing. Cell Rep. 35, 109090

109090.

61. Paton, J.J., and Buonomano, D.V. (2018). The Neural Basis of Timing:

Distributed Mechanisms for Diverse Functions. Neuron 98, 687–705.

62. Bouchacourt, F., Palminteri, S., Koechlin, E., and Ostojic, S. (2020).

Temporal chunking as a mechanism for unsupervised learning of task-

sets. Elife 9, e50469.

63. Werbos, P.J. (1990). Backpropagation Through Time: What It Does and

How to Do It. Proc. IEEE 78, 1550–1560.

64. Kingma, D.P., and Ba, J.L. (2015). Adam: A method for stochastic optimi-

zation. Preprint at arXiv. https://doi.org/10.48550/arXiv.1412.6980.

65. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al.

(2017). Automatic differentiation in PyTorch. Adv. Neural Inf.

Process. Syst.

66. Schuessler, F., Mastrogiuseppe, F., Dubreuil, A., Ostojic, S., and Barak, O.

(2020). The interplay between randomness and structure during learning in

RNNs. Adv. Neural Inf. Process. Syst. 33.

67. Rajan, K., Abbott, L., and Sompolinsky, H. (2010). Inferring stimulus selec-

tivity from the spatial structure of neural network dynamics. Adv. Neural

Inf. Process. Syst. 23.

68. Litwin-Kumar, A., Harris, K.D., Axel, R., Sompolinsky, H., and Abbott, L.F.

(2017). Optimal Degrees of Synaptic Connectivity. Neuron 93, 1153–

1164.e7.

69. Susman, L., Mastrogiuseppe, F., Brenner, N., and Barak, O. (2021). Quality

of internal representation shapes learning performance in feedback neural

networks. Phys. Rev. Research 3, 013176.

70. Rabinovich, M.I., Huerta, R., Varona, P., and Afraimovich, V.S. (2008).

Transient cognitive dynamics, metastability, and decision making. PLoS

Comput. Biol. 4, e1000072.

71. Rabinovich, M., Huerta, R., and Laurent, G. (2008). Transient dynamics for

neural processing. Science 321, 48–50.

72. Darshan, R., and Rivkind, A. (2022). Learning to represent continuous vari-

ables in heterogeneous neural networks. Cell Rep. 39, 110612.
Neuron 111, 739–753, March 1, 2023 753

http://refhub.elsevier.com/S0896-6273(22)01089-3/sref42
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref42
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref42
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref43
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref43
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref43
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref44
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref44
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref44
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref45
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref45
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref46
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref46
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref47
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref47
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref47
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref48
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref48
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref49
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref49
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref49
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref50
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref50
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref51
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref51
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref51
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref52
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref52
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref52
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref52
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref53
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref53
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref53
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref54
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref54
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref55
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref55
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref55
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref56
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref56
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref56
https://doi.org/10.1101/2021.03.30.437743
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref58
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref58
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref58
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref59
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref59
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref59
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref60
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref60
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref60
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref61
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref61
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref62
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref62
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref62
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref64
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref64
https://doi.org/10.48550/arXiv.1412.6980
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref66
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref66
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref66
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref67
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref67
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref67
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref68
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref68
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref68
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref69
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref69
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref69
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref70
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref70
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref70
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref71
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref71
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref71
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref72
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref72
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref73
http://refhub.elsevier.com/S0896-6273(22)01089-3/sref73

ll
Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus macaque (Macaca mulatta) Alpha genesis N/A

Deposited data

Electrophysiology data This paper Zenodo: https://doi.org/10.5281/zenodo.7359212

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

KiloSort Pachitariu

et al., 2016

https://github.com/cortex-lab/KiloSort

Code used to analyze the

electrophysiology data

This paper https://github.com/jazlab/MB_NM_HS_

MJ_SO_ParamControlManifold;

https://doi.org/10.5281/zenodo.7359212

Code used to run and analyze

the neural networks

This paper https://github.com/emebeiran/parametric_manifolds;

https://doi.org/10.5281/zenodo.7375026

Other

CerePlex Direct Blackrock

Microsystems

https://blackrockmicro.com/neuroscience-research-products/

neural-data-acquisition-systems/cereplex-direct-daq/

Plexon V-Probes Plexon https://plexon.com/products/plexon-v-probe/

Eyelink 1,000 eye tracker SR Research https://www.sr-research.com/products/eyelink-1000-plus/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Srdjan Ostojic (srdjan.

ostojic@ens.psl.eu).

Materials availability
The study did not generate new unique reagents.

