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Abstract

Two observations about the cortex have puzzled neuroscientists for a long time. First, neural responses are highly variable.
Second, the level of excitation and inhibition received by each neuron is tightly balanced at all times. Here, we demonstrate
that both properties are necessary consequences of neural networks that represent information efficiently in their spikes.
We illustrate this insight with spiking networks that represent dynamical variables. Our approach is based on two
assumptions: We assume that information about dynamical variables can be read out linearly from neural spike trains, and
we assume that neurons only fire a spike if that improves the representation of the dynamical variables. Based on these
assumptions, we derive a network of leaky integrate-and-fire neurons that is able to implement arbitrary linear dynamical
systems. We show that the membrane voltage of the neurons is equivalent to a prediction error about a common
population-level signal. Among other things, our approach allows us to construct an integrator network of spiking neurons
that is robust against many perturbations. Most importantly, neural variability in our networks cannot be equated to noise.
Despite exhibiting the same single unit properties as widely used population code models (e.g. tuning curves, Poisson
distributed spike trains), balanced networks are orders of magnitudes more reliable. Our approach suggests that spikes do
matter when considering how the brain computes, and that the reliability of cortical representations could have been
strongly underestimated.
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Introduction

Neural systems need to integrate, store, and manipulate sensory

information before acting upon it. Various neurophysiological and

psychophysical experiments have provided examples of how these

feats are accomplished in the brain, from the integration of sensory

stimuli to decision-making [1], from the short-term storage of

information [2] to the generation of movement sequences [3]. At

the same time, it has been far more difficult to pin down the

precise mechanisms underlying these functions.

A lot of research on neural mechanisms has focused on studying

neural networks in the framework of attractor dynamics [4–6].

These models generally assume that the system’s state variables are

represented by the instantaneous firing rates of neurons. While

quite successful in reproducing some features of electrophysiolog-

ical data, these models have had a hard time reproducing the

irregular, Poisson-like statistics of cortical spike trains. A common

assumption is that the random nature of spike times is averaged

out over larger populations of neurons or longer periods of time

[7–10]. However, the biophysical sources of noise in individual

neurons are insufficient to explain such variability [11–13].

Several researchers have therefore suggested that irregular spike

timing arises as a consequence of network dynamics [8,14].

Indeed, large networks of leaky integrate-and-fire (LIF) neurons

with balanced excitation and inhibition can be ‘‘chaotic’’ and

generate asynchronous and Poisson-like firing statistics [15–18].

While these studies explain how relatively deterministic single units

can generate similar statistical properties as random spike

generators in rate models, they generally do not clarify how

particular computations can be carried out, nor do they

fundamentally answer why the brain would be operating in such

a regime.

Here we show that the properties of balanced networks can be

derived from a single efficiency principle, which in turn allows us

to design balanced networks that perform a wide variety of

computations. We start from the assumption that dynamical

variables are encoded such that they can be extracted from output

spike trains by simple synaptic integration. We then specify a loss

function that measures the system’s performance with respect to

an idealized dynamical system. We prescribe that neurons should

only fire a spike if that decreases the loss function. From these

assumptions, we derive a recurrent network of LIF neurons that is

able to implement any linear dynamical system. We show that

neurons in our network track a prediction error in their membrane

potential and only fire a spike if that prediction error exceeds a

certain value, a form of predictive coding.

Our work shows how the ideas of predictive coding with spikes,

first laid out within a Bayesian framework [19,20], can be

generalized to design spiking neural networks that implement

arbitrary linear dynamical systems. Such multivariate dynamical

systems are quite powerful and have remained a mainstay of

control-engineering for real-world systems [21]. Importantly, the
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networks maintain a tight balance between the excitatory and

inhibitory currents received by each unit, as has been reported at

several levels of cortical processing [22–26]. The spike trains are

asynchronous and irregular. However, this variability is not noise:

The neural population essentially acts as a deterministic ‘‘super-

unit’’, tracking the variable with quasi-perfect accuracy while each

individual neuron appears to behave stochastically. We illustrate

our approach and its usefulness with several biologically relevant

examples.

Results

Assumptions
Our basic model strategy is represented in Fig. 1 A. Let us

consider a linear dynamical system describing the temporal

evolution of a vector of J dynamical variables, x~(x1, . . . ,xJ ):

_xx~A xzc(t): ð1Þ

Here A is the state transition matrix, and c(t) are time-varying,

external inputs or command variables. We want to build a neural

network composed of N neurons, taking initial state x(0) and

commands c(t) as inputs, and reproducing the temporal trajectory

of x(t). Specifically, we want to be able to read an estimate

x̂x(t)&x(t) of the dynamical variable from the network’s spike

trains o(t)~(o1(t), . . . ,oN (t)). These output spike trains are given

by oi(t)~
P

k d(t{tk
i ), where tk

i is the time of the kth spike in

neuron i.

Our first assumption is that the estimate x̂x(t) is obtained by a

weighted, leaky integration of the spike trains,

_̂xx̂xx~{ld x̂xzCo(t), ð2Þ

where the J|N matrix C contains the decoding or output weights

of all neurons, and ld is the read-out’s decay rate. Whenever

neuron i fires, a d-function is added to its spike train, oi(t). The

integration of the respective delta-function contributes a decaying

exponential kernel, hd (t)~exp({ldt), weighted by Cji, to each

dynamical variable, x̂xj . This contribution can be interpreted as a

simplified postsynaptical potential (PSP). The effect of a neuron’s

spike can be summarized by its weights, Ci~(C1i, . . . ,CJi), which

we call the output kernel of neuron i. Note that these weights

correspond to the columns of the matrix C. The estimate x̂x(t) can

also be written as a weighted linear summation of the neuron’s

firing rates, x̂x(t)~
1

ld

Cr(t), if we define the time-varying firing

rates of the neurons, r(t), as

_rr~{ld rzld o(t): ð3Þ

Our second assumption is that the network minimizes the

distance between x and x̂x by optimizing over the spike times tk
i ,

and not by changing the fixed output weight matrix C. This

approach differs from the ‘‘liquid computing’’ approach in which

recurrent networks have fixed, random connectivities while the

decoding weights are learnt [27]. In our case, the decoding weights

are chosen a-priori. In order to track the temporal evolution of x̂x
as closely as possible, the network minimizes the cumulative mean-

squared error between the variable and its estimate, while limiting

the cost in spiking. Thus, it minimizes the following cost function,

E(t)~

ðt

0

du(Ex(u){x̂x(u)E2
2znEr(u)E1zmEr(u)E2

2), ð4Þ

where E:E2 denotes the Eucledian distance (or L2 norm), and E:E1

the Manhattan distance (or L1 norm), which here is simply the

sum over all firing rates, i.e., Er(u)E1~
PN

i~1 ri(u). Parameters n
and m control the cost-accuracy tradeoff. The linear cost term,

controlled by n, forces the network to perform the task with as few

spikes as possible, whereas the quadratic cost term, controlled by

m, forces the network to distribute spikes more equally among

neurons, as explained in Material and Methods.

Network dynamics
To derive the network dynamics, we assume that the firing

mechanism of the neurons performs a greedy minimization of the

cost function E(t). More specifically, neuron i fires a spike

whenever this results in a decrease of E(t), i.e., whenever

E(tDneuron i spikes)vE(tDneuron i does not spike). As ex-

plained in Material and Methods, this prescription gives rise to

the firing rule

Vi(t)wTi ð5Þ

with

Vi(t)~CT
i (x(t){x̂x(t)){mldri(t) ð6Þ

Ti~
nldzmld

2zECiE2

2
ð7Þ

Since Vi(t) is a time-varying variable, whereas Ti is a constant, we

identify the former with the i-th neuron’s membrane potential

Vi(t), and the latter with its firing threshold Ti.

In the limit m?0, the membrane potential of the i-th neuron

can be understood as the projection of the prediction error (x{x̂x)
onto the output kernel Ci. Whenever this projected prediction

error exceeds a threshold, a new spike is fired, ensuring that x̂x
precisely tracks x. For finite m, the membrane voltage measures a

penalized prediction error. If the neuron is already firing at a high

Author Summary

Two observations about the cortex have puzzled and
fascinated neuroscientists for a long time. First, neural
responses are highly variable. Second, the level of
excitation and inhibition received by each neuron is
tightly balanced at all times. Here, we demonstrate that
both properties are necessary consequences of neural
networks representing information reliably and with a
small number of spikes. To achieve such efficiency, spikes
of individual neurons must communicate prediction errors
about a common population-level signal, automatically
resulting in balanced excitation and inhibition and highly
variable neural responses. We illustrate our approach by
focusing on the implementation of linear dynamical
systems. Among other things, this allows us to construct
a network of spiking neurons that can integrate input
signals, yet is robust against many perturbations. Most
importantly, our approach shows that neural variability
cannot be equated to noise. Despite exhibiting the same
single unit properties as other widely used network
models, our balanced networks are orders of magnitudes
more reliable. Our results suggest that the precision of
cortical representations has been strongly underestimated.

