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SUMMARY
Social memory consists of two processes: the detection of familiar comparedwith novel conspecifics and the
detailed recollection of past social episodes.We investigated the neural bases for these processes using cal-
cium imaging of dorsal CA2 hippocampal pyramidal neurons, known to be important for social memory, dur-
ing social/spatial encounters with novel conspecifics and familiar littermates.Whereas novel individuals were
represented in a low-dimensional geometry that allows for generalization of social identity across different
spatial locations and of location across different identities, littermates were represented in a higher-dimen-
sional geometry that supports high-capacity memory storage. Moreover, familiarity was represented in an
abstract format, independent of individual identity. The degree to which familiarity increased the dimension-
ality of CA2 representations for individual mice predicted their performance in a social novelty recognition
memory test. Thus, by tuning the geometry of structured neural activity, CA2 is able to meet the demands
of distinct social memory processes.
INTRODUCTION

Social memory, an animal’s ability to recognize and remember

experiences with other individuals of its species (conspecifics),

consists of two distinct cognitive processes. As illustrated by

the classic example of ‘‘the butcher on the bus,’’1 these include

the ability to rapidly detect whether an individual is novel or

familiar (‘‘I know that person, but from where?’’) and the more

effortful recollection of an individual’s specific identity and the

associated set of past experiences with that individual (‘‘Ah,

she’s my butcher; I bought food from her last Tuesday’’). These

processes have conflicting demands and requirements. Famil-

iarity must generalize to detect whether an individual is novel

or familiar across different contexts. By contrast, memory of

multi-dimensional social episodes requires distinct representa-

tions of past encounters with a given individual at different loca-

tions and events. How does the brain manage these conflicting

memory requirements of familiarity detection, representation of

social identity, and storage of social episodic memories?
Since the early studies of patient HM, it has been clear the hip-

pocampus plays an important role in social memory.2 However,

whether the hippocampus is important for both familiarity and

recollection remains controversial.3,4 Studies in mice have found

that the hippocampus,5 and in particular the dorsal CA2

(dCA2)6–8 and ventral CA1 (vCA1)9 regions, are crucial for the

storage, consolidation, and recall of social familiarity memory,

acting through a dCA2 to vCA1 circuit.10 Moreover, neurons in

dCA2 change their firing to novel conspecifics11,12 and can

distinguish the identity of two novel individuals.13 Neurons in

vCA1 increase their firing to social stimuli14 and preferentially

fire around familiar individuals.9 Although it is clear that these

hippocampal regions encode social stimuli and are required for

social memory, whether and how the hippocampus can support

a generalized detection of familiarity while also storing a large

number of detailed social episodic memories remains unknown.

Moreover, because both dCA211–13,15,16 and vCA117 neurons

also serve as place cells, encoding an animal’s position in its

environment,18 it is uncertain how the hippocampus represents
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and disambiguates social and spatial variables to meet the con-

flicting demands of social memory.

Here, we applied calcium imaging and computational ap-

proaches to identify how the population activity of dCA2 pyrami-

dal neurons enables both a generalized readout of social famil-

iarity compared with social novelty and the encoding of social/

spatial episodic memories of familiar individuals. We found that

CA2 accommodates the competing demands of familiarity and

recollection by representing novel mice and familiar littermates

in distinct geometric arrangements (i.e., the relationship between

the neural population responses to distinct social/spatial stimuli

in neural activity space). CA2 encodes novel animals in low-

dimensional representations, which enables the identity of novel

animals to be readily disentangled from their position. However,

such representations have a lowmemory capacity and so cannot

store the vast amount of information associated with past en-

counters with familiar animals. CA2 solves this problem by

encoding littermates in higher-dimensional representations,

increasing memory storage capacity at a modest cost to gener-

alization across contexts. Moreover, by encoding familiarity

along a direction in the neural space that is approximately

orthogonal to the coding direction of identity, CA2 provides for

the generalized or abstract decoding of social novelty. To our

knowledge, these results provide the first evidence that transfor-

mations in the geometry of neural social representations enable

a single neural population to discriminate social novelty from fa-

miliarity while supporting the recollection of experiences with

highly familiar individuals.

RESULTS

Experimental approach and theoretical considerations
of the geometry of social representations and its
implications for social memory
Our goal was to characterize how social identity, social familiar-

ity, and spatial location are represented by the activity of CA2

neurons. We used microendoscopic imaging of Ca2+ activity

in dCA2 pyramidal neurons in freely moving mice as they

explored two stimulus mice confined to wire cup cages during

two 5-min trials, with the positions of the stimulus mice

reversed in the two trials (Figures 1A–1C; Video S1). We then

applied computational and theoretical approaches to probe

the social and spatial information that was contained in CA2

neural representations.

Previous studies found that certain CA2 neurons act as place

cells, responding to an animal’s own spatial location,11–13,15

whereas other CA2 neurons respond primarily to social stim-

uli.12,13 Here, we focused on CA2 representations at the popula-

tion level, using a linear classifier to decode the social and spatial

information contained within CA2 activity. Of particular impor-

tance, linear classifiers provide insight into the geometry of

CA2 social/spatial representations in neural activity space and,

thus, can determine whether and how this geometry may differ

in the encoding of social/spatial encounters with familiar litter-

mates compared with novel animals.

We performed three recording sessions 1 week apart in which

the same subjectmouse explored a pair of novel stimulusmice, a

pair of familiar littermates, and one novel and one littermate
2 Neuron 112, 1–14, April 17, 2024
mouse in the different sessions. The subjects showed no prefer-

ence for exploration of either of the two novel or two familiar in-

dividuals in the separate sessions (Figures 1D and S1). CA2 neu-

rons were recorded from the same imaging field but were not

aligned across the three sessions. We examined Ca2+ signals

during periods when the subject mouse was actively exploring

one of the two stimulus mice (Figures 1D and 1F; see STAR

Methods). The Ca2+ signals for each neuron were then decon-

volved to extract individual spikes grouped into 100-ms-long

bins during interaction periods, labeled according to the identity

(e.g., N1 andN2) and position (left, right) of the social encounters.

We first describe the results in the sessions with a pair of novel

mice and a pair of littermates. Later, we describe results in the

session with one novel and one littermate mouse.