Data and code availability
d Electrophysiology data have been deposited at Zenodo: https://doi.org/10.5281/zenodo.7359212 and are publicly available as

of the date of publication. DOIs are listed in the key resources table.

d The original code related to the recurrent neural networks has been deposited at and is publicly available at https://github.com/

emebeiran/parametric_manifolds as of the date of publication. DOIs are listed in the key resources table.

d The original code related to the analysis of electrophysiology data has been deposited at and is publicly available at https://

github.com/jazlab/MB_NM_HS_MJ_SO_ParamControlManifold as of the date of publication. DOIs are listed in the key re-

sources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures conformed to the guidelines of the National Institutes of Health and were approved by the Committee of

Animal Care at the Massachusetts Institute of Technology. Experiments involved two awake behaving monkeys (macaca mulatta);

twomales (monkey G and H; weight: 6.8 and 6.6 kg; age: 4 years old) for the RSG task and the adaptation task. All animals were pair-

housed and had not participated in previous studies. During the experiments, animals were head-restrained and seated comfortably

in a dark and quiet room and viewed stimuli on a 23-inch monitor (refresh rate: 60 Hz). Eye movements were registered by an infrared

camera and sampled at 1kHz (Eyelink 1000, SR Research Ltd, Ontario, Canada). The MWorks software package (https://mworks.

github.io/) was used to present stimuli and to register eye position. Neurophysiology recordings were made by 1 to 3 24-channel
e1 Neuron 111, 739–753.e1–e8, March 1, 2023

mailto:srdjan.ostojic@ens.psl.eu
mailto:srdjan.ostojic@ens.psl.eu
https://doi.org/10.5281/zenodo.7359212
https://github.com/emebeiran/parametric_manifolds
https://github.com/emebeiran/parametric_manifolds
https://github.com/jazlab/MB_NM_HS_MJ_SO_ParamControlManifold
https://github.com/jazlab/MB_NM_HS_MJ_SO_ParamControlManifold
https://mworks.github.io/
https://mworks.github.io/
https://doi.org/10.5281/zenodo.7359212
https://www.mathworks.com/products/matlab.html
https://github.com/cortex-lab/KiloSort
https://github.com/jazlab/MB_NM_HS_MJ_SO_ParamControlManifold
https://github.com/jazlab/MB_NM_HS_MJ_SO_ParamControlManifold
https://doi.org/10.5281/zenodo.7359212
https://github.com/emebeiran/parametric_manifolds
https://doi.org/10.5281/zenodo.7375026
https://blackrockmicro.com/neuroscience-research-products/neural-data-acquisition-systems/cereplex-direct-daq/
https://blackrockmicro.com/neuroscience-research-products/neural-data-acquisition-systems/cereplex-direct-daq/
https://plexon.com/products/plexon-v-probe/
https://www.sr-research.com/products/eyelink-1000-plus/

ll
Article
laminar probes (V-probe, Plexon Inc., TX) through a bio-compatible cranial implant whose position was determined based on stereo-

taxic coordinates and structural MRI scan of the animals. Analyses of both behavioral and electrophysiological data were performed

using custom MATLAB code (Mathworks, MA).

METHOD DETAILS

Recurrent neural network dynamics
We trained recurrent neural networks (RNNs) consisting of N = 1000 units with dynamics given by Equation (1). We simulated the

network dynamics by applying Euler’s method with a discrete time step Dt. The noise source hiðtÞ was generated by drawing values

from a zero-mean Gaussian distribution at every time step.

The readout of the network was defined as

zðtÞ =
XN
i = 1

wi4ðxiðtÞÞ; (Equation 5)

a linear combination of the firing rates of all network units, along the vector w = fwigi = 1.N.

We considered networks with constrained low-rank connectivity as well as unconstrained networks. In networks of constrained

rank R, the connectivity matrix was defined as the sum of R rank-one matrices

Jij =
1

N

XR
r = 1

m
ðrÞ
i n

ðrÞ
j : (Equation 6)

We refer to vectors mðrÞ = fmðrÞ
i gi = 1.N and nðrÞ = fnðrÞi gi = 1.N as the r� th left and right connectivity vectors for r = 1.R.

Training
Networks were trained using backpropagation-through-time63 to minimize the loss function defined by the squared difference be-

tween the readout zqðtÞ of the network on trial q and the target output bzqðtÞ for that trial. The loss function was written as

L =
X
q

X
t
ðqÞ
1

< t < t
ðqÞ
2

ðzqðtÞ � bzqðtÞÞ2 (Equation 7)

where q runs over different trials, and t
ðqÞ
1 and t

ðqÞ
2 correspond to the time boundaries taken into account for computing the loss func-

tion (specified in task definitions below).

The network parameters trained by the algorithm were the components of input vectors IðsÞ, the readout vector w, the initial

network state at the beginning of each trial xðt = 0Þ, and the connectivity. In networks with constrained rank R, we directly trained

the components of the connectivity vectorsmðrÞ and nðrÞ, i.e. a total of 2R3N parameters. In networks with unconstrained rank, theN2

connectivity strengths Jij were trained.