Predictive Coding in Balanced Spiking Networks
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rate ri(t), only a correspondingly larger error will be able to exceed

the threshold and lead to a spike.

To connect this firing rule with the desired network dynamics,

Eqn. (1), we take the derivative of each neuron’s membrane

potential, Eqn. (6), and consider the limit of large networks (see

Material and Methods) to obtain the differential equation

_VVi~{lV Viz
XN

k~1

Wik � ok(t)zCT
i c(t)zsV g(t): ð8Þ

where {lV Vi is a leak term, Wik(t) is a weight matrix of

connectivity filters, explained below, and g(t) corresponds to a

white ‘‘background noise’’ with unit-variance. The leak-term does

not strictly follow from the derivation, but has been included for

biological realism. A similar rationale holds for the noise term

which we add to capture unavoidable sources of stochasticity in

biological neurons due to channel noise, background synaptic

input, etc. The differential equation then corresponds to a

standard LIF neuron with leak term {lV Vi, external, feedfor-

ward synaptic inputs CT
i c(t), recurrent synaptic inputs mediated

through the weight matrix Wik(t), and a firing threshold Ti, as

specified in Eqn. (7).

The weight matrix of connectivity filters is defined as

Wik(u)~Vs
ikhd (u){Vf

ikd(u) ð9Þ

and contains both ‘‘fast’’ and ‘‘slow’’ lateral connections, given by

the matrices

Vf ~CT Czmld
2 I ð10Þ

Vs~CT (Azld I)C ð11Þ

where I corresponds to the identity matrix. Accordingly, the

connectivity of the network is entirely derived from the output

weight matrix C, the desired dynamics A, and the penalty parameter

m. Note that the diagonal elements of Vf implement a reset in

membrane potential after each spike by ECiE2zmld
2. With this self-

reset, individual neurons become formally equivalent to LIF

neurons. Whereas the linear penalty, n, influences only the thresholds

of the LIF neurons, the quadratic penalty, m, influences both the

thresholds, resets, and dynamics of the individual neurons, through

its impact on the diagonal elements of the connectivity matrix.

Figure 1. Spike-based implementation of linear dynamical systems. (A) Structure of the network: the neurons receive an input c(t), scaled by

feedforward weights CT , which is internally processed through fast and slow recurrent connections, Vf and Vs, to yield firing rates that can be read
out by a linear decoder with weights C to yield estimates of the dynamical variables, x̂x(t). Connections: red, excitatory; blue, inhibitory; filled circle
endpoints, fast; empty diamond endpoints, slow. (B) Exemplary, effective postsynaptic potentials between neurons from two different networks. (C)
Sensory integrator network for ls~0 (perfect integrator). Top panel: Sensory stimulus s (blue line). Before t~1:2s, the neurons integrate a slightly
noisy version of the stimulus, c(t)~s(t)zssg(t), where g(t) is unit-variance Gaussian noise. At t~1:2s (downward pointing arrow) all inputs to the
network cease (i.e. s~0, ss~0). Middle panel: Raster plot of 140 model units for a given trial. Top 70 neurons have negative kernels (Ci~{0:1), and
bottom 70 neurons have positive kernels (Ci~0:1). Each dot represents a spike. Thin blue line: state x. Thick red line: Network estimate x̂x. Bottom
panel: Mean firing rate (over 500 presentations of identical stimuli s, but with different instantiations of the sensory noise ssg(t)) for the population of
neurons with positive kernels (magenta) or negative kernels (green). (D) Same as C but for ls~100Hz. Parameters in A–D: N~400, Ci~0:1 for
i~1 . . . 200, Ci~{0:1 for i~201 . . . 400, sV ~10{3, lV ~20Hz, ld~10Hz, m~10{6, n~10{5 , ss~0:01 (in C) and ss~0:03 (in D). Simulation time
step (Euler method) dt~0:1msec. The noise parameters, sV and ss, represent the standard deviation of the noise injected in each dt~0:1ms time step.
doi:10.1371/journal.pcbi.1003258.g001

Predictive Coding in Balanced Spiking Networks
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Slow and fast lateral connections have typically opposite effects

on postsynaptic neurons, and thereby different roles to play. The

fast connections, or off-diagonal elements of the matrix Vf ,

implement a competition among neurons with similar selectivity. If

neuron k fires, the corresponding decreases in prediction errors

({Vf
ik~{CT

i Ck) are conveyed to all other neurons i=k.

Neurons with similar kernels (CT
i Ckw0) inhibit each other, while

neurons with opposite kernels (CT
i Ckv0) excite each other. This is

schematized by the blue and red connections in Fig. 1 A.

In contrast, the slow connections, Vs, implement a cooperation

among neurons with similar selectivity. These connections predict

the future trajectory of x (term ‘‘CT AC’’) but also compensate for

the loss of information due to the decoder leak (term ‘‘ld CT C’’).

For example, when the variable x is static (A~0, c~0), these

connections maintain persistent activity in the network, preventing

the variable x̂x from decaying back to zero (see below). Note that

when the internal dynamics of x change on a slower time scale than

the decoder (i.e. DAij D%ld ), and if we neglect the cost term m, slow

and fast connections have the same profile, (i.e.
1

ld

Vs~Vf ~CT C),

but opposite signs.

The combined effect of fast and slow connections yields the

effective PSPs in our network, PSPik(t)~Wik � hV (t), with

hV (u)~H(u)exp({lV u), which can be obtained by integrating

Eqn. (8) for a single spike. Two example PSPs are shown in Fig. 1

B. We note that our network model may contain neurons that

both inhibit and excite different targets, depending on the kernel

sign, a violation of Dale’s law. This problem can be addressed by

creating separate cost functions for excitatory and inhibitory

neurons, as laid out in full detail in Text S1. Here, we simply

interpret the resulting connectivity as the effective or functional

connectivity of a network, akin to the types of connectivities arising

in generalized linear models (GLMs) of neural networks [28].

Scaling and physical units
We now briefly consider how the above equations can be

mapped onto realistic physical units. This consideration has the

additional benefit that it clarifies how the network parameters

scale with the number of neurons N (see also Material and

Methods). In order to express the network dynamics in

biophysically relevant units, the membrane potential Vi, Eqn.

(6), and threshold Ti, Eqn. (7), have to be rescaled accordingly. We

can obtain proper membrane potential units in mV if we apply the

simple transformations V ’i?aiVi=Tizbi and Ti
’?aiTi=Tizbi.

In turn, we obtain the modified equations

Vi
’(t)~

ai

Ti

½CT
i (x(t){x̂x(t)){mldri(t)�zbi, ð12Þ

Ti
’~aizbi ð13Þ

and the modified dynamics

_VVi
’~{lV Vi

’zlV biz
XN

k~1

Wik
’ � ok(t)zCi

’T c(t)zsV
’g(t) ð14Þ

with a resting potential of V ’i,rest~bi. Note that both the

feedforward and recurrent connectivities change in this case.

Specifically, we obtain Ci
0~aiCi=Ti and Wik

’(u)~aiWik(u)=Ti,

and a similar expression for the noise, sV
’. In turn, we can freely

choose ai and bi to find realistic units. For instance, we can fix the

threshold at Ti
’~aizbi~{30mV, and the reset potential at

V ’i,reset~Ti
’{aiV

f
ii=Ti~{80mV, which uniquely determines

both ai and bi for each neuron. In the absence of linear costs

(n~0), the reset potential becomes simply V ’i,reset~bi{ai.

When we increase the network size N while keeping the average

firing rates and the read-out constant, we need to change the

decoding kernels. Specifically, the decoding kernels need to scale

with Ci*1=N . If we assume that the relative importance of the

cost terms is held fixed for each neuron, then the original threshold

Ti scales with 1=N2, and the original connectivities Wik(u)

similarly scale with 1=N2, compare Eqns. (9–11). As a conse-

quence, the rescaled synaptic weights, W ’ik(u)~aWik(u)=Ti do

not scale in size when the network becomes larger or smaller.

When considering the summation over the different input spike

trains, we therefore see that all synaptic inputs into the network

scale with N: the feedforward inputs, the slow recurrent input, and

the fast recurrent inputs (the latter two are both contained in the

matrix W ’ik). The equal scaling of all inputs maintains the detailed

balance of excitation and inhibition in the network.

An instructive case is given if we neglect the cost terms for a

moment (n~m~0) in which case we obtain the following (rescaled)

feedforward weights and connectivities:

Ci
’~

2aiCi

ECiE2
ð15Þ

W ’ik(u)~
2aiC

T
i (Azld I)Ck

ECiE2
hd (u){

2aiC
T
i Ck

ECiE2
d(u): ð16Þ

Accordingly, the strength of the lateral connections is independent

of the kernel norm. In contrast, the strength of the feed-forward

connections scales with the inverse of the kernel norm. Since

smaller kernels provide a more precise representation, the

precision of the rescaled network, and its firing rates, are

controlled entirely by its input gain.