CA2 activity accurately encodes social identity and
spatial location during exploration of either novel mice
or littermates
We first askedwhether CA2 activity contained sufficient informa-

tion to allow for the linear decoding of the identity of the two

explored mice, using the combined activity of neurons from the

six subject mice as a single pseudo-population. To remove the

influence of any spatial information, we grouped in one class

the activity recorded around mouse N1 (or L1) in both trials of

the task (where mouse 1 was in the left cup in trial 1 and right

cup in trial 2) and in a second class the activity recorded around

mouse N2 (or L2) in both trials of the task (where mouse 2 was in

the right cup in trial 1 and left cup in trial 2), as shown in Figure 2A.

Becausewe balanced the data by including neural activity during

equal total lengths of time spent exploring the left and right cups

containing the stimulus mice, the two classes differed only in the

social identity of the mice. Using a cross-validated scheme, the

linear classifier successfully decoded mouse identity during the

trials with either the novel mice or the littermates (Figures 2C

and 2D, novel animals; Figures 2F and 2G, littermates). Next,

we asked whether CA2 activity contained sufficient information

to decode position—whether a subject mouse was exploring

the left versus right cup—irrespective of the identity of themouse

in the cup. In this case, we grouped activity data from the two tri-

als around the left cup in one class and the right cup in a second

class, balancing data so that the subject mouse spent equal time

exploring the N1 and N2 (or L1 and L2) mice in the two classes.

This removed social identity as a potential confound. Similar to

the identity classifier, the position classifier successfully de-

coded position with high accuracy in both experiments

(Figures 3C and 3D, novel animals; Figures 3F and 3G, litter-

mates). The accurate decoding of identity and position is consis-

tent with findings from electrophysiological recordings that CA2

neurons encode both social and spatial information.9,12,13,15,16

To explore whether decoding performance depended on CA2

neurons that were specialized for spatial or social information

or relied on neurons with mixed social/spatial selectivity,19 we

examined the weights assigned to each neuron by the linear

classifiers (Figures 3C and S2). Relatively few neurons had de-

coding weights specialized for position or identity in either novel

or littermate experiments. Neurons that encoded position also

typically encoded identity, and vice versa (Figures S2C–S2F;

see STAR Methods). When we excluded the few specialized
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Figure 1. Experimental design

(A) Six Amigo2-Cre subject mice were injected with a Cre-dependent GCaMP6f AAV and implanted with a GRIN lens over dorsal CA2. We imaged a total of 439

and 595 CA2 pyramidal neurons in experiments in which the same subject explored two novel mice and two littermates, respectively, in separate sessions.

(B) Experimental protocol with novel stimulus mice (N1 and N2) under wire cup cages at opposite ends of an oval arena.

(C) Subjects explored the stimulus mice in two 5-min trials, with positions of stimulus mice swapped in each trial.

(D) Mean interaction time of subjects with stimulus mice in two trials. No significant difference was observed for exploration of N1 or N2 in either trial (two-way

ANOVA for partner 3 trial F(1,5) = 0.0530, p = 0.83).

(E) Deconvolved calcium traces from 114 simultaneously recorded neurons across the two trials from a single subject.

(F) Subject position along axis defined by cup centers and interaction partner identity during trials. Colored lines on top and colored areas denote active in-

teractions (sniffing) with stimulusmice. The colors correspond to the four combinations of spatial (left versus right cup) and social (mouse N1 versus N2) variables.
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neurons from the decoding analysis, there was only a small

decrease in decoding performance, similar to when we excluded

an equal number of mixed-selectivity neurons (Figures S2G and

S3H). Moreover, we could decode social identity and spatial

location above chance from random subsamples of �10% of

the recorded CA2 population (Figures S2I and S2J), suggesting

that CA2 encodes both spatial and social variables in a highly

distributed and redundant code through neurons with mixed

selectivity.20

Representational geometries and their computational
implications for social memory
We next asked how social and spatial variables are encoded in

CA2 population activity and whether the encoding of novel indi-

viduals differs from familiar littermates by analyzing the geometry

of CA2 representations in neural activity space (Figures 3B–3D).

We first consider the different possible geometries of neural rep-

resentations under the four social/spatial conditions in the two

trials of our experiments (mouse 1 and 2 in left and right cups).

We then present theoretical results that illustrate the advantages
and limitations of how these different geometric arrangements

impact the encoding and recall of social/spatial information.

To provide a simplified example, we consider the responses of

three hypothetical CA2 neurons in the four conditions across the

two trials of an experiment. The positions of these responses in

the neural activity space define their representational geometry

(Figures 3B–3D). Because of noise, the neural responses to the

four conditions form four point clouds. As our experiments

have only four conditions, the maximum dimensionality (disre-

garding noise) is equal to three (3D), regardless of the number

of neurons. We refer to such three-dimensional representations

as high-dimensional, whereas one- or two-dimensional (1D or

2D) representations are low-dimensional.

Many different geometric arrangements are compatible with

our findings that CA2 neurons encode identity and position.13

However, these geometries have distinct computational proper-

ties that affect the ability of a binary linear classifier to read out

social/spatial information. We use a binary linear classifier

because it has two important advantages compared with non-

linear classifiers. First, as illustrated in Figure 3, it allows us to
Neuron 112, 1–14, April 17, 2024 3
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Figure 2. CA2 activity decodes identity and position of novel and littermate mice

(A) Scheme for decoding identity and position. Colored lines separate classes according to identity (1, 2) or position (l, r).

(B) Experiment with two novel mice.

(C) Decoding accuracy of novel mouse identity and position (colored circles) from a pseudo-population of 439 cells from 6 subjects was significantly greater than

chance (null model; gray circles). Identity decoding = 0.76; null model = 0.50 ± 0.06. Position decoding = 0.88; null model = 0.50 ± 0.06.

(D) Decoding accuracy for individual subjects from a larger cohort (n = 10; circles). Mean identity decoding = 0.63 ± 0.03; mean position decoding = 0.67 ± 0.09.

(E) Experiment with two littermates.

(F) Littermate identity and position decoding accuracy from pseudo-population of 439 cells from 6 subjects were significantly greater than chance. Identity

decoding = 0.72; null model = 0.50 ± 0.06. Position decoding = 0.91; null model = 0.50 ± 0.06.

(G) Decoding data with two littermates from individual subjects. Mean identity decoding = 0.60 ± 0.01; mean position decoding = 0.69 ± 0.03. Values for (D) and

(G) aremean ± SEM (error bars). For null model distributions (C and F), values aremean ± SD, error bars show 2 SDs around themean. p values are estimated from

Z score of data compared with null models. p values in (D) and (G) are computed by a one-sample t test against a chance decoding accuracy of 50%.