We used 500 trials for each training set, and 100 trials for each test set. Following,44 we used the ADAM optimizer64 in pytorch65

with decay rates of the first and secondmoments of 0.9 and 0.999, and learning rates varying between 10� 4 and 10� 2. The remaining

parameters for training RNNs are listed in Table 1. The training code was based on the software library developed for training low-

rank networks in Dubreuil et al.44

In networks with constrained rank, we initialized the connectivity vectors using random Gaussian variables of unit variance and

zero-mean. The covariance between components of different connectivity vectors at the beginning of training was defined as

smrns = s0drs; (Equation 8)

where s0 = 0:8 and drs is the Kronecker delta function. These initial covariances between connectivity vectors generated collective

activity effectively that was slower than the membrane time constant, which was useful to propagate errors back in time during

learning.66 In networks where the rank was not constrained, the initial connectivity strengths Jij were drawn from a Gaussian distri-

bution with zero mean and variance g0=N
2. The input and readout vectors were initialized as random vectors with mean zero and unit

variance, randomly correlated with the connectivity vectors.

In theMWG taskwith contextual cue, networkswere initialized using solutions fromRNNs trained on theMWG task for initialization.

We implemented a two-stepmethod for training RNNs on theMWG+Ctxt task. First, only input and output weights were trained. In a

second step, we trained both inputs and output together with the recurrent weights.

In networks with constrained rank, the rank R was treated as a hyperparameter of the model. We trained networks with increasing

fixed rank, starting fromR = 1 (see Figure S1). Theminimal rank is defined as the lowest rankR for which the loss is comparable to the

loss after training a full-rank network.44

Flexible timing tasks for RNNs
We considered three flexible timing tasks, Cue-Set-Go (CSG,33), Measure-Wait-Go (MWG) and Measure-Wait-Go with context

(MWG + Ctxt). All tasks required producing a time interval tout after a brief input pulse which we denote as ‘Set’. In the three tasks,
Neuron 111, 739–753.e1–e8, March 1, 2023 e2

ll
Article
the input pulse ‘Set’ was defined as an instantaneous pulse along the vector Iset, and indicated the beginning of the output time in-

terval. The target output interval tout depended on other inputs given to the network, specific to each task and detailed below. The

target output in the loss function was designed as a linear ramp,33 that started at value � 0:5 when the ‘Set’ signal is received, and

grew until the threshold value + 0:5 (Figures 1A, 1B, and 2A). The output interval tout was defined as the time elapsed from the time of

‘Set’ until the time the output reached the threshold value.

The considered time window in the loss function (Equation 7) included the ramping epoch as well as the 300ms that preceded and

followed the ramp, where the target output was clamped to the initial and final values. For training, we used four target intervals

ranging between 800 ms and 1,550 ms, about one order of magnitude longer than the membrane time constant of single units. In

a small fraction of trials, p = 0:1, we omitted the ‘Set’ signal. In that case, the target output of the network remained at the initial

value � 0:5.

Cue-Set-Go task. The target output interval tout was indicated by the amplitude of a ‘Cue’ input presented before the ‘Set’ signal.

The ‘Cue’ input was constant for each trial and present throughout the whole trial duration, along the spatial vector Icue. In each trial,

the ‘Set’ signal was presented at a random time ranging between 400 and 800 ms after trial onset. For training, we used four different

cue amplitudes ranging from 0, corresponding to the shortest interval, to 0.25, for the longest interval.

Measure-Wait-Go task. The target output interval tout was indicated by the temporal interval between two pulse inputs along vec-

tors I1 and I2. Following a randomdelay ranging between 200 and 1,500ms after the second input, the ‘Set’ input indicated the begin-

ning of the production epoch. Four different input intervals, ranging from 800 ms to 1,550 ms were used for training.

Measure-Wait-Go with context.We added to the MWG task a tonic contextual input along Ictxt, that was present during the whole

trial duration and covaried with the average duration of the target interval. For this variant of the task, we used eight target intervals for

training. Four of them ranged between 800ms and 1,550ms. In trials with those target intervals, the amplitude of the contextual input

was uctxt = 0. The other four ranged between 1,600 ms and 3,100 ms, and the associated amplitude of the contextual input was

uctxt = 0:1.

In all tasks the first input pulse was fed to the network at a random point in time between 100 and 600 ms after the beginning of

each trial.

Performance measure in timing tasks
We summarized the performance in a timing task by the output time interval tout generated by the network in each trial. Networks

trained to produce a ramping output from� 0:5 to 0.5 do not always reach exactly the target endpoint 0.5, but stay close to this value.

To avoid inaccuracies due to this variability, we estimated the produced time interval by setting a threshold slightly lower than the

endpoint, at a value of v = 0:3. We determined the time tv elapsed between the ‘Set’ input and the threshold crossing. The produced

time interval in each trial was then estimated as tout = tv=v. In trained networks where the readout activity did not reach the threshold

(e.g., Figure S1B), the threshold crossing was estimated as the time in which the readout was the closest value to threshold.

Dimensionality of neural activity
For trained networks, we assessed dimensionality (Figure 2B) using two complementary approaches: the variance explained by the

first principal components, and the participation ratio. For the variance explained, we focused on the production epoch, common to

all tasks, and defined as the time window between the ‘Set’ pulse and the threshold crossing. We subsampled the time points for

each trial condition so that each of them contributes with the same number of time points. For the participation ratio (Figure 2B inset),

we focused on the whole trial duration, to better show the differences in dimensionality between the different tasks and connectivity

constraints.