Sensory integration and sensory tracking
Once the dynamics and the decoders are chosen, Eqn. (1) and

Eqn. (2), the only free parameters of the model are lV , n, m, and sV .

The model presented previously can in principle implement any

linear dynamical system. We will first illustrate the approach with the

simplest linear dynamical system possible, a leaky integration of noisy

sensory inputs c(t)~s(t)zssg(t) where s(t) can be interpreted as

the sensory stimulus while ssg(t) represents shared sensory noise.

The corresponding dynamical system, Eqn. (1), is then given by

_xx~{lsxzc(t): ð17Þ

The integrated sensory signal x is a scalar (J~1) and ls§0
represents the leak of the sensory integrator.

For a completely homogeneous network, in which the output

kernels Ci of all neurons are the same, we can solve the equations

analytically which is shown in Text S1. A slightly more interesting

case is shown in Fig. 1 C,D, which illustrate network dynamics for

two different choices of ls. Here we used N~400 neurons, half of

them with positive kernels (Ci~0:1), and the other half with

negative kernels (Ci~{0:1). Neurons with positive kernels fire

when variable x is positive or increases, while neurons with

negative kernels fire when the variable is negative or decreases.

Moreover, we set the cost terms m and n at small values, ensuring

that our objective function E(t) is dominated by the estimation

Predictive Coding in Balanced Spiking Networks

PLOS Computational Biology | www.ploscompbiol.org 4 November 2013 | Volume 9 | Issue 11 | e1003258



error, compare Eqn. (4). As a consequence, the estimate x̂x closely

tracks the true variable x. Albeit small, the cost terms are crucial

for generating biologically realistic spike trains. Without them, a

single neuron may for example fire at extremely high rates while

all others stay completely silent. The regularizing influence of the

cost terms is described in more detail in Text S1.

For ls~0, the network is a perfect integrator of a noisy sensory

signal. The neural activities resemble the firing rates of LIP

neurons that integrate sensory information during a slow motion-

discrimination task [1]. In the absence of sensory stimulation, the

network sustains a constant firing rate (Fig. 1 C after t~1:2sec),

similar to line attractor networks [29–31]. In fact, as long as the

dynamics of the system are slower than the decoder (lsvld ), the

instantaneous firing rates approximate a (leaky) integration of the

sensory signals. On the other hand, if the system varies faster than

the decoder (i.e. lswld ), then neural firing rates track the sensory

signal, and model neurons have transient responses at the start or

end of sensory stimulation, followed by a decay to a lower

sustained rate (Fig. 1 D). These responses are similar to the

adaptive and transient responses observed in most sensory areas.

The overall effect of the lateral connections depends on the

relative time scales of the variable x and the decoder x̂x (Fig. 1 B).

For neurons with similar selectivity (or equal read-out kernels,

Ci~C), the postsynaptic potentials are given by (assuming m~0),

PSPik(u)~C2½(ld{ls)hV � hd (u){hV (u)�: ð18Þ

For neurons with opposite read-out kernels, we obtain just a sign

reversal. When (0ƒlsvld ), the interplay of fast inhibition with

slower excitation results in a bi-phasic interaction between neurons

of similar selectivity (Fig. 1 B, left). Moreover, the network activity

persists after the disappearance of the stimulus. In the extreme

case of the perfect integrator (ls~0), the temporal integral of this

PSP is exactly zero, which explains how the mean network activity

can remain perfectly stable (neither increase nor decrease) in the

absence of any sensory stimulation. In contrast, lateral interactions

are entirely inhibitory when the network tracks the stimulus on a

faster time scale than the decoder (i.e. 0vldvls, Fig. 1 B, right).

The dominance of lateral inhibition explains the transient nature

of the network responses and the absence of persistent activity.

Other response properties of the model units are illustrated in

Fig. 2. We define the tuning curves of the neurons as the mean

spike count in response to a 1 s presentation of a constant stimulus

s. Firing rates monotonically increase (for positive kernels) or

decrease (for negative kernels) as a function of s and are rectified at

zero, resulting in rectified linear tuning curves (Fig. 2 A). Since all

neurons have identical kernels (i.e. all Ci~0:1 or {0:1), neurons

with the same kernel signs have identical tuning curves. However,

such a homogeneous network is rather implausible since it assumes

all-to-all lateral connectivity with identical weights, so that all units

in the network receive exactly the same synaptic input and have

the same membrane potential.

To move to more realistic and heterogeneous networks, we can

choose randomized decoding kernels Ci. Even then, however, the

connectivity matrix Wik is strongly constrained. For negligible costs,

m~0, the weight matrix has rank one (since
1

ld

Vs
ik*{Vf

ik~CiCk).

A lot more flexibility can be introduced in the network connections

by simultaneously tracking 1vJvN variables with identical

dynamics and identical control c(t), rather than a single scalar

variable. Thus the variable x and the kernels Ci have J dimensions

and A~{ls I. We then define the actual network output, m̂mx, as

the mean of those J variables (simply obtained by summing all

network outputs). The network estimation error, Ex{x̂xE, is an

upper bound on Dx{m̂mxD, ensuring similar performance as before

(see Fig. 3). Importantly, we can choose the output kernels Ci to fit

connectivity constraints imposed by biology. For instance, the

output kernels can be made random and sparse (i.e. with many zero

elements), resulting in random and sparse (but symmetrical)

connection matrices. In such a network, the tuning curves are still

rectified-linear, but have different gains for different neurons (Fig. 2 B).

Output spike trains of both homogeneous and inhomogeneous

networks are asynchronous and highly variable from trial to trial

(see raster plots in Fig. 1 C,D and Fig. 2). Fano factors (measured

during periods of constant firing rates), CV1, and CV2, were all

found to be narrowly distributed around one. The interspike

interval (ISI) distribution was close to exponential (Fig. 2 C).

Moreover, noise correlations between neurons are extremely small

and do not exceed 0.001 (noise correlations are defined as the

cross-correlation coefficient of spike count in a time window of 1 s

in response to a constant variable x). Finally, analysis of auto and

Figure 2. Response properties of the sensory integrator. (A) Tuning curves to variable x for the network with uniform kernels. Plain line:
Ci~0:1. Dashed line: Ci~{0:1. Parameters are as in Fig. 1 C. Tuning curves were obtained by providing a noiseless (ss~0) sensory input s of various
strength during the first 250 ms, then measuring sustained firing in the absence of inputs during the next 1000 ms. The response shown is averaged
over 500 trials. (B) Example tuning curves for the inhomogeneous network (Plain lines: all components of Ci positive. Dashed lines: all elements of Ci

negative). Parameters are N~400, J~30, Cij*B(1,0:7)U(0:06,0:1) for i~1 . . . 200, Cij*B(1,0:7)U({0:1,{0:06) for i~1 . . . 200, U(a,b) is a uniform

distribution within ½a,b�, B(1,p) is a binomial distribution, sV ~0, lV ~20Hz, ld~10Hz, m~10{6 , n~10{5 , ss = 0, based on a simulation with the Euler
method and time step dt~0:1msec. (C) Inter-spike interval distribution for a typical unit (inhomogeneous network with ls~0). ISI distribution is
measured during ‘‘persistent activity’’ in the absence of sensory stimulation (firing rate is constant at 5 Hz). Red lines show the prediction from a
Poisson process with the same rate. (D) Mean cross-correlogram for a pair of units with the same kernel sign (inhomogeneous network). Probability of
a spike in unit 1 is plotted at different delays from a spike in unit 2.
doi:10.1371/journal.pcbi.1003258.g002

Predictive Coding in Balanced Spiking Networks
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cross-correlograms reveals the presence of high-frequency oscilla-

tions at the level of the population (Fig. 2 D). These high frequency

oscillations are not visible on Fig. 2 C since the size of the bin

(5 ms) is larger than the period of the oscillations (1 ms). Note that

if we add a realistic amount of jitter noise (w1ms) to spike times,

these high frequency oscillations disappear without affecting the

response properties of the network.

In contrast to the output spike trains, the membrane potentials

of different neurons are highly correlated, since neurons with

similar kernels (CT
i Cjw0) receive highly correlated feed-forward

and lateral inputs (Fig. 4 A,B). In the homogeneous networks

without quadratic cost (m~0), these inputs are even identical,

resulting in membrane potentials that only differ by the

background noise (Fig. 4 A). Despite these strong correlations of

the membrane potentials, the neurons fire rarely and asynchro-

nously. Fig. 4 C illustrates why this is the case: let us consider a

population of neurons with identical output kernels Ci~0:1,

maintaining an estimate of a constant positive x (top panel, blue

line). Due to the decoder leak ld , the network needs to fire

periodically in order to maintain its estimate x̂x at the level of x (top

panel, red line). However, the exact order at which the different

neurons fire does not matter, since they all contribute equally. The

period between two spikes can be called an ‘‘integration cycle’’.