**p < 0.01, ***p < 0.001.
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determine the geometric structure of the neural representations.

Second, it has the neurobiological advantage of being readily im-

plemented by a downstream neuron that linearly sums its inputs

to reach a threshold for an action potential output.

Let us consider a simple geometry where CA2 neurons encode

a single variable, social identity. In this case, the pairs of point

clouds during exploration of the same individual at different loca-

tions overlap, defining a 1D object. A linear classifier trained to

decode identity from neural activity identifies a plane optimally

separating the clouds of points. In this case, the classifier will

perform well (Figure 3E), as the cloud of population vectors

determined for one identity (e.g., mouse 1, blue clouds in Fig-

ure 3B) is well separated from that determined for the other iden-

tity (e.g., mouse 2, orange clouds in Figure 3B). Importantly, a

classifier trained to report identity when the animals are in the

left cup (dark blue versus dark orange clouds in Figure 3B) will

be able to generalize to accurately report identity when the ani-

mals are in the right cup (light blue versus light orange clouds

in Figure 3B). This ability of a decoder trained on one set of con-
4 Neuron 112, 1–14, April 17, 2024
ditions to decode a different set of related conditions is termed

the cross-condition generalization performance (CCGP).21 The

simple, one-dimensional geometry shown in Figure 3B yields a

high decoding performance and a high CCGP for identity (Fig-

ure 3E). Following Bernardi et al.,21 we define this as an abstract

representation of identity, as the neural responses to the

different social identities do not depend on the position of the so-

cial interactions. However, such representations are of limited

value for storing or encoding episodic memories, as they do

not encode any other variable and, thus, are incompatible with

our observations above (see also previous results13) that CA2 en-

codes identity and position.

More realistic population representations that encode both

identity and position are shown in Figures 3C and 3D. In Fig-

ure 3C (left), identity and position are encoded by specialist neu-

rons, each responsive to only one of the variables. The clouds of

activity vectors are arranged in a planar, rectangular-like 2D

shape along the two axes corresponding to the firing rates

of the two classes of neurons. In this case, separate linear
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Figure 3. The effects of neural representation geometry on population decoding and memory storage
(A) Decoding and CCGP scheme (see main text and STAR Methods) for identity (ID), position (Pos), and trial (XOR). Mouse 1, blue; mouse 2, orange. Lighter

shades, right cup (r); darker shades, left cup (l). Solid outline, trial 1 conditions; dashed outline, trial 2 conditions.

(B–D) Geometric arrangements for the coding of two variables (identity, ID, and position, Pos) with different dimensionality. Points plot firing rates of three neurons

(r1, r2, and r3) for a given color-coded condition. Noise results in point clouds. (B) One-dimensional arrangement in which ID but not Pos is encoded. A classifier

plane (yellow) separating the point clouds decodes ID. (C) Example two-dimensional geometries in which ID and Pos are encoded and disentangled by

specialized (left) or mixed-selective (right) neurons. For both geometries, the same decoding plane trained on one set of conditions decodes the other set of

conditions (high CCGP). Pairs of two trials (XOR condition) lie at opposing vertices of the rectangles and cannot be linearly separated. (D) Neurons with a three-

dimensional, tetrahedral geometric arrangement showing decoding of XOR (plane separates the two pairs of point clouds grouped by trials).

(E–G) Distinct fingerprints for decoding ID, Pos, and trial (XOR) and CCGP for ID and Pos for geometries shown above in (B)–(D).

(H) Left: scheme of computational model analyzing effects of dimensionality on memory storage capacity and CCGP. A Hopfield recurrent network of N neurons

was trained to store and retrieve a set of patterns with geometrical dimensionality varying from L <<N to N (see STARMethods and Figure S3), starting with a low-

dimensional representation (0 distortion) and adding increasing extents of random distortion by flipping the state of activation of each neuron in each pattern with

a given probability ranging from 0 (L-dimensional) to 0.5 (N-dimensional), step size of 0.05. Right: results of the simulation (L = 10, N = 400). Curves and points

show the average over n = 10 simulations. Storage capacity was normalized between 0 and 1.
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classifiers can now decode both social identity and position (Fig-

ure 3F). Moreover, both variables are abstract with high CCGP

(Figure 3F; Video S2). This type of representation is called ‘‘dis-

entangled’’21–23 and is important for generalization and compo-
sitionality, the capacity to understand and produce a potentially

infinite number of novel combinations from known components.

Although representations based on specialized neurons are

not compatible with the finding that many neurons exhibit mixed
Neuron 112, 1–14, April 17, 2024 5
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selectivity (Figure S2), these same computational properties

(generalization of both variables) can bemaintainedwith neurons

with linear mixed selectivity, i.e., that respond linearly to both

identity and position. The activity of such neurons still results in

a planar, rectangular-like 2D geometric arrangement, but one

that is rotated so that its edges are no longer aligned with the

neural axes (Figure 3C, right). Despite the lack of alignment

with neural axes, the coding direction for a given variable is still

parallel to the coding direction for that same variable across con-

ditions, yielding a high decoding accuracy and CCGP for both

identity and position (Figure 3F). Low-dimensional mixed-selec-

tivity representations (Figure 3C, right) have been observed in

multiple brain areas.21,23,24

A drawback of low-dimensional representations is that they

limit the number of variables that can be linearly decoded. For

our experiments, the four social/spatial conditions can be group-

ed into three possible dichotomies according to social identity

(mouse 1 in left and right cups versus mouse 2 in left and right

cups), position (mouse 1 and 2 in left cup versus mouse 1 and

2 in right cup), and neither identity nor position (mouse 1 in left

cup and mouse 2 in right cup versus mouse 1 in right cup and

mouse 2 in left cup), which is termed the exclusive OR (XOR) di-

chotomy and reflects grouping by trial. Neither of the 2D repre-

sentations in Figure 3 allows a linear classifier to separate the

XOR (trial) pairs of point clouds.

In contrast to these low-dimensional (1D or 2D) geometries,

the responses illustrated in Figure 3D show the highest-dimen-

sional (3D) tetrahedral representation possible under the four

conditions of our experiments. In this geometry, all three

possible pairs of sub-groupings of the four conditions, including

the trial (XOR) dichotomy, are linearly separable and individually

decodable (Figure 3G; Video S3), which defines a representation

with a high shattering dimensionality.21 As both identity and po-

sition are decodable by 2D representations, the ability to decode

the trial (XOR) dichotomy is diagnostic of higher-dimensional (in

our case, 3D) geometries. A disadvantage of high-dimensional

representations is a reduced capacity for generalization: the

coding directions of each variable are no longer parallel across

different conditions, yielding a low CCGP (Figure 3G; Video

S4). In summary, whereas low-dimensional geometries provide

for generalized decoding of identity/position and high CCGP,

high-dimensional geometries allow the decoding of a greater

number of variables (including XOR) at the cost of generalization.