We applied principal component analysis to the firing rates 4ðxiðtÞÞ of the recurrent units for every different trial in a given task. The

principal component decomposition quantifies the percentage of variance in the neural signal explained along orthogonal patterns of

network activity. Due to the presence of single-unit noise in the RNNs, all principal components explain a fixed fraction of variance in

the neural signal. The dimensionality can be defined in practice as the number of principal components necessary to account for a

given percentage of the neural signal. Alternatively, the dimensionality of two different RNNs can be compared by comparing the

distribution of explained variance across the first principal components as shown in Figure 2B.

Additionally, we quantified the dimensionality by means of the participation ratio,67–69 defined as:

P =

�PN
i = 1li

�2
PN

i = 1l
2
i

; (Equation 9)

where li correspond to the eigenvalues of the covariance matrix of the neural signal 4ðxiðtÞÞ,
Cij = ½4ðxiÞ4ðxjÞ�: (Equation 10)

The square brackets denote the time-average and trial-average over the time window of interest. The participation ratio is an index

that not only takes into account the dimensionality of neural trajectories, but also weighs each dimension by the fraction of signal

variance explained.
e3 Neuron 111, 739–753.e1–e8, March 1, 2023

ll
Article
Analysis of trained RNNs
For the analysis of trained networks, the dynamics of RNNs with constrained low-rank were reduced to a low-dimensional dynamical

system (Equation 4), as detailed here. For any rank-R RNN, the connectivity matrix J can be decomposed uniquely using singular

value decomposition as the sum of R rank-one terms (Equation 6) where the left (resp. right) connectivity vectors fmðrÞgr = 1.R

(resp. fnðrÞgr = 1.R) are orthogonal to each other.

The dynamics of the network (Equation 1), written in vector notation, read:

t
dx

dt
= � x +

1

N

XR
r = 1

mðrÞnðrÞT4ðxÞ+
XNin

s = 1

IðsÞusðtÞ+hðtÞ: (Equation 11)

We decompose each input vector IðsÞ into the orthogonal and parallel components to the left connectivity vectors:

IðsÞ = a
ðsÞ
t IðsÞt +

XR
r = 1

ak;r I
ðsÞ
k;r : (Equation 12)

where the constants a
ðsÞ
t and a

ðsÞ
k;r for r = 1;.;R and s = 1;.;Nin indicate the fraction of the input pattern that correspond to each

basis vector.

The vector of collective activity (that represents the total input received by each unit) xðtÞwas then expressed in the basis given by

the left connectivity vectors fmðrÞgr = 1.R and the orthogonal input vectors components I
ðsÞ
t :43,44

xðtÞ =
XR
r = 1

krðtÞmðrÞ +
XNin

s = 1

vsðtÞIðsÞt : (Equation 13)

The time-dependent variables k = fkrgr = 1.R represent the projection of the activity along the recurrent subspace spanned by the

recurrent connectivity vectors fmðrÞgr = 1.R, and v = fvsgs = 1.Nin
represent the projection of the activity along the input-driven sub-

space. Altogether, we refer to subspace spanned by the left connectivity vectors and orthogonal inputs as the embedding subspace.

The projection of the activity xðtÞ along the connectivity vector mðrÞ was in practice calculated as:

krðtÞ =
mðrÞTxðtÞ
mðrÞTmðrÞ

; (Equation 14)

and similarly for the input variables.

Inserting Equation (13) in Equation (11), and separating each term along orthogonal vectors of the embedding space, we obtain a

set of differential equations for the recurrent and input-driven variables:

t
dkr
dt

= � kr +
1

N
nðrÞT4

 XR
r
0
= 1

kr0 ðtÞmðr0 Þ +
XNin

s = 1

vsðtÞIðsÞt

!
+
XNin

s = 1

usa
ðsÞ
k;r ;

t
dvs
dt

= � vs + usa
ðsÞ
t :

(Equation 15)

This analysis effectively reduces a high-dimensional dynamical system (Equation 11,N variables) to a lower dimensional dynamical

system (Equation 15, R+Nin variables) based on the fact that the recurrent connectivity is rank R.

Note that the input-driven variables v are a temporally filtered version of the input variables u at the single unit time constant t

(Equation 15). Therefore, pulse-like inputs produce a change in the recurrent variables k at the timescale given by t. For constant

inputs uI with variable amplitude u from trial to trial, as the cue in the CSG task and context in the MWG + Ctxt task, the effect on

the dynamics is twofold. First, varying the amplitude is equivalent to shifting the location of the recurrent subspace to a parallel plane

in the embedding subspace, because the input-driven variable v is different for each trial. Secondly, the dynamics of the recurrent

variables are also affected by changes in the amplitude. They read:

t
dkr
dt

= � kr +
1

N
nðrÞT4

 XR
r = 1

kðrÞmðrÞ
i + uIi

!
+ uak;r : (Equation 16)

To study the dynamical landscape of low-dimensional activity, we define the speed q47 at a given neural state as a scalar function

q =

ffiXN
i = 1

�
dxi
dt

�2

vuut : (Equation 17)

The speed q indicates how fast trajectories evolve at a given point in state space. States k where the speed is zero correspond to

fixed points of the RNN.