Within one integration cycle, the prediction errors and thus the

membrane potentials, Vi~Ci(x{x̂x), rise for all neurons (bottom

panel, red line). Since all kernels are identical, however, all

neurons compute the same prediction error and will reach their

firing thresholds at approximately the same time. Only chance (in

this case, the background noise sV ) will decide which neuron

reaches threshold first. This first neuron is the only one firing in

this integration cycle (middle panel, colored bars) since it

immediately inhibits itself and all other neurons. This starts a

new integration cycle. As a result of this mechanism, while the

population of neurons fire at regular intervals (hence the high

frequency oscillations in Fig. 2 D) only one neuron fires in each

cycle, and its identity is essentially random. The resulting

variability has no impact on the network estimate, since all spike

orders give the same output x̂x. In the presence of a quadratic cost

(mw0), neurons that did not fire recently have a higher probability

of reaching threshold first (their membrane potential is not

penalized by {mldri). When the cost term is large compared to

the background noise (i.e. when ld
2mwsV , which is not the case

in the example provided here), this tends to regularize the output

spike trains and leads to CV s smaller than 1. However, this

regularization is not observed in inhomogeneous networks.

The inhomogeneous network behaves similarly, except that all

neurons do not receive the same inputs and do not reach threshold

at the same time (Fig. 4 B). In this case, we can even dispense of

the background noise (i.e. sV ~0) since fluctuations due to past

network activity will result in a different neuron reaching threshold

first in each cycle. The individual ups and downs caused by the

synaptic inputs from other neurons will nonetheless appear like

random noise when observing a single neuron (Fig. 4 B,D).

Furthermore, even in this deterministic regime, the spike trains

exhibit Poisson statistics. In fact, changing the timing of a single

spike results in a total reordering of later spikes, suggesting that the

network is chaotic (as illustrated in Fig. 3).

2D arm controller
We now apply this approach to the tracking of a 2D point-mass

arm based on an efferent motor command. The dynamical

variable has J~4 dimensions corresponding to the arm positions

q~(qx,qy) and the arm velocities v~(vx,vy). The arm dynamics

are determined by elementary physics, so that

Figure 3. Response of the inhomogeneous integrator network. Same format as in Fig. 1 C. The network is entirely deterministic (sV ~0). Top
panel: sensory input (blue line). Before t~1:6s, the sensory signal s is corrupted by sensory noise with variance ss . Sensory input and sensory noise
stop after t~1:6s, at which point the network is entirely driven by its own internal and deterministic dynamics. The network is simulated twice using
exactly the same initial conditions and input c(t). Up to t~1:65s, the two simulations give exactly the same spike train as represented by the dots
(deterministic network with identical inputs). At t~1:65s, a small perturbation is introduced in the second simulation (a single spike is delayed by
1 ms). The subsequent spike trains are completely re-shuffled by the network dynamics (First simulation: dots. Second simulation: circles). Simulation
parameters are N~400, J~30, Cij*B(1,0:7)U(0:06,0:1) for i~1 . . . 200, Cij*B(1,0:7)U({0:1,{0:06) for i~1 . . . 200, U(a,b) is a uniform

distribution within ½a,b�, B(1,p) is a binomial distribution, sV ~0, lV ~20Hz, ld~10Hz, m~10{6 , n~10{5 , ss~0:01, based on a simulation with the
Euler method and time step dt~0:1msec. Bottom panel shows the mean instantaneous firing rate for the population of neurons with positive kernels
(magenta) and negative kernels (green) measured in an exponential time window with width 100 ms.
doi:10.1371/journal.pcbi.1003258.g003
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_qq~v ð19Þ

_vv~{lf vzc(t) ð20Þ

where c(t)~(cx(t),cy(t)) is a 2D (control) force exerted onto the

arm, and {lf v captures possible friction forces.

To simulate this system, we studied an arm moving from a

central position towards different equidistant targets. This

reaching out arm movement was obtained by ‘‘push-pull’’ control

forces providing strong acceleration at the beginning of the

movement, and fast deceleration at the end of the movement

(Fig. 5 A, top panel). As previously, the network predicts the

trajectory of the arm perfectly based on the forces exerted on it

(Fig. 5 A, bottom panel; we again use relatively small cost terms m
and n). The resulting spike trains are asynchronous, decorrelated,

and Poisson-like, with unpredictable spike times (rasters in Fig. 5

A; Fano factor and CVs close to 1). The membrane potential of

neurons with similar kernels are correlated while output spike

trains are asynchronous and decorrelated. The effective postsyn-

aptic potentials have biphasic shapes reflecting the integrative

nature of the network for small friction forces (lf %1).

To measure tuning curves in this ‘‘center out’’ reaching task, we

varied the speed and direction of the movement, as well as the

starting position of the arm. Neural activity was defined as the

mean spike count measured during movement. As illustrated in

Fig. 5 B,C,D, instantaneous firing rates are modulated by arm

position, velocity and force. We found that tuning curves to arm

position are rectified linear, with varying thresholds and slopes (as

in Fig. 2 B). Such linear-rectified gain curves with posture have

been reported in premotor and motor cortical areas [32,33]. In

contrast, tuning curves to circular symmetric variables such as

movement direction or arm angle are bell-shaped (Fig. 5 B,C,D).

In addition, direction tuning curves are gain modulated by arm

speed, such that responses are stronger for larger speed when the

arm moves in the preferred direction, and weaker when the arm

moves in the anti-preferred direction (Fig. 5 B). Finally, arm

positions have both an additive and a gain modulating effect on

the tuning curve, and these modulation can be monotonically

increasing (Fig. 5 C) or decreasing (Fig. 5 D) with arm position.

These observations have a simple geometric explanation,

schematized in Fig. 5 E for the velocity space, (vx,vy). A neuron

is maximally active ( _VVi~CT
i ( _xx{ _̂xx̂xx)&0; assuming m~0) when its

kernel (Ci, thick vector in Fig. 5 E) points in the direction of the

derivative of the prediction error, _xx{ _̂xx̂xx&A x̂xzczld x̂x. Since the

decoder leak is faster than the arm dynamics, this error mostly

points in the direction opposite to the leak, ld x̂x (thin vectors).

Within the velocity space, the kernel thus defines the neuron’s

preferred movement direction (dashed line and filled circles). The

neurons is less often recruited when the arm moves away from the

kernel’s direction (empty circles), resulting in a bell-shaped tuning

curve. Finally, since the vector ld x gets larger at larger speeds,

more spikes are required to track the arm state resulting in a linear

tuning to movement speed. The same reasoning applies for the

position space (qx,qy). These predictions are independent of the

choice of kernels and are in direct agreement with experimental

data from the pre-motor and motor cortices [32,33].

Differentation and oscillation with heterogeneous networks
We chose to present a sensory integrator and an arm controller

for their biological relevance and simplicity. However, any linear

dynamical system can be implemented within our framework, and

our networks are not limited to performing integration. To

illustrate the generality of the approach, we applied the framework

to two additional examples. In Fig. 6 A, we simulated a ‘‘leaky

differentiator’’ with a transition matrix A~½{400,{800; 50,0�.
This system of differential equations is designed so that the

variable x1(t) approximates a temporal derivative of a command

signal c1(t). The command signal, c1(t), is shown in the top panel

of Fig. 6 A; the input signal c2(t) is zero. We used N~100 neurons

with kernels drawn from a normal distribution, and then

normalized to a constant norm of 0:03. As in the other examples,

the firing statistics are close to Poisson, with a CV2&0:82.

In Fig. 6 B, we simulated a network that implements a damped

harmonic oscillator. Here we chose a transition matrix

Figure 4. Membrane potential profiles for the integrator networks. (A) Homogeneous network. Example profiles for two neurons with
identical kernels. Vertical line represents a spike in the red unit, plain horizontal line represents the firing threshold, and dashed horizontal line the
reset potential. Values are interpreted in mV after rescaling the membrane potential (a~{25mV and b~{55mV). These profiles are taken from the
simulation shown in Fig. 1 C. (B) Inhomogeneous network. Membrane potential profiles for two neurons with strongly correlated kernels (i.e. large

CT
i Cj ) and no synaptic background noise (sV ~0). These profiles are taken from the simulation shown in Fig. 3. (C) Schema explaining the distribution

of spikes across neurons in a homogeneous network (see text). (D) Same two units as in (B) shown for a longer period of time.
doi:10.1371/journal.pcbi.1003258.g004
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A~½{4:8,{22:4; 40,0�. The oscillator is initially kicked out of its

resting state through a force given by the command signal c1(t), as

plotted on the top panel. The input signal c2(t) is zero. We used

N~100 neurons with kernels drawn from a normal distribution,

and normalized to a constant norm of 0:03. The network tracks

the position x1(t) and speed x2(t) of the damped oscillator until posi-

tion and speed are too close to zero to allow a reliable approxi-

mation. The firing statistics of single units are again Poisson-like, with

CV2&1:1.