The dimensionality of a representation also has important con-

sequences for how a given brain region participates in memory

storage, as it is directly related to the number of memories that

can be stored in a recurrent neural network. For classical hippo-

campal-dependent episodic memory, the memory capacity is

related to the number of distinct episodes that can be stored.

As shown in Figure 3H and further developed with simulations

and theoretical computations (see STAR Methods and Fig-

ure S3), a low-dimensional geometry severely limits memory

storage capacity, where each memory is defined as a specific

combination of variables (e.g., the encounter of an individual at

a certain location). These limitations occur because low-dimen-

sional representations have a greater correlation between the

activity of different neurons compared with high-dimensional

representations, effectively reducing the number of independent
6 Neuron 112, 1–14, April 17, 2024
neurons available to participate in memory storage. Conversely,

a high-dimensional geometry provides higher memory capacity

at the price of a reduced generalization capacity (Figure 3E).

Therefore, different geometries could satisfy different demands

for social memory, with dimensionality controlling the tradeoff

between generalization and memory storage capacity. As we

will see below, the representations for novel animals are similar

to the low-dimensional representation of Figure 3C, whereas

the representations for littermates are more similar to the high-

dimensional representation of Figure 3D.
Novel individuals are encoded in lower-dimensional
representations than littermates
We first used principal-component analysis (PCA) to estimate the

dimensionality of the CA2 pseudo-population activity during the

exploration of novel animals or littermates based on the geometry

of the centroids of the four social/spatial experimental conditions

when projected in the space spanned by the first three principal

components (see STAR Methods). For novel animals, we

observed a rectangular-like planar 2Dgeometry: the coding direc-

tions for position were nearly parallel for the two mouse identities,

as were the coding directions for identity in the two positions

(Figures 4A and 4C–4E; Video S5). By contrast, for littermates,

we observed a 3D geometry (Video S6). Although the coding di-

rections of position retained some parallelism (Figures 4B, bottom

center and 4C–4E), those of identity were orthogonal (Figure 4B,

bottom left), allowing for linear decoding of the trial (XOR) dichot-

omy (Figure 4B, bottom right; see Figures 3D and 3G).

We next explored the geometry of CA2 social/spatial repre-

sentations of the single pseudo-population in the original high-

dimensional neural activity space using linear classifiers to

examine CCGP for social identity and position. We also deter-

mined whether we could decode the XOR dichotomy (trial num-

ber) as an indirect measure of dimensionality, as discussed

above. Identity CCGP was determined by training a linear classi-

fier to decode social identity when the subject was exploring the

two stimulus mice in one cup (e.g., left) and testing it on data

when the subject was exploring the stimulus mice in the other

cup (e.g., right), as shown in Figure 5A, and vice versa, averaging

the performance values. Similarly, we measured position CCGP

by training a classifier to decode right-left positionwhen the cups

were occupied by one mouse (e.g., N1 or L1) and tested on data

recorded when the cups were occupied by the other mouse not

used for training (e.g., N2 or L2). We found that CA2 neural activ-

ity supported generalized decoding of both identity and position

when subjects explored novel mice, with a CCGP accuracy

significantly greater than chance (Figures 5B and S4C). By

contrast, when subjects explored littermates, identity CCGP

was not significantly greater than chance. Although position

CCGP with littermates was greater than chance, it was smaller

than that seen with novel mice (Figures 5C and S4D). When we

grouped neural data by trial to determine XOR decoding perfor-

mance, we found a significant decoding performance during

exploration of littermates (Figures 5C and S4B) but not during

exploration of novel mice (Figure 5B and S4A). These differences

in CCGP values and XOR decoding were statistically significant

(Figure 5D) and consistent with the PCA results that littermates
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Figure 4. CA2 activity is higher dimensional for social/spatial representations of littermates compared with novel mice

(A) Top: left, experimental scheme with two novel mice. Right, PCA projections along the first 3 principal components of the four social/spatial conditions of the

experiment—N1 or N2 in the left (l) or right (r) cups. Pseudo-population activity vectors from 6mice. Bottom: PC projections from different viewpoints highlight the

parallelism of coding directions and the consequent 2D geometry. Dashed lines show how linear planes separate conditions based on identity (left) and position

(center) but not XOR (right).

(B) Same analysis as in (A) for the two-littermate experiment. The first three PC projections adopt a three-dimensional geometry that allows for decoding of

identity, position, and XOR (bottom left, center, and right). Coding directions for identity are orthogonal (bottom left) so that a decoding plane for identity in the

right cup will not necessarily decode identity in the left cup, resulting in a low CCGP for identity.

(C) Mean point-to-plane distance of individual conditions (e.g., N1-left) from the plane spanned by the remaining three conditions (e.g., N1-right, N2-left, and N2-

right). The distance is normalized by the mean point-to-point distance between the three remaining conditions such that a perfect tetrahedron will give a mean

point-to-plane distance equal to 1. A mean point-to-plane distance equal to 0 indicates a two-dimensional geometry. The geometry for two novel mice is nearly

planar (mean point-to-plane distance = 0.01), while the geometry for littermates is compatible with a random sample of four points in three-dimensional space

(mean point-to-plane distance = 0.43; random points = 0.41).

(D and E) Angular distance between coding directions of position and identity in the PCA space, visualized in angular degrees (D) and cosine similarity (E). Top

panel of (D) shows how angles between coding directions are computed from the representational geometry of the four conditions. A cosine similarity of 1 is

equivalent to an angle of 0 degrees, and a cosine similarity of 0 to a 90� angle.
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are encoded in higher-dimensional social/spatial representa-

tions than novel mice.

To examine how the geometry of CA2 social/spatial represen-

tations varied among the six subject mice, we analyzed the de-

coding performance when linear classifiers were trained on

data from each individual subject mouse. Although individual

mouse decoding performances were reduced compared with

the pseudo-population results, due to the lower number of neu-

rons recorded from the individual mice, five out of six mice

showed a significantly smaller identity CCGP (p = 0.026, Fig-

ure 5E) and a trend for an increased trial (XOR) decoding (p =

0.055, Figure 5E) from social/spatial representations of litter-
mates compared with novel mice. By contrast, we did not

observe a clear difference in position CCGP. Thus, our single an-

imal and pseudo-population results provide a consistent picture

that social/spatial representations during encounters with two

novel animals are represented in a lower-dimensional geometry

compared with the representations of littermates.