In full-rank networks, it is a priori not possible to fully describe the trajectories using only a few collective variables. The speed of the

dynamics can however still be calculated as in Equation (17).
Neuron 111, 739–753.e1–e8, March 1, 2023 e4

ll
Article
Non-linear manifolds
A useful approach to analyze the dynamics of low-rank RNNs is to initialize the network at arbitrary initial conditions and visualize the

dynamics of the variables k in the recurrent subspace, and as a function of time (Figure S4). We found that before reaching a stable

state trajectories with random initial conditions in trained networks appear to converge to non-linear regions of the recurrent sub-

space, that we refer to as neural manifolds.

We therefore devised methods to identify these non-linear manifolds: one exact method, that we used in practice for rank-two net-

works, and an approximate method, used for rank R> 2. The first method consists of initializing trajectories close to all saddle points

of the dynamics. In rank-two networks trained on the CSG task, for instance, there are two saddle points, and initializing two trajec-

tories nearby the two opposite saddle points led to a closed curve to which random trajectories converge (solid red line, Figure S4A).

The manifolds obtained through this method are closely related to the concept of heteroclinic orbits.70,71

In rank-three networks trained on theMWG task, randomly initialized trajectories converged to a sphere-like manifold (Figure S4A).

Determining themanifold starting from non-trivial saddle points would require computing a large number of trajectories, to sample all

the possible trajectories on the surface of the sphere-like manifold. We instead used an approximate method for determining the

manifold. This method consisted in sampling each radial direction of the recurrent subspace, parametrized by the polar and azimuth

angles q and 4, and localizing the non-zero radial distance where the dynamics had minimal speed as defined in Equation (17) (gray

surface, Figure S4A; in practice we set a threshold for a minimum distance). Once the manifold was identified, the dynamical land-

scape on its surface was calculated by locally projecting in two dimensions the vector field on the plane perpendicular to each mani-

fold state. In rank-two networks, the approximatemethod to determine themanifold led to a curve (red dashed line, Figure S4A) which

was close to the manifold determined by the first method, in particular at the fixed points, and on the portions of the manifold where

the dynamics were slow.

To confirm that the identified manifolds correspond to slow manifolds of the dynamics, we computed the distance of randomly

initialized trajectories to the manifold. We found that the distance to the manifold decayed to zero at a timescale given by the mem-

brane time constant (Figure S4C). In contrast, projecting the recurrent variables onto a linear readout, we find that trajectories took a

much longer time to converge to a stable fixed point of the dynamics (Figure S4B).

Networks of rank R do not necessarily generate manifolds. As a counter-example, Figure S4 D-F display the dynamics of a rank-

two network, that led to only two non-trivial stable fixed point, and no saddle points. In this case, initializing trajectories randomly led

to trajectories that approach the stable fixed points along different curves. The dynamics of the projected activity along the readout in

this case converged quickly to the stable fixed points.

Mean-field low-rank networks
Dynamics in low-rank networks becomemathematically tractable in the limit of large networks when the connectivity components of

every unit are randomly drawn from amultivariate probability distribution. Here we assumed that the components of connectivity and

input vectors were drawn from a zero-mean multivariate Gaussian41–43

m
ð1Þ
i ;.;m

ðRÞ
i ;n

ð1Þ
i ;.; n

ðRÞ
i ; I

ð1Þ
i ;.; I

ðSÞ
i � Nð0;SÞ; (Equation 18)

where S is the ð2R +NinÞ3ð2R +NinÞ covariance matrix. We introduce the notation Pðm;n; IÞ = Pðmð1Þ;.;mðRÞ;nð1Þ;.;nðRÞ;
Ið1Þ;.; IðsÞÞ to refer to the joint probability distribution of vector components. Without loss of generality, we fixed the variance of

the right connectivity vectors and input vectors to unity; s2
mðrÞ = s2

IðsÞ = 1. We further assumed that the external input vectors are

orthogonal to the left connectivity vectors mðrÞ.
The overlap between two vectors x and y was defined as their empirical covariance:

bsxy =
1

N

XN
i = 1

ðxi � xÞðyi � yÞ (Equation 19)

Here x indicates the average value of the components, set to zero in mean-field networks, so that the overlap between two vectors

was equivalent to their scalar product. In the largeN limit, the overlap between vectors x and y therefore converges to the covariance

sxy between their components. Importantly, as the full covariance matrix S needs to be positive-definite, not all its elements sxy are

free parameters.

The parameters that determine the dynamics are then the covariances between left and right connectivity vectors and the covari-

ances between input and left connectivity vectors, as we detail below (see also43). For that reason, we defined the overlap matrix smn

as the matrix with elements smðrÞnðr0 Þ , for r;r
0 = 1;.;R, and the covariance vector sIn between input and right connectivity vectors as

the vector with components sInðrÞ . The overlapmatrix smn and vector sIn correspond to different subsets of elements of the full covari-

ance matrix S.