Note that in these two examples, the dynamics implemented by

the network are faster than the decoder’s time scale 1=ld~100ms.

Accordingly, our networks can track changes faster than the time

scale of the decoder. This speed-independence relies on a simple

scheme: Spikes from neurons with positive kernel weight, Cij ,

represent instantaneous increases in xj , whereas spikes from

neurons with negative kernel weight Cij represent instantaneous

decreases in xj . Even if the inter-spike interval is much shorter that

1=ld , the decoder can therefore still provide an efficient staircase

approximation for xj(t). In conclusion, the temporal accuracy of

these networks is not limited by ld , but by C.

Discussion

We have proposed a method for embedding any linear

dynamical system in a recurrent network of LIF neurons. The

network connectivity and spike generation are entirely derived

from a single loss function which seeks to optimally place spikes so

that the relevant information can be extracted by postsynaptic

integration. Accordingly, the network structure follows exclusively

from functional principles, and no extensive parameter searches

are required. This approach implies in particular that neurons

share information in a smart way, yet fire almost randomly at the

level of the single cell.

We also included a cost term in the error function, Eqn. (4). Due

to this cost term, the network finds a solution minimizing the

metabolic cost associated with high spike counts. Both linear and

quadratic cost terms regularize the firing rate and make the

network robust against artefacts such as high firing rates that may

be caused by the greedy spiking mechanism (see Text S1). Further

generalizations or modifications of these predictive coding

principles may eventually help to explain other biophysical or

electrophysiological phenomena of the brain.

Relation to other approaches
Our current work both generalizes and modifies our earlier

work in which we applied the principle of predictive coding with

spikes to a Bayesian inference problem [20]. This model tracked a

log-probability distribution and implemented a non-linear drift-

diffusion model, rather than a generic linear differential equation.

In addition, we here introduced cost terms which provided us with

greater flexibility in regulating and controlling the dynamics of the

spiking networks.

Figure 5. Spike-based implementation of a 2-D arm forward model. (A) Network response for a reaching arm movement. Top panel: Control
variables (force exerted on the arm in x and y axis). Bottom panel: raster plot for a sub-population of 140 neurons. Thin lines: Real arm state
x~(qx,qy,vx,vy); Thick lines: network estimate x̂x~(q̂qx,q̂qy,v̂vx,v̂vy). Thin and thick lines are perfectly superposed. Blue and green: positions qx and qy . Red
and cyan: velocities vx and vy . (B) Tuning curve to direction for an example unit. Blue, Red and Magenta correspond respectively to arm speed of 0.2,
0.5, and 1 m/s, as represented by the inlaid schemata. (C) Tuning curves to direction (same neuron as in B) tested at 3 different arm starting position.
Blue, Red and magenta correspond to arm position ½0,{0:5�, ½0,0:5� and ½0,1:5�. (D) Direction tuning at 3 different arm positions for another example
unit (same legend as C). (E) Schema explaining the tuning properties of model units. Dots in panels B and E represents the same arm state.

Parameters in A–D: N~400, J~4, Cij*N(0,1), normalization constraint
P

i C
2
ij~0:0009, lf ~0:1, sV ~10{5 , ss~0, lV ~20Hz, ld~10Hz, m~10{6 ,

n~10{5 , dt~0:1ms.
doi:10.1371/journal.pcbi.1003258.g005
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A quite general framework for designing networks of neurons

that implement arbitrary dynamical systems has previously been

described in the ‘‘neuro-engineering’’ approach [30]. This

approach relies on linearly combining the non-linear rate transfer

function of LIF neurons. In its essence, the method is therefore

based on firing rates, and makes few predictions about the spiking

statistics of cortical neurons. A recently developed model, the

‘‘ReFiRe network’’ [34] provides a recipe for designing networks

maintaining stable memories, and shares some of the features of

our networks. Just as the neuro-engineering framework, however,

its design is essentially based on firing rates.

Here we have designed a network based on the principle of

predictive coding with spikes. Even though indistinguishable from

older models on the single cell level, our work is different in several

important respects. A first major difference of our approach is that

it predicts a detailed balance between excitation and inhibition,

rather than imposing it upfront. This balance follows from the

attempt of the network to minimize the loss function, Eqn. (4),

which in turn implies that the membrane potential of neurons

represents a prediction error and that neurons spike only when this

prediction error exceeds a certain value—a form of predictive

coding. Any increase in excitation causes an increase in prediction

error, immediately compensated by an increase in inhibition to

bring down the prediction error (and vice versa). This interplay

causes a tight temporal correlation between excitation and

inhibition at the time scale of the stimulus but also at a much

finer time scale, within a single ISI (Fig. 7 A). Note that this

balance only holds when considering all inputs. In the leaky

integrator, for instance, all lateral connections are inhibitory (Fig. 1

B, right panel). However, the network is still globally balanced when

taking into account the contribution from the feedforward connec-

tions. Such a tight balance between excitation and inhibition has

been observed at several levels of cortical processing [22–26].

Accordingly, spike trains in our network usually resemble

independent Poisson processes, with rates tuned to the variable x.

We note that spike trains can also be more regular if the networks

are smaller and the noise is not too large. A simple example is a

network composed of a single neuron (N~1), for which we

provide an analytical solution in Text S1. Such a LIF neuron

responds to a constant positive input with a perfectly regular spike

train. In practice, regular firing is observed when only a few

neurons are simultaneously co-active (e.g. for networks composed

of less than 100 neurons). Firing becomes irregular when many

neurons are co-active (e.g. for networks of several hundreds of

neurons or more). Increasing synaptic background noise tends to

make firing less regular, while increasing the quadratic metabolic

costs makes firing more regular. However, for large networks,

these effects are small and remain within the range of Fano-factors

or CVs observed in cortex. The amount of regularity has no

impact on the network performance.

Despite the variability observed in large networks, one cannot

replace or approximate one of our spiking networks with an

equivalent rate model composed of Poisson spike generators, a

second major difference to other network models. This point is

illustrated in Fig. 7 B,C for the homogeneous integrator model,

where we removed the fast connections in the network and

replaced the integrate-and-fire dynamics by N independent

Poisson processes (see Material and Methods). The performance

of the resulting Poisson generator network is strongly degraded,

even though it has the same instantaneous firing rates and slow

connections as the LIF network.

We can quantify the benefit of using a deterministic firing rule

compared to stochastic rate units by considering how the

estimation error scales with the network size. The integrator

model tracks the dynamical variable x with a precision defined by

the size of a kernel Ci. Estimation errors larger than Ci=2 are

Figure 6. Other example networks, same format as Fig. 3. (A) Neural implementation of a ‘‘leaky differentiator’’. The network tracks two
dynamical variables with a state transition matrix A~½{400,{800; 50,0�. Top panel: command variable c1(t). (Note that c2(t) is zero.) Bottom panel:
network response and estimates. Thick red and purple lines: Network estimates x̂x1(t) and x̂x2(t). Thin blue lines: Variables x1(t) and x2(t). The variables
and network estimates perfectly track each other, making the thin blue lines hard to see. Overlaid dots represent the corresponding output spike
trains, with a different color for each neuron. (B) Neural implementation of a damped harmonic oscillator. The network tracks two dynamical variables
with A~½{4:8,{22:4; 40,0�. Format as in A. Simulation parameters for A and B: N~100 2-D vectors Ci were generated by drawing each coordinate
from a normal distribution and normalizing the vectors to a constant norm, so that ECEi~0:03. Other parameters were sV ~10{3 , dt~0:1ms,
lV ~20Hz, ld~10Hz, m~10{6 , n~0. Dots represent spike trains, one line per neuron, shown in black to improve visibility.
doi:10.1371/journal.pcbi.1003258.g006
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immediately corrected by a spike. As the network size N increases,

maintaining the same firing rates in single units requires that the

kernels, and thus, the estimation error, scale with 1=N (see

Material and Methods). In contrast, the error made when

averaging over a population of independent Poisson neurons

diminishes with 1=
ffiffiffiffiffi
N
p

. Intuitively, the predictive coding network

achieves higher reliability because its neurons communicate

shared information with each other via the fast synapses, whereas

the independent Poisson neurons do not. The communicated

information actively anti-correlates all spike trains, which, for

networks composed of more than a dozen neurons, will be

indistinguishable from the active decorrelation of pairwise spike

trains that has recently been observed in vivo [35]. Therefore, the

precision of the neural code cannot be interpolated from single-cell

recordings in our network, and combining spike trains recorded in

different trials results in a strong degradation of the estimate (Fig. 7 D).