Familiarity is represented as an abstract variable that
generalizes across identity and spatial position
To investigate whether CA2 provided an abstract representation

of familiarity, we imaged CA2 activity (438 neurons from 5 sub-

ject mice) as subjects explored for 5 min an arena with a novel
Neuron 112, 1–14, April 17, 2024 7
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Figure 5. Greater generalization but reduced number of variables decoded for novel compared with littermate mice

(A) Scheme for decoding identity CCGP, position CCGP, and trial (XOR).

(B) Pseudo-population CCGP values for novel mouse identity (0.70) and position (0.82) are significantly greater than null model (0.49 ± 0.04 for both). Trial number

(XOR) decoding (0.54) does not differ from null model (0.50 ± 0.06).

(C) For littermates, identity CCGP (0.55) is not significantly greater than null model (0.50 ± 0.05). Position CCGP (0.76) is greater than null model (0.50 ± 0.03). Trial

number (XOR) decoding (0.66) is now greater than null model (0.50 ± 0.06).

(D) Difference in indicated decoding performance (D) with two littermates compared with two novel mice. D identity CCGP =�0.14; null = 0.00 ± 0.06; p = 0.0042.

D position CCGP = �0.06; null = 0.00 ± 0.04; p = 0.029. D XOR = 0.12; null = 0.00 ± 0.04; p = 0.0012.

(E) Identity CCGP, position CCGP, and trial (XOR) decoding results from 6 individual subjects compared during exploration of novel mice and littermates. White-

faced symbols and error bars connected by dashed lines showmean ± SE values from 6mice. Identity CCGPwas significantly greater for novel mice (0.58 ± 0.04)

compared with littermates (0.51 ± 0.03; p = 0.017; Cohen’s d =�1.57). There was no significant difference for position CCGP (novel mice: 0.64 ± 0.05; littermates:

0.60 ± 0.04; p = 0.26; Cohen’s d =�0.56). There was a trend for a greater trial (XOR) decodingwith littermates (0.57 ± 0.02) comparedwith novelmice (0.51 ± 0.03)

that did not reach significance (p = 0.055; Cohen’s d = 1.11). For null model distributions (B and C), values are mean ± SD, error bars show 2 SDs around mean;

p values estimated from Z score of data compared with null model (B and C) or paired t test (E). *p < 0.05, **p < 0.01, ***p < 0.001.
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conspecific and familiar littermate present under the two cups in

trial 1 (Figure 6A). In trial 2, subjects explored for 5 min a different

pair of novel and littermate mice, with the positions of the novel

animal and littermate reversed from trial 1 (Figure 6A). Using a

linear classifier, we found that we could decode both familiarity

(grouping data around the two littermates in one class and the

two novel mice in a second class) and position (grouping data

around the left and right cups in the two classes; Figures S5B

and S5C).

Next, we used CCGP to determine whether CA2 activity con-

tained an abstract representation of familiarity (Figures 6A and

6B). We trained a classifier to discriminate between a pair of
8 Neuron 112, 1–14, April 17, 2024
novel and littermate mice that were located in the same cup po-

sition in the two trials (e.g., littermate 1 versus novel 2 in the left

cup) and tested whether this same classifier could discriminate

the different pair of novel and littermate mice in the other cup

(e.g., littermate 2 versus novel 1 in the right cup). We reasoned

that if CA2 representations provided for an abstract coding of fa-

miliarity, we should observe a significant CCGP despite the dif-

ference in the specific identity of the novel animals and litter-

mates and their different spatial locations. Remarkably, despite

the many variables that changed between the training and

testing conditions, CCGP for discrimination of littermates versus

novel individuals was high, significantly greater than chance
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Figure 6. Decoding of familiarity based on tuned geometries of social/spatial representations

(A) Decoding familiarity. Subject mice (n = 5 mice, 438 cells) explored a pair of novel and littermate stimulus mice in a 5-min trial followed by a second 5-min trial

with another pair of novel and littermate mice, with positions swapped from the first trial.

(B) Decoding schemes for familiarity and position CCGP.

(C) Familiarity and position CCGP (0.74) were significantly greater than their null models. (Familiarity: null = 0.51 ± 0.04; p < 0.001. Position: null = 0.50 ± 0.03;

p < 0.001), as was XOR decoding (0.57; null model = 0.54 ± 0.02; p < 0.05).

(D) Geometrical model for how familiarity alters social/spatial representations, illustrated for three example neurons (firing rates r1, r2, and r3). Dark and light gray

circles represent firing rates to specific social and spatial variable combinations during interactions with novel and familiar animals, respectively.

(E) A best fit of the 6 parameters of the model based on the geometry depicted in (D) (see STAR Methods) reproduces our 10 experimental observations (circles

and squares). Lines and shaded areas show mean ± SD values calculated from 100 model simulations. p values are estimated from the Z score of the data

compared with null model. Null model error bars show 2 SDs around the mean. *p < 0.05, ***p < 0.001.
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(Figures 6C and S5D). Thus, CA2 representations implement an

abstract code for familiarity that generalizes across social iden-

tities and spatial locations. We also observed a high CCGP for

position and a low trial (XOR) decoding performance (Figure 6C),

suggesting that the social/spatial representations of the novel

and littermate mice form a low-dimensional disentangled

geometry.

The high CCGP was not associated with a global difference in

CA2 neural activity around the novel compared with littermate

mice under the conditions of our experiments (Figures S5E and

S5F). Rather, we found that the difference in activity of individual

neurons around the pair of novel and littermate mice in one cup

was consistently and significantly correlated with the difference

in neural activity around the other pair of novel and littermate

mice in the other cup (Figure S5G). The fact that the coding direc-

tion for familiarity was conserved across the two conditions,

despite the change in salient variables such as position and
social identity, suggests that familiarity shifts the neural repre-

sentation of different conspecifics in a common direction in neu-

ral space.