Given these definitions ; in the limit of large networksN/N, the sum overN units in Equation (15) can be replaced by the expected

value over the Gaussian distribution of connectivity and input vectors. The dynamics of the recurrent variables then read:

t
dkr
dt

= � kr +

Z
dm dn dIPðm; n; IÞnðrÞ4

 XR
r0 = 1

kr0m
ðr0 Þ +

XNin

s = 1

vsI
ðsÞ
!
: (Equation 20)
e5 Neuron 111, 739–753.e1–e8, March 1, 2023

ll
Article
The Gaussian integral in Equation (20) can be further expressed in terms of the covariances of the probability distribution as42–44

t
dkr
dt

= � kr + C40D

 XR
r0 = 1

smðr0 ÞnðrÞkr0 +
XNin

s = 1

sIðsÞnðrÞvs

!
(Equation 21)

where the state-dependent gain factor C40D was defined as

C40D =

Z
dxffiffiffiffiffiffi
2p

p exp
�� x2

�
2
	
40

0@x

ffiXR
r = 1

k2r +
XNin

s = 1

v2s

vuut 1A: (Equation 22)

The dynamics plotted in Figure S6 were generated directly from Equation (21).

For constant inputs (as in Figure 5) we define non-specific inputs as inputs that are uncorrelated with the connectivity vectors, so

that sInðrÞ = 0 for r = 1;.;R. Subspace-specific inputs are defined as inputs that are correlated with at least one of the right connec-

tivity vectors
PR

r = 1jsInðrÞ j> 0.

In Figure 5, we chose as parameters in panel A, sm1n1 = 2:6;sm2 ;n2 = 2:4, sI2 = 1:4$cue, and in panel B: snI = ð0; 0:1Þ$ cue, sI2 =

0:02$cue2.

Analysis of dynamics in mean-field low-rank networks
We first focus on fixed points of the dynamics in Equation 21 in absence of inputs. The fixed points correspond to values of kr for

which the r.h.s of Equation 21 is zero, which leads to:

kr = C40D
XR
r0 = 1

smðr0 ÞnðrÞkr0 : (Equation 23)

Since the gain C40D is implicitly a function of kr (Equation (22)), Equation (23) is a set of R non-linear equations, the solutions of which

depend only on the overlapmatrix smn. Mathematical analyses show that non-zero fixed points correspond to states along the eigen-

vector directions of the overlap matrix smnkr = lrkr , for eigenvectors whose eigenvalues are larger than one, lr > 142,43. Only the

fixed points corresponding to the largest eigenvalue are stable, while all the other non-trivial fixed points are saddle points.42,43

If the overlap matrix smn has a degenerate eigenvalue lr , with at least two orthogonal eigenvectors kr1 and kr2 (as is the case when

the overlapmatrix smn is proportional to the identity matrix), each possible linear combination of the two eigenvectors leads to a fixed

point. Consequently, the system displays a continuous set of fixed points with identical stability, symmetrically located around the

origin. In rank-two networks, such a degenerate overlapmatrix leads to a ring attractor (Figure S6B).41,43,72 All fixed points on the ring

are marginally stable, as the direction tangent to the ring corresponds to a zero eigenvalue. In rank-three networks, such symmetry in

the connectivity leads to a spherical attractor.

In finite networks, however, the overlapmatrix smn is perturbed by the finite-size sampling, so that it is never exactly proportional to

the identity matrix. Small perturbations of the overlap matrix break the continuous symmetry of the attractor, generally leading to a

pair of stable fixed points and saddle points on the former attractor, but keeping the speed of the dynamics slow along its surface. The

location of the fixed points are then given by Equation (23). If the perturbation of the symmetric overlap matrix has orthogonal eigen-

vectors, two stable fixed points and two saddle points are generated on the manifold along orthogonal directions (Figure S6C). In

contrast, if the perturbation has non-orthogonal eigenvectors, the stable fixed points and saddle points are arranged closer to

each other along the manifold (Figure S6D).

We then studied the effects of the dynamics ofmean-field low-rank networks receiving a constant input vI (Figure 5). The fixed point

equation with an external input reads:

kr = C40D
XR
r0 = 1

smðr0 ÞnðrÞkr0 + vsInr : (Equation 24)

Tonic inputs affect the dynamics of low-rank networks in two different ways. One effect is given by the second term in Equation (24),

which is additive and directed along the vector sIn. The second effect corresponds to changes in the gain C40D which decreases

monotonically toward zero when v is increased (Equation 22). Such changes correspond to the multiplicative factor in Equation (24),

and depend only on the strength of the input, but not its direction. Non-specific tonic inputs lead only to the second effect because for

them sInðrÞ = 0 for r = 1;.;R (Figures 5A and 5B), while subspace-specific inputs combine both effects (Figures 5D and 5E).