A third major difference between our network model and those

proposed previously concerns the scaling of the network connec-

tivity. Most previous approaches assumed sparse networks and

weak connectivity in which the probability of connections (and/or

connection strengths) scales as 1=N or 1=
ffiffiffiffiffi
N
p

. This weak

connectivity leads to uncorrelated excitation and inhibition and

thus neurons driven by random fluctuations in their input [15,36].

For comparison, the connectivity in our network is finite (once the

membrane have been rescaled by the kernel norm to occupy a

fixed range of voltage). Our approach is therefore reminiscent of a

recent model with finite connection probability [17]. As in our

model, stronger connectivity leads to correlation between excita-

tion and inhibition but uncorrelated spike trains. The strong

network connectivity in turn swamps the membrane potential of

each neuron with currents. The excitatory and inhibitory currents

driving the neural response grow linearly with the number of

neurons, N , and are thus much larger than the membrane

potential (prediction error) Vi , which is bounded by the (fixed)

threshold. In turn, the leak currents {lV V become negligible in

large networks. For example, the integrator network in Fig. 1 C

has N~400 neurons and can maintain information for 100 s (it

takes 100 seconds for the network activity to decay by half) despite

the fact that the membrane time constant (1=lV ) is only 0.1 s.

Thus, according to our model, spiking neurons can fire persistently

and thereby maintain information because their leaks are dwarfed

by the currents they receive from recurrent connections.

Network limitations
There are several non-trivial circumstances under which our

network models may fail. First, we notice that the spiking rule that

Figure 7. Distinguishing spiking codes from Poisson rate codes. (A) Example profile of total excitatory current (red) and inhibitory current
(blue) in a single unit on two different time scales (time scale of the stimulus s and time scale of an inter-spike interval). Currents were convolved with
a 2 ms exponential time window. (B) Response of the homogeneous integrator network (same parameters as in Fig. 1 C). The input c is shown in the
top panel. (C) Spike trains (dots), true state x (blue), and estimate x̂x (red) for a rate model with the same slow connections and input as in B. Fast
connections were removed and the greedy spiking rule was replaced by a random draw from an equivalent instantaneous firing rate. Four different
trials are shown (four thick red lines) to illustrate the variability in the rate model’s estimate. (D) Spike trains (dots), state x (blue) and estimate x̂x (red)

when each spike train is recorded from a different trial of the network shown in (B). (E) Estimation error,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½(x{x̂x)2�

q
, as a function of the number of

recorded neurons, K , for a spiking network with N~400 neurons. For the blue line, all K neurons were recorded simultaneously, for the red line,
each neuron is recorded in a different trial (red). The red line follows perfectly the prediction for K independent Poisson processes. Data are from an
homogeneous integrator network with sV ~10{3 and ss~0, other parameters as in Fig. 1 C. (F) Effective connectivity filters of two randomly chosen
pairs in the network, as measured through a GLM analysis. (G) Consequence of suddenly inactivating half of the active neurons for the network shown in
B. Blue bar: unit 1 to 100 inactivated (membrane potential set to 0). Orange bar: units 300 to 400 inactivated. Other parameters as in Fig. 2 B–D,F.
doi:10.1371/journal.pcbi.1003258.g007
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we derive amounts to a greedy optimization of the loss function.

Future costs are not taken into account. This may cause problems

in real neurons which can only communicate with time delays, but

it may also cause problems when neurons have opposing kernels.

For instance, two neurons with opposing kernels may become

engaged in rapidly firing volleys of spikes, each trying in fast

succession to decrease the error introduced by the previous spike

from the other neuron (see Text S1), a problem that we call the

‘‘ping-pong’’ effect. This effect can become a serious problem if

the network dynamics is corrupted by strongly correlated noise,

which may occur in the presence of synaptic failures. However, it

is usually possible to diminish or eliminate this effect by increasing

the spike count cost (see Text S1).

Second, the leak term we introduced in the voltage equation

provides only an approximation to the actual voltage equation (see

Material and Methods). Specifically, the term we approximate is N
times smaller than the other terms in the membrane potential

dynamics. In practice, we can therefore always increase the network

size to reach an acceptable level of performance. For a given network

size, however, the approximation may break down when A becomes

too large or when both c and x are too small (of order 1=N).

Third, the speed at which the linear dynamical system can

evolve will be limited from a practical point of view, even in the

limit of large networks. While the time scale of the decoder, 1=ld

does not put any strict limitations on the speed (since spikes

corresponding to positive and negative kernels can always provide

an efficient stair-case approximation to any time-varying function),

faster dynamics can only be obtained if the linear dynamical system

compensates for the decoder filtering. This compensation or inversion

process is a case of deconvolution, and bound to be severely limited

in practice due to the noise inherent in all physical systems.

Finally, the network requires finely tuned lateral connections in

order to balance excitation and inhibition (from feed-forward and

lateral connections). In particular, the strength of the fast

connections between two neurons corresponds to minus the

correlation coefficient of their feed-forward connections (and thus,

to their level of shared inputs). Whether such finely tuned motifs

exist in biological networks is still an open question. We showed

recently that fast lateral connections can be learnt using

unsupervised Hebbian learning [37], suggesting that networks

with the appropriate form of plasticity would be able to develop

and maintain this tight balance. We note that the performance of

the networks is quite sensitive to global perturbations of the

balance between excitation and inhibition, an issue that we discuss

in more detail in Text S1.

Experimental predictions
The most crucial work left to the future will be to test the

predictions derived from this theory, three of which are described

here. First, one could test how the decoding error scales with the

numbers of simultaneously recorded neurons. A single unit in the

model network (considered in isolation) is in fact exactly as reliable

as a Poisson spike generator with the same rate. As the number of

simultaneously recorded neurons increases, the decoding error

initially decreases as 1=
ffiffiffiffiffi
N
p

, similar to a Poisson rate model.

However, as the number of neurons reaches a certain threshold

(10% for the network models simulated here), the error from the

spiking network decreases faster than predicted for a Poisson rate

model (Fig. 7 E). So far, single-unit recordings or multi-electrode

recordings have only sampled from a very small subpart of the

population, making it impossible to see this difference (and in turn,

potentially leading to an under-estimation of the precision of the

neural code). However, with newer techniques, such as dense

multi-electrode arrays or optical imaging, as well as with focusing

on smaller networks (such as the oculomotor integrator or insect

systems), these model predictions are nowadays within experi-

mental reach. We note that one has to carefully account for the

effect of shared sensory noise (g) to see the predicted scaling effect.

Shared noise (absent in Fig. 7 E) introduces correlations between

neurons and results in a saturation of the error with N. In our

network, such a saturation would only be seen if there were limits

to the sensory information available in the first place; saturation

would not be seen as a consequence of neural noise or correlations

(as proposed for example in [38,39]).

Second, one could look at the global interaction between

neurons of similar selectivity, for example by applying a GLM

model to the data [28]. The model predicts that neurons involved

in slow integration tasks or working memory tasks should inhibit

and excite each other at different delays. In particular, neurons

with similar selectivities should be (paradoxically) negatively

correlated at short delays. Thus, applying GLM analysis even on

a small sub-population can uncover the effective PSPs caused by

the lateral connections and, indirectly, the dynamical equation

implemented by the network. Fig. 7 F shows the GLM filters learnt

from the inhomogeneous integrator network during working

memory (i.e. sustained activity in the absence of sensory input).

The analysis recovered the shape of the filters between neurons of

similar kernels and opposite kernels, despite the fact that only 10

simultaneously recorded neurons (2.5% of the population) were

used in this analysis.

Third, the spiking network is by essence self-correcting and will

thus be resilient to lesions or many sudden perturbations (an

exception being perturbations of the global balance of excitation

and inhibition, see above). Equipping neural networks with such

resilience or robustness has been a well-studied theoretical problem.

For the specific example of the neural integrator, solutions range

from constructing discrete attractor states [40,41,42], adding

adaptation or learning mechanisms to a network [43,44], or

changing the nature of network feedback [45,46]. In the case of the

neural integrator, the robustness of our network could likely be

interpreted as a case of derivative feedback [46].

While we know that biological neural networks are quite robust

against partial lesions, their response to sudden, yet partial

perturbations is less well known. For example, suddenly inactivat-

ing half of the active neurons in our sensory integrator increases

the firing rates of the remaining neurons but has essentially no

effect on the network performance (Fig. 7 G). This instantaneous

increase in firing rates without performance loss generates a strong

prediction for our network model, a prediction that distinguishes

our network from previously proposed solutions to the robustness

problem. Indeed, as long as the pool of available kernels remains

sufficient to track x, and as long as increased firing rates are not

affected by saturation, inactivation will not affect the network’s

computation. This prediction could be tested using for example

optogenetic methods.