Reconstructing the full geometry of social/spatial
representations
Based on our findings of CA2 social/spatial representations in

the three experiments of Figures 4, 5, and 6, we hypothesized

that the process of familiarization caused both a progressive,

more-or-less parallel shift in these representations in a specific

direction in neural activity space, explaining the abstract repre-

sentation of familiarity versus novelty (Figure 6C), and a distor-

tion or twisting of the planar representations of novel animals

into an increasingly three-dimensional representation of familiar

animals (Figure 6D), explaining the observed differences in

CCGP and XOR decoding for novel compared with littermate

mice (Figures 4 and 5). To test whether this geometric model
Neuron 112, 1–14, April 17, 2024 9
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Figure 7. Increase in dimensionality of social/spatial representations of familiar compared with novel mice is correlated with social memory

task performance

(A) Two-trial social novelty recognition memory task with novel and littermate mice.

(B) Box-whisker plots showing significantly greater exploration times of littermate and novel mouse in trial 1 (left) but not trial 2 (right). Two-way ANOVA:

interaction partner3 trial, F(1,11) = 9.208, p = 0.011. �Sı́dák’s multiple comparisons test: trial 1 p = 0.0085; trial 2 p = 0.75. n = 12 subjects, including the 6 used in

Figures 3, 4, 5, and 6 and 6 used for other experiments.

(C) Interaction time with novel and littermate mice combined from the two trials for the 6 mice used for imaging.

(D) Left: data from Figure 5E replotted for comparison purposes showing XOR decoding for the 6 subjects during exploration of two novel (NN) and two littermate

(LL) mice. Right: social novelty preference score (y axis, see STAR Methods) was strongly correlated with difference (D) between trial (XOR) decoding perfor-

mance (x axis) during exploration of two littermates versus two novel mice (r = 0.90, p = 0.016).

(E) Left: single-neuron ANOVA non-linear interaction term (F score) was significantly greater during exploration of two littermates compared with two novel mice

(p = 0.0084; Student’s t test, n = 6 mice). Right: change in F score for interaction term was strongly correlated with social novelty preference (r = 0.87, p = 0.025).

Error bars in (D) and (E) indicate mean and SEM. *p < 0.05, **p < 0.01.
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could provide a quantitative description of our results, we calcu-

lated its predicted decoding performance using synthetic data

as we increased the degree of familiarity, and thus the resultant

representational shift and distortion, as a continuous variable.

Despite the limited number of free parameters (6, see STAR

Methods), the model provided a good fit to our findings at the

two ends of the familiarity continuum we experimentally

measured—fully novel compared with fully familiar mice (Fig-

ure 6E). This model also generated predictions for changes in ac-

tivity that might occur with more intermediate degrees of famil-

iarity than our present experiments explored.

The increase in representational dimensionality
correlates with social memory behavioral performance
Based on our model in which familiarization produces a

concerted shift in the location of social/spatial representations

in neural activity space and increases the dimensionality of those

representations, we predicted that the ability of a subject mouse

to behaviorally discriminate a novel from a familiar mouse should
10 Neuron 112, 1–14, April 17, 2024
be correlated with the increase in the dimensionality of the rep-

resentations of familiar compared with novel mice. To test this

idea, we ran a standard social novelty recognition memory test

in which a subject mouse explored a novel and littermate mouse

in cup cages at opposite ends of the oval arena for 5 min in two

successive trials, with positions reversed in the trials (Figure 7A).

Social novelty recognition memory was manifest as the in-

creased exploration of the novel compared with the littermate

mouse, which was more evident during the first presentation of

the novel mouse in trial 1 (Figure 7B). We confirmed the impor-

tance of CA2 for social memory,6,10 as its chemogenetic

silencing using CA2-selective expression of the hM4Di inhibitory

DREADD and systemic injection of the DREADD agonist cloza-

pine N-oxide eliminated the behavioral preference for the novel

animal (Figure S6).

As predicted, we found a strong correlation between the

behavioral preference for social novelty and the increase in

dimensionality of CA2 social/spatial representations as as-

sessed by XOR decoding for littermates compared with novel
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mice (R = 0.90, p = 0.016, n = 6; Figure 7D). The correlation was

particularly noteworthy as the behavioral and imaging experi-

ments were performed 2–3 weeks apart using distinct sets of

novel and familiar mice. By contrast, neither the decoding perfor-

mance for identity nor position was significantly related to

behavior (Figure S7). As an independent measure of the change

in dimensionality, we used a linear model ANOVA to determine

single-neuron responses to identity, position, and their non-

linear interaction (position 3 identity). We then used the F score

for the interaction term, averaged from neurons for individual

subjects, as a measure of dimensionality.22 Consistent with the

XOR results, themean F score for the interaction termwas signif-

icantly greater during interactions with littermates than novel an-

imals (Figure 7E). Moreover, the increase in F score observed for

individual subjects was also strongly correlated with their social

novelty preference (R = 0.87, p = 0.025, Figure 7E), further sup-

porting the relationship between the strength of social memory

and representational dimensionality.

DISCUSSION

Despite previous findings that CA2 neurons respond to social in-

teractions12,13,25 and can distinguish novel from familiar ani-

mals,12 it has been unclear whether and how CA2 representa-

tions support the discrimination of social novelty versus

familiarity while enabling the storage and recall of detailed mem-

ories of prior encounters with a familiar individual. Moreover, as

CA2 neurons also act as place cells,11,12,15,16 it has been unclear

as to how CA2 representations disentangle social and spatial in-

formation. Our results, based on large-scale calcium imaging of

CA2 pyramidal neuron activity, indicate that CA2 simultaneously

meets the demands of detecting social familiarity and discrimi-

nating individual social identity by representing novel animals

and littermates in distinct geometries optimized, respectively,

for generalization and high memory capacity.

The increase in dimensionality of littermate representations

compared with those of novel mice is supported by four inde-

pendent lines of evidence. First, our PCA results indicated that

the (denoised) neural responses to the four conditions of our ex-

periments required only two PC dimensions for novel animals,

whereas littermates required three dimensions. Second, based

on CCGP measurements, the social/spatial representations of

novel individuals provided a greater degree of generalization or

abstraction, a hallmark of low-dimensional representations,

than those of littermates. Third, social/spatial representations

of familiar individuals allowed for greater decoding accuracy of

the XOR (or trial) dichotomy, an index of high-dimensional repre-

sentations. Finally, a linear model ANOVA analysis showed that

individual neurons exhibited a greater non-linear (high-dimen-

sional) mixed interaction term (position3 identity) for littermates

than for novel animals.