Behavioral task
Details about the behavioral task in monkeys can be found in36 and.40 Briefly, two macaque monkeys (monkey G and H) performed a

time interval reproduction task known as the ‘Ready-Set-Go’ (RSG) task36,40,46 Each trial began with animals maintaining their gaze

on a central fixation point (white circle: diameter 0.5 deg; fixation window: radius 3.5 deg) presented on a black screen. Upon suc-

cessful fixation, and after a random delay (uniform hazard; mean: 750 ms, min: 500 ms), a peripheral target (white circle: diameter 0.5

deg) was presented 10� left or right of the fixation point and stayed on throughout the trial. After another random delay (uniform
Neuron 111, 739–753.e1–e8, March 1, 2023 e6

ll
Article
hazard; mean: 500 ms, min: 250 ms), the ‘Ready’ and ‘Set’ cues (white annulus: outer diameter 2.2 deg; thickness: 0.1 deg; duration:

100 ms) were sequentially flashed around the fixation point. Following ‘Set’, the animal had to make a proactive saccade (self-initi-

ated Go) toward the peripheral target so that the output interval (tout, between ‘Set’ and ‘Go’) matched the input interval (tin, between

‘Ready’ and ‘Set’). The sample interval, ts, was sampled from one of two discrete uniform distributions, with 5 values each between

480 and 800ms for the fast context, and 800–1200ms for the slow context. The distributions alternated in short blocks of trials (min of

5 trials for G, 3 trials for H, plus a random sample from a geometric distribution with mean 3, capped at 25 trials for G, 20 trials for H),

and were indicated to the animal by the color of the fixation point (context cue; red for Fast context, blue for Slow context).

The trial was rewarded if the relative error, jtout � tinj=tin, was smaller than 0.2. If the trial was rewarded, the color of the target

turned green, and the amount of juice delivered decreased linearly with the magnitude of the error. Otherwise, the color of the target

turned red, and no juicewas delivered. The trial was aborted if the animal broke fixation prematurely before ‘Set’ or did not acquire the

target within 3 tin after ‘Set’. After a fixed inter-trial interval, the fixation point was presented again to indicate the start of a new trial. To

compensate for lower expected reward rate in the Long context due to longer duration trials (i.e. longer tin values), we set the inter-trial

intervals of the Short and Long contexts to 1,220 ms and 500 ms, respectively.

Neural data
For Figure 5, details about the neural recordings related to the RSG task (compared withMWG+Ctxt task) can be found in36 and.40 In

summary, the data were obtained from acute recordings in the dorsomedial frontal cortex (DMFC; n = 619 neurons in monkey G, n =

542 in monkey H). For the neural analysis, the context dimension was defined as follows: we first computed the trial-averaged firing

rates (bin size: 20ms, Gaussian smoothing kernel SD: 40ms) between ‘Ready’ and ‘Set’ (measurement epoch) for the Short and Long

contexts separately. Because the animal did not know beforehand which input interval ðtinÞ was presented on a given trial, we aver-

aged trials irrespective of the tin value within each context. The context dimension was defined as the unit vector connecting the state

at the time of Ready of the Long condition and the state at the time of Ready of the Short condition.We then projected the Ready state

of the Short and Long contexts onto the context dimension (Figure 6C, bottom left). We normalized the projection such that themean

is zero, and the two average contexts correspond to�0.5 and 0.5. To compute the neural speed in the measurement epoch for each

context, we averaged the Euclidean distance between consecutive states between ‘Ready’ and ‘Set’. We used standard bootstrap-

ping (resampling trials with replacement; N = 100 repeats) to generate confidence intervals. We normalized the speed such that the

maximum average speed is 1.

We performed principal component analysis (PCA) to visualize neural trajectories (Figures 5A and 5B, bottom). PC trajectories were

obtained by gathering smoothed firing rates in a 2D data matrix where each column corresponded to a neuron, and each row cor-

responded to a given time point in the measurement epoch. To obtain a common set of principal components for the two contexts

(Short and Long), we concatenated the average firing rates of the recorded neurons for the two contexts along the time dimension.

We then applied principal component analysis and projected the original data onto the top 3 PCs, which explained about 75%of total

variance. Figure 5A was obtained by projecting the trajectories onto the top three principal components. Figure 5B was obtained by

projecting the trajectories onto the first three principal components and then onto the subspace orthogonal to the estimated contex-

tual axis.

Geometrical analyses of neural trajectories
To quantify the geometrical analyses of neural trajectories in Figure 5, we applied the ‘kinematic analysis of neural trajectories’ (Ki-

NeT) framework developed in.24 In particular, we used three different geometrical assessments to quantify the three properties

observed in the data visualization: (i) low-dimensional modulation of trajectories based on context, (ii) invariance of trajectories along

a subspace of neural state-space and (iii) speed modulation of trajectories based on the context signal.

For the low-dimensional modulation of trajectories, we computed the angleQ between two states in the average trajectory of the

slow context and the average trajectory of the fast context. We take as reference trajectory the slow context, andwe parameterize the

set of successive states by the reference time tref , the time it takes to reach such state after the first pulse. Secondly, at each state

separated by a time lag t from the reference state tref , we determine which is the closest point in the fast context trajectory, and store

this context vector D
!ðtref + tÞ between those two different points. Finally, we compute the angle Q, in absolute value, between the

pairs of context vectors D
!ðtrefÞ and D

!ðtref + tÞ. If context perfectly separates neural trajectories along a one-dimensional axis during

the measurement epoch, the angle Q should be zero for all values of time lags t and reference states tref . Figure S8A shows the

average angle for all possible reference times as a function of time lag, while Figure 5A shows the mean of the average angle for

all different time lags. As a control, we compute surrogate context trajectories where we randomly shuffle the context labels of neural

trajectories, and compute the angles Q.