Materials and Methods

Derivation of the spiking rule, Eqns. (5–7)
We here derive the network equations using compact matrix-

vector notation. In Text S1, we also consider the special case of a

homogeneous network and a single neuron, for which the

derivations are simpler. We consider the error function, Eqn. (4),

which is given by

E(t)~

ðt

0

du(Ex(u){x̂x(u)E2
2znEr(u)E1zmEr(u)E2

2) ð21Þ
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The k-th neuron should spike at time t if

E(tDk spikes)vE(tDk silent) ð22Þ

A spike by the k-th neuron adds a single delta-function to its spike

train. This additional spike enters the right-hand-side of the read-out

equation, Eqn. (2). Integration of this extra delta-function amounts to

adding a decaying exponential kernel, hd (u)~exp({ldu) to the

read-out. Hence, if neuron k spikes at time t, we have

x̂x(u)?x̂x(u)zCkhd (u{t) ð23Þ

r(u)?r(u)zld ekhd (u{t) ð24Þ

where the latter equation describes the instantaneous change in

firing rate due to the additional spike. Note that the standard

Eucledian basis vector ek is a vector in which the k-th element is one,

and all others are zero.

Each spike influences the read-out several time intervals ld into

the future. To see whether a spike leads to a decrease of the error

function, we therefore need to look into the future (from time t

onwards). For a future time tzE with Ew0, the spiking rule in

Eqn. (22) translates into

ðtzE

0

du Ex(u){x̂(u){Ckhd (u{t)E2
2znEr(u)zld ekhd (u{t)E1

�

zmEr(u)zld ekhd (u{t)E2
2

�

v

ðtzE

0

du Ex(u){x̂(u)E2
2znEr(u)E1zmEr(u)E2

2

� �
ð25Þ

We can expand the terms on the left-hand-side, and then eliminate

identical terms on both sides. For that, we remind the reader that

the relation EzE2
2~zT z holds for the L2 norm, whereas

EzE1~
P

k zk holds for the L1 norm in our case, since all

elements (firing rates) are positive by definition. Hence we obtain

ðtzE

0

du {2hd (u{t)CT
k (x(u){x̂(u))zh2

d (u{t)CT
k Ck

�

znldhd (u{t)z2mldhd (u{t)eT
k r(u)zml2

dh2
d (u{t)

�
v0:

ð26Þ

We rearrange the inequality by moving all terms that depend on

the dynamical variables x(t), the estimates x̂x(t), or the firing rates

r(t) to the left, and all other terms to the right, and we then

multiply both sides by minus one, to obtain

ðtzE

0

du 2hd (u{t)CT
k (x(u){x̂x(u)){2mldhd (u{t)eT

k r(u)
� �

w

ðtzE

0

du h2
d (u{t)CT

k Ckznldhd (u{t)zmld
2h2

d (u{t)
� �

:

ð27Þ

Moving the kernels hd (u{t) to the front of the integrals and

noticing that hd (u{t)~0 for uvt, we obtain

ðtzE

t

duhd (u{t) CT
k (x(u){x̂x(u)){mld eT

k r(u)
� �

w

1

2

ðtzE

t

duhd (u{t) hd (u{t)CT
k Ckznldzmld

2hd (u{t)
� � ð28Þ

The integral on the left-hand-side weights the influence of the

spike, as given by the decaying exponential kernel, hd (u), against

the future development of the error signal, x(u){x̂x(u), and firing

rate r(u). These future signals are unknown: while we may be able

to extrapolate x(u), given its dynamical equation, we cannot safely

extrapolate x̂x(u) or r(u), since this would require knowledge of all

future spikes. We therefore choose a ‘‘greedy’’ approximation in

which we only look a time E%ld into the future. For the relevant

times u, we can then approximate the integrands as constants so

that (using hd (u)&1 for u*E)

CT
k (x(t){x̂x(t)){mld eT

k r(t)w
ECkE2znldzmld

2

2
ð29Þ

which is our decision to spike, and corresponds exactly to Eqns.

(5–7). We notice that the right-hand-side is a constant whereas the

left-hand-side is a dynamical quantity which corresponds to the

projection of the prediction error, x(t){x̂x(t), onto the output

kernel of the k-th neuron, Ck, subtracted by a term depending on

the firing rate of the k-th neuron. Given this threshold rule, it

seems only natural to identify the left-hand-side with the

membrane voltage Vk(t) of the k-th neuron and the right-hand-

side with its spiking threshold, Tk, which is what we did in the

main text.

Derivation of the voltage equation, Eqn. (8)
If we write the voltage of all neurons as one long vector,

V~(V1,V2, . . . ,VN ), then we can write

V(t)~CT (x(t){x̂x(t)){mld r(t): ð30Þ

We generally assume that there are more neurons than variables to

represent so that NwJ. We also assume that the output kernel

matrix, C, has rank J , and that the dynamical variables are not

degenerate or linearly dependent on each other. In this case, the

left pseudo-inverse of CT exists and is given by

L~(C CT ){1C ð31Þ

so that L CT~I. Note that CT is an N|J-matrix, while L has size

J|N. In turn, we can solve the voltage equation for x(t) by

multiplying with the pseudo-inverse from the left so that

x(t)~L V(t)zmld L r(t)zx̂x(t) ð32Þ

Taking the derivative of the voltages, we obtain

_VV(t)~CT ( _xx(t){ _̂xx̂xx(t)){mld _rr(t) ð33Þ

Replacing _xx(t), _̂xx̂xx(t), and _rr(t) with their respective equations, Eqns.

(1–3), we obtain

:
V(t)~CT (A x(t)zc(t)zld x̂(t){C o(t))

zml2
d r(t){ml2

d o(t)
ð34Þ

In turn, we can replace x(t) with Eqn. (32) to obtain

:
V(t)~CT A L V(t)zmld CT A Lr(t)zCT A x̂(t)zCT c(t)

zld CT x̂(t){CT Co(t)zml2
d r(t){ml2

d o(t)
ð35Þ
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Sorting some of the terms, and remembering that x̂x(t)~
1

ld

Cr(t),

we obtain

:
V(t)~CT AL V(t)

z(
1

ld

CT A CzCT Czmld CT ALzml2
d I)r(t)

{(CT Czml2
d I)o(t)zCT c(t):

ð36Þ

To evaluate the relative importance of the different terms, we

consider the limit of large networks, i.e., the limit N??. First, we

impose that the average firing rates of individual neurons should

remain constant in this limit. Second, we require that the read-out

does not change. Given the scaling of the firing rates, and since

x̂x~C r=ld , the output kernels must scale with 1=N. Accordingly,

the pseudo-inverse L scales with N . Finally, we need to choose

how the cost terms n and m, scale with respect to the read-out

error. The linear and quadratic error terms Er(t)E1 and Er(t)E2

scale with N. To avoid a contribution of the cost term increasing

with network size, m and n should scale (at the least) with
1

N
.

However, even if the cost terms scale with 1=N , they will still

dominate the network dynamics. For instance, the threshold, Eqn.

(7) becomes independent of the output kernel, while the contri-

bution of fast lateral connections becomes negligible. In practice,

this causes the performance to degrade quickly with increasing

network size. A better choice is to require m and n to scale with

1=N2, keeping the relative contribution of the kernel and cost to

each neuron’s dynamics fixed. With such scaling, large networks

can still track the variable while the performance increase with

network size.

Given the scaling of the output kernels and m, the threshold Ti

scales with 1=N2, compare Eqn. (7). In turn, since the voltage is

bounded by the threshold from above (and bounded from below

due to the existence of neurons with opposing kernels; see also

below), the voltage Vi also scales with 1=N2. Accordingly, in a

large network, the first, voltage-dependent term in Eqn. (36) scales

with 1=N2, as do the terms mld CT A Lr(t) and mld
2 r(t). In

contrast, the terms
1

ld

CT A Cr(t) and CT C r(t) represent a sum

over all neurons in the population, and thus scale with 1=N,

similar to the inputs CT c(t). For large networks, we can therefore

neglect the terms that scale with 1=N2. We note that none of the

terms involving delta functions (i.e. o(t)) can be neglected. We

keep a generic leak term, {lV V(t), although the term is

essentially irrelevant in large networks, and may be detrimental in

very small ones (e.g., less than 10 neurons). Hence, we

approximate Eqn. (36) by

_VV(t)~{lV V(t)z
1

ld

Vs r(t){Vf o(t)zCT c(t) ð37Þ

with

Vs~CT (Azld I)C ð38Þ

Vf ~CT Czmld
2 I ð39Þ

Since r(t)~ldhd � o(t) and since o(t)~d � o(t), we can define

the effective connectivities

W(u)~Vshd (u){Vf d(u) ð40Þ

to obtain the voltage equation

_VV(t)~{lV V(t)zW � o(t)zCT c(t) ð41Þ

which is the vectorized version of Eqn. (8) without the noise term.