Although, in principle, trial decoding could reflect the time dif-

ference between the two trials with littermates rather than the

XORdichotomy, a prior study found that timewas not linearly de-

codable from CA2 activity when two littermates were presented

in the same position in two trials.12 Although our finding that a

linear classifier failed to decode the XOR condition with novel an-

imal representations provides strong support for a low-dimen-
sional coding geometry, it does not necessarily mean that there

is no information about this dichotomy in the recorded neural ac-

tivity. Indeed, we can decode the XOR condition using a classi-

fier with a non-linear (quadratic) kernel for experiments with both

two novel and two littermatemice (Figure S7C). However, the ac-

curacy of the non-linear XOR decoding with novel animals is

considerably less than with littermates, qualitatively similar to

our results with a linear decoder.

In principle, the global increase in mean CA2 firing rate during

exploration of a novel mouse compared with a littermate re-

ported in a prior in vivo electrophysiological study from our lab-

oratories12 could provide a neural mechanism for the generalized

encoding of familiarity versus novelty. Although we found a

similar global increase in calcium activity during the initial

encounter with a novel mouse in our current experiments (data

not shown), in the two trials of the full conditions of the experi-

ment of Figure 6, there was no significant increase in global ac-

tivity around the novel mouse (Figure S5). Thus, our finding of ab-

stract decoding of familiarity cannot be explained by such a

global difference in neural activity under the conditions of our

experiments. The difference in results between the two studies

may reflect differences in experimental protocol (number of

presentations of the novel mouse) or differences in recording

approach.

We were able to capture our key results in a geometric model

in which the identity and spatial location of novel individuals

were represented in a low-dimensional geometry and in which

familiarization led to a concerted parallel shift in those repre-

sentations along the familiarity decoding axis combined with

a distortion into a higher-dimensional geometry. The parallel

shift allows familiarity (compared with novelty) to be encoded

in an abstract format, similar to what has recently been

observed in the human medial temporal lobe for image recog-

nition.26 Whether and how these alterations occur at the cellular

level remains unknown. The shift may be due to an external

signal that encodes familiarity,27 although plasticity within

CA2 might help compute this signal. The increased dimension-

ality, which allows for increased memory capacity, could result

from increased CA2 feedback inhibition (see Treves and

Rolls28), which decorrelates neural activity. These two transfor-

mations were observed in multiple animals and were highly

correlated. Of note, we found that the extent of the change in

dimensionality of familiar versus novel representations was

also highly correlated to a subject’s behavioral performance

in a social novelty memory test (Figure 7).

How do the different geometries of novel and familiar repre-

sentations impact the ability of neurons downstream of CA2 to

read out social/spatial information? As we noted, one of the at-

tractions of using a linear classifier is that it has a ready neural im-

plementation in downstream neurons integrating CA2 inputs ac-

cording to a set of synaptic weights corresponding to the neural

weights of the classifier. By grouping neural representations of

novel and familiar individuals in distinct, linearly separable re-

gions of neural activity space, downstream neurons can be pro-

grammed to read out whether a given individual is novel

or familiar. Similarly, because novel animals are encoded in

low-dimensional social/spatial representations, a downstream

neuron can respond reliably to the identity of a novel individual,
Neuron 112, 1–14, April 17, 2024 11
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independent of that individual’s location. By contrast, the higher-

dimensional representations of a littermate will ensure that

distinct ensembles of downstream neurons differentially encode

thememories of distinct social/spatial encounters with that given

individual, a key component of episodic memory.

Interestingly, our results show similarities to recent descrip-

tions of representational geometry for familiar and novel faces

in the monkey inferotemporal (IT) cortex.29 Similar to our find-

ings, the representations for novel faces are low dimensional

(see Chang et al.24). At short latencies, the dimensionality of

familiar and unfamiliar face representations is similar, with the

two geometries related by a simple translation. By contrast,

familiar representations become distorted at longer latencies,

though it is not clear whether their dimensionality changes.

To our knowledge, our findings provide the first indication that

experience-dependent changes in representational geometry

are associated with the behavioral discrimination of novel and

familiar individuals. The balance of generalization and memory

capacity achieved with these different geometries is likely an

important feature that guides the encoding of complex social re-

lationships to form a cognitive map of social space. Such coding

may be both a product of and required for navigating complex

social behaviors, such as pair bonding, social aggression, and

the creation of social dominance hierarchies. Moreover, as ab-

normalities in social cognition are a hallmark of various psychiat-

ric disorders, it will be of further interest to determine whether

deficits in social memory in various mouse models of human ge-

netic conditions linked to neuropsychiatric disease may be re-

flected in a loss of plasticity in social/spatial representational

geometry.

Finally, we note the distortion that we observed for encounters

with highly familiar littermates is likely to be an important univer-

sal component of efficient memory storage that goes beyond so-

cial memory. The idea that episodic memories should be ‘‘re-

coded’’ to be stored more efficiently dates back to the studies

of David Marr.30 Re-coding has been the main idea behind

the random non-linear transformations proposed in several

studies.28,31–33 These transformations were designed to

generate well-separated representations of different memories,

a function usually referred to as ‘‘pattern separation.’’ Recent

models proposed that pattern separation is a signature of a pro-

cess of memory compression, used by the hippocampus to

generate more efficient decorrelated representations.34–38 In all

of these cases, the transformations increase the dimensionality

of the representations, similar to what we observed in CA2 activ-

ity during littermate interactions. Therefore, the increase of

dimensionality we observed with familiarization could be the

signature of efficient memory encoding, a mechanism that we

predict should be seen in other situations involving different

types of memories.
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d Data reported in this paper will be shared by the lead contact with reasonable request.

d All original code has been deposited on GitHub and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
Amigo2-Cre+/- and Cre-/- mice were housed with littermates, and kept on a 12-hour light-dark cycle in air-filtered, temperature- and

humidity-controlled conditions with food and water available ad libitum.