To test the invariance of trajectories along dimensions orthogonal to the context modulation axis (Figure 5B), we similarly calculate

the distance between the average neural trajectories in each context after removing the projection of neural trajectories along the

average context dimension, as calculated in Figure 5A.We use a different set of trials for the reference trajectory and the target neural

trajectories. As a control, we calculate the distance between trajectories after removing the projection of neural trajectories along a

random direction (average over 40 different random directions in state space). If trajectories largely overlap with each other, we

expect to find a very short distance between trajectories after removing the context axis. To avoid artifacts due to high-dimensional

noise in the recordings, and better compare with the three-dimensional PC visualization, we kept the three first principal components
e7 Neuron 111, 739–753.e1–e8, March 1, 2023

ll
Article
of neural trajectories for this analysis. Figure S8B shows the computed distance as a function of the reference time during

measurement.

Finally, we can compute the speed of neural trajectories (Figure 5C right) by comparing the time elapsed tcomp to reach the closest

point to a state in the reference trajectory, compared to how long it took to reach that state in the reference trajectory tref . If trajectories

evolve at the same speed in the reference and the comparison trajectory, tcomp and tref should be equal. If trajectories evolve twice

faster in the comparison trajectory, tcomp should be half the value of tref .

Adaptation experiment in monkeys
For the adaptation experiment (Figure 6), we collected new data from DMFC in the same animals (n = 110 neurons in H, n = 129 in

monkey G) while they underwent an uncued transition from two alternating contexts (similar to RSG) to a novel intermediate context.

The interval distribution used in the two contexts differed from the ones used in the RSG task. For monkey H, the pre-switch distri-

bution was [720;820;920] ms in the slow context, [560;640;720] ms in the fast context, and the post-switch distribution associated

with the slow context was reduced to a single interval equal to 720 ms. For monkey G, the pre-switch distribution was

[720;820;920;1,020] ms in the slow context, [480;560;640;720] ms in the fast context, and the post-switch distribution associated

with the slow context was reduced to a single interval equal to 720 ms. The uncued transition occurred randomly during the session,

on trial 714 for monkey H, and trial 603 for monkey G. We used 100 trials immediately following the uncued switch to estimate neural

data post-switch. Pre-switch data included all trials before the switch, i.e., nearly 100 trials per interval of each context. All other

experimental details were identical to the RSG experiment and can be found in Sohn et al.36 and Meirhaeghe et al.40

Inference of context signal
In order to infer the context signal from the data, we add an unsupervised predictive module (Figure 7). This module can be split into

two mechanisms. First, it estimates the average input interval to predict the input interval in the next trial, by performing a leaky esti-

mation of the input interval over trials, tpred. For that, the network requires one parameter, the update timescale t. The predicted in-

terval is updated at every trial n following:

t
½n�
pred = t

½n� 1�
pred +

1

t

�
t
½n� 1�
in � t

½n� 1�
pred

�
: (Equation 25)

The second term corresponds to the prediction error or mismatch between the input interval and the predicted interval.

Secondly, the module maps the predicted interval to an input amplitude by applying an affine transformation. This mapping re-

quires in general two parameters, the bias term s0 and the slope b, which we assumed have been learned over the course of learning.

The contextual input amplitude thus reads

s½n� = bt
½n�
pred + s0: (Equation 26)

The b and s0 parameters are set so that it corresponds to the context input values used during training (0 and 0.1 in this case) for the

mean interval in the slow and fast contexts (1,150 ms and 2,350 ms, respectively).

Linear decoders
For Figures 6C left and 7C, we used linear decoders based on cross-validated linear discriminant classification, to readout context

from neural activity during the pre-stimulus period in theMWG task with contextual cue. The direction of the classifier is estimated as:

wCtxt = ½xðt; slow ctxtÞ� � ½xðt; fast ctxtÞ� (Equation 27)

where the square brackets indicate the average across time points and trials of a given context. After the estimation of the decoder,

we projected the neural activity of an independent set of trials, different from the training set.
Neuron 111, 739–753.e1–e8, March 1, 2023 e8

	Parametric control of flexible timing through low-dimensional neural manifolds
	Introduction
	Results
	Generalization in flexible timing tasks
	Combining contextual inputs in low-rank networks enables parametric control of extrapolation
	Non-linear activity manifolds underlie contextual control of extrapolation
	Low-dimensional embedding of neural activity
	Non-linear manifolds within the embedding space
	Cue-Set-Go task
	Measure-Wait-Go task

	Controlling the geometry and dynamics on non-linear manifolds
	Generating slow manifolds through recurrent connectivity
	Controlling dynamics through tonic inputs

	Signatures of the computational mechanism in neural data
	Adaptation to changing input statistics

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Recurrent neural network dynamics
	Training
	Flexible timing tasks for RNNs
	Performance measure in timing tasks
	Dimensionality of neural activity
	Analysis of trained RNNs
	Non-linear manifolds
	Mean-field low-rank networks
	Analysis of dynamics in mean-field low-rank networks
	Behavioral task
	Neural data
	Geometrical analyses of neural trajectories
	Adaptation experiment in monkeys
	Inference of context signal
	Linear decoders