Precision of the network estimate and comparison with
stochastic neural models

The predictive coding network. For simplicity, we will first

discuss the homogeneous network, with one population of N
identical neurons, and no cost terms. A complete analytical

solution of the homogeneous network is provided in Text S1. If the

network is sufficiently large, we can replace the spike trains of the

individual neurons by their population firing rate as shown in the

Text S1. Here, we will furthermore assume that the variable x(t)
being tracked by the neurons is a constant. In this case, the

network will produce a readout x̂x(t) that is approximately constant

as well, so that dx̂x=dt&0. Solving the read-out equation for the

rate, we therefore obtain

rpop~
x̂xld

C
ð42Þ

where we neglected time since all variables are constants. Note use

of the label ‘‘pop’’ which should remind us that this is the population

firing rate, i.e., the sum of the firing rates of the individual units.

These latter firing rates are simply given by dividing the

population firing rate through the number of neurons N (since

all units are equal) so that

rind~
rpop

N
~

x̂xld

NC
ð43Þ

To keep these firing rates constant as the size of the network

increases, the kernels C should therefore scale as 1=N .

To estimate the precision of the network readout, we note that

the predictive coding scheme prescribed through the loss function

implies that V~(x{x̂x)=Cv1=2, if the costs are negligible.

Furthermore, since the neurons are firing at a constant rate, the

voltage is bounded from below by the reset potential

V~(x{x̂x)=Cw{1=2. This bound holds in the limit of (infinitely)

small noise. In turn, the readout is also bounded so that

{
C

2
vx{x̂xv

C

2
: ð44Þ

The standard deviation of the network estimate, x̂x, in the time

window of the decoder 1=ld is thus strictly bounded by sPC~C=2,

which, as stated previously, should scale with 1=N to maintain the

same firing rate in the neurons. Accordingly, the standard

deviation of the network estimate scales with

sPC*
1

N
ð45Þ

as the network size increases.

The equivalent Poisson network. Let us consider now a set

of N neurons firing spikes at the same rate rind according to a

homogeneous Poisson process. The minimal variance of an

estimator based on measuring these neuron’s responses in a time

Predictive Coding in Balanced Spiking Networks

PLOS Computational Biology | www.ploscompbiol.org 13 November 2013 | Volume 9 | Issue 11 | e1003258



window 1=ld is given by the Cramer-Rao bound [47]

s2
Poisson xð Þ~ ld

P
i

f
02
i

xð Þ
fi xð Þ

ð46Þ

where fi(x) are the tuning curves of the neurons, i.e., their firing

rate as a function of the encoded variable x. If we assume the best-

case scenario, x̂x~x, then the tuning curves are simply given by

Eqn. (43), so that

fi(x)~
xld

NC
ð47Þ

Hence, the Cramer-Rao bound becomes

s2
Poisson(x)~

xC

2
: ð48Þ

As before, the kernels need to scale with 1=N , so that in this case

the standard deviation scales with

sPoisson*
1ffiffiffiffiffi
N
p : ð49Þ

The general case. The exact analytical results cannot be

readily extended to the representation of multi-dimensional

variables, x, since the tuning curves of the individual neurons,

fi(x), depend on the exact spatial configuration of the kernels.

Here, we use instead arguments on how the kernels C and the

errors scale with the size of the network (assuming fixed firing rates

and decoder leak). For simplicity of argumentation, we will assume

that ECiE~const for all i, so that all output kernels have the same

norm, and we can again neglect the cost term.

In the case of a multi-dimensional variable, the firing rule

ensures that the projection of the prediction error, x{x̂x, on any

kernel Ci in the population does not exceed half of the kernel

norm. Thus, if we place ourselves along the direction of any

kernel, the projection of the prediction error is bounded by

CT
i

ECiE
(x{x̂x)v

ECiE
2

: ð50Þ

As argued above, to keep the firing rates of the individual neurons

constant, the kernels need to scale with 1=N as the size of the

network increases. Hence,

ECiE*
1

N
ð51Þ

and the projection of the error on each kernel direction thus scales

with 1=N . Let us assume that the kernels are sufficiently dense to

cover all quadrant of the J-dimensional variable space. In this

case, there is at least one kernel in each of the subspaces formed by

all possible combinations of signs for the components xj . The

minimum number of neurons is therefore N~2J . In each

quadrant, there is then a kernel that will cause its associated

neuron to fire as soon as the dot-product of this kernel with the

error exceeds half the kernel norm. Consequently, the error is

strictly bounded in a hypersphere centered on the origin whose

radius is bounded by the constant kernel norm, Eqn. (50). Thus, as

before, the standard deviation of the prediction error scales with

the kernels and thus with

sPC*
1

N
ð52Þ

Let us now consider a population of N independent Poisson

neurons representing the multi-dimensional variable x. The

minimal variance, s2
Poisson, of the estimation errors are given by

the inverse of the Fisher information matrix. The precise formula

does not matter, though we note that this variance scales with

1=N . Thus, as before, we obtain

sPoisson*
1ffiffiffiffiffi
N
p ð53Þ

and we can conclude that the ratio of the network estimation error

to the estimation error incurred by N independent Poisson

neurons with similar rates rates will always scale as 1=N.

Rate model matching the firing rate of the homogeneous
integrator network

In the homogeneous integrator network (with low noise and small

costs), the membrane potentials of neurons with identical kernels are

approximately equal, which allows us to write down an analytical

solution (see Text S1). Briefly, the population inter-spike interval,

i.e. the interval between two successive spikes from any neuron,

corresponds to the time it takes for this ‘‘common’’ membrane

potential to rise from the reset potential {C2=2 to the threshold

C2=2. We call this time period an ‘‘integration cycle’’. Note that this

interval is typically much shorter than the ISI of an individual

neuron or the time constant of the decoder. During this short time

interval, the leak term {lV Vi can be neglected, and the derivative

of the membrane potential, _VVi~Cic(t)zld
{1P

k V
s
ikrk(t), is

approximately constant. The population ISI is thus simply given

by the time UISI it takes to integrate from the reset, {Ti, to the

threshold, Ti, so that UISI~2Ti= _VVi~C2= _VVi. All neurons with the

same kernel have identical firing rates, and, since only half of the

population is spiking at any value of x (in the limit of small noise),

the firing rates of individual neurons are equal to the population

firing divided by N=2. Thus, the firing rate of each neuron can be

approximated as ri&
2 _VVi

NC2
.

To construct the Poisson generator network, we removed the fast

connections (but not the slow connections) and replaced the LIF

neurons by Poisson spike generators with the same instantaneous

firing rate, i.e., ri~
2

NC2
½Cic(t)zld

{1
X

k
Vik

srk(t)�z. The

resulting recurrent network roughly matches the instantaneous

firing rates (but not the performance) in the LIF network. The

match could be enhanced, for example by adding a small baseline

firing rate or a refractory period; However, these changes can only

decrease the performance of the Poisson rate model.

Measuring GLM filters
To obtain the GLM filters in the integrator network (Fig. 7 F),

we performed the following procedure: The inhomogeneous

integrator was driven by an input c sampled from Gaussian white

noise (with mean m~0, standard deviation s~30) and convolved

by an exponential filter of width t~1ms. The spike trains of the

ten ‘‘recorded’’ neurons were modeled as independent Poisson

processes with instantaneous firing rates

Predictive Coding in Balanced Spiking Networks

PLOS Computational Biology | www.ploscompbiol.org 14 November 2013 | Volume 9 | Issue 11 | e1003258



ri~exp(W
f
i cz

X
j

W l
ij � oj): ð54Þ

The feed-forward weights W
f
i and lateral filters W l

ij were

estimated by maximizing the log-likelihood of the spike trains,

following the method of [28]. Briefly, the filters were discretized in

500 time bins of 0:2ms, and conjugate gradient ascent of the log

likelihood was performed on the value of the filters in each time

bin for the equivalent of 5 hours of recording.

Measuring the coefficient of variation
The CV2 of a spike train is defined as

CV2~
1

K{1

XK{1

k~1

DISI(kz1){ISI(k)D
ISI(kz1)zISI(k)

, ð55Þ

where K is the total number of spike in the spike train, and ISI(k)

is the duration of the kth inter-spike interval. The CV2 reported in

the paper are the value of CV2 measured in each neuron and

averaged over the population.

Supporting Information

Text S1 In the supporting Text S1, we address several issues

regarding the biological plausibility of our approach and the

generality of our results. In particular, we demonstrate that the

networks can be separated into purely excitatory and inhibitory

neurons. We discuss the problem of perturbing synaptic weights

and show that the networks are robust to synaptic failures and to

noise in the lateral connections. We furthermore derive analytical

results for the dynamics of a network with identical kernels

tracking a scalar dynamical variable, _xx~{lsxzc(t), in the limit

of high firing rates.

(PDF)
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