METHOD DETAILS

Viral injection and GRIN lens implantation
Calcium imaging

A volume of 200 nL AAV2/1.syn.FLEX.GcaMP6f.WPRE.SV40 virus (titer: 6.5 x 1011 pp/mL, Penn Vector Core) was injected at a rate of

150 nL/min into the right hemisphere above dorsal hippocampal CA2 using stereotactic coordinates: AP -2.0 mm, ML +1.8 mm, DV

-1.7 mm from bregma of 3-6 month-old male heterozygous Amigo2-Cre (Cre+/-) mice. Three weeks following injection, a 1.2 mm
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diameter circular craniotomy was centered at the following coordinates: AP -2.0 mm, ML +2.5 mm. We inserted a GRIN lens (Insco-

pix, 1.0 mm diameter, 4.0 mm length) into the craniotomy at a depth of -1.4 to -1.5 mm relative to bregma at a 10� angle from the

midline, so that the lens was parallel to the CA2 cell body layer. The Inscopix Proview system imaged cells during implantation to

adjust the position of the lens to optimize visible fluorescence. Kwik-sil was placed around the craniotomy and the lens secured

in place using Metabond dental cement. The top of the Proview lens cuff was filled with Kwik-cast to protect the lens. Mice were

housed with littermates for one week before a plastic baseplate was placed over the lens and secured withMetabond dental cement.

The baseplate and microscope were placed over the lens and the position was adjusted until cells were maximally in focus.

Pharmacogenetic silencing of CA2

We injected 8 Amigo2-Cre-/- (controls) and 12 Amigo2-Cre+/- male mice in dCA2 with a Cre-dependent virus expressing the inhibitory

hM4Di designer receptor exclusively activated by designer drugs (iDREADD), AAV2/8 hSyn.DIO.hM4D(Gi)-mCherry. 200 nL of virus

(1.9x1012 pp/mL) was injected into dCA2 bilaterally using the following coordinates: anteroposterior (AP) -2.0mm, mediolateral

(ML) +/-1.8mm, dorsoventral (DV) -1.7mm.

Immunofluorescent Labeling & Imaging

We perfused mice at the end of the experiments using saline followed by 4% PFA in ice-cold PBS. Brains were extracted and incu-

bated in 4% PFA overnight. Brains were sliced in coronal orientation with thickness of 60 mmusing a Leica VT1000S vibratome. Sec-

tions were permeabilized and blocked for 1 hour with 5% goat serum and 0.4% Triton-X in PBS at room temperature. Sections were

incubated overnight with a CA2 marker primary antibody, either pcp4 (1:300, rabbit anti-pcp4 #HPA005792, Sigma-Aldrich) or STEP

(1:1000, mouse anti-STEP # 4396, Cell Signaling Technology) at 4�C in 0.1% Triton-X in PBS plus 5% goat serum. The following day,

slices were washed with PBS three times for 10 minutes in PBS and incubated with secondary antibodies (respectively: 1:500 goat

anti-rabbit IgG, Life Technologies, or 1:500 goat anti-mouse IgG1, Life Technologies) for three hours. Slices were again washed three

times in PBS for 10 minutes/wash. DAPI (ThermoFisher Scientific, #D1306) staining was applied at 1:1000 for 15 minutes in PBS at

room temperature prior to mounting. Slices were mounted using Fluoromount (Sigma-Aldrich) and imaged using Zeiss LSM 700

confocal microscope.

Extraction of Calcium Signals
Data Acquisition, Preprocessing and Motion-correction

On the day of the experiment, mice were moved to the behavior room and subject mice and littermates were separated into holding

cages. Mice were allowed to acclimate to the environment for 30 minutes. An nVista 3.0 Inscopix miniaturized microscope was in-

serted into the baseplate and used to record calcium fluorescence from dCA2 pyramidal neurons during social and non-social

behavior using Inscopix data acquisition software (20 frames per second, 50-ms exposure, 0.2–0.3 mW/mm2 EX-LED). The working

distance between the microscope objective and the lens was adjusted to maximize cell focus, and this distance was maintained be-

tween trials and from session to session. To align behavior and calcium videos, a 5V TTL pulse from an Ami-2 Optogenetic interface

triggered calcium recordings through Anymaze software at the start of each trial along with a behavior video recording. Behavior re-

cordings were collected at a rate of 20 Hz. The raw videos from separate sessions were concatenated and then run through Inscopix

Data Analysis software. Videos were preprocessed to correct defective pixels and 4x spatially down-sampled. Background fluores-

cence was removed using a spatial band-pass filter and fluorescence videos were motion-corrected using the Inscopix motion

correction algorithm. The preprocessed and motion corrected tiff files were then exported for cell identification and signal

deconvolution.

Segmentation and ROI Identification

Cell regions-of-interest (ROIs) were identified using the Python CaImAn package for large-scale calcium imaging data. The spatial

footprints and deconvolved signal for the active sources (ROIs) were extracted using CNMFe,43 and then the scaled raw traces

and spatial footprints were exported to Matlab. We used a custom GUI to evaluate individual ROIs and spatial footprints, and those

with non-spherical or non-oval shapes caused by motion artifacts were excluded from analysis. We detrended the raw traces over a

window of 50 s using custom scripts. Finally, the computed traces, separated by session, were deconvolved using the OASIS algo-

rithm for nonnegative signal deconvolution (baseline = trace median, noise = trace MAD, spike thresholds = 2x MAD). OASIS is

embedded into the CNMFe algorithm,43 and has been validated and used in previous published reports for spike estimation in hip-

pocampal pyramidal neurons.44–46

Behavior
Calcium recordings

We imaged dCA2 pyramidal neurons in a total of 15 Amigo2-Cre heterozygous male mice in multiple tests probing social recognition

and memory. Prior to the first test, mice were handled and habituated for three days on the following schedule: Handling (day 1),

handling, exposure to oval arena for 15 minutes (day 2), handling, exposure to holding cage for 30 minutes, scruffing/insertion of

the microscope, and to the oval arena for 15 minutes with microscope inserted (day 3). Mice were additionally habituated in the

oval arena to empty cups for 10 minutes. No changes in subject mouse behavior, including during social interaction, were observed

compared to wild-type controls.

In each test, subject mice were placed into an oval arena that consisted of two half-circles with radius 15 cm connected to a central

square area with length of 30 cm (total dimensions: length 60 cm, width 30 cm, height 45 cm). Wire pencil cups (radius 5 cm) were
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placed 10 cm from the two ends of the arena along themidline andwill hereafter be referred to as left cup and right cup. Stimulusmice

were placed underneath the cups as described for each test. Between consecutive trials, subject mice were removed to a holding

cage to which they had been previously habituated for approximately 2 minutes while the oval arena was cleaned with 70% alcohol

wipes to remove any olfactory cues, wiped with paper towels, cleaned with water, and then wiped with paper towels until dry. The

cups with or without stimulus mice were re-introduced to the arena, and finally the subject mouse was reintroduced into the arena

and the trial initiated in ANY-maze. The position of the two stimulus mice were randomized to the left or right cups in the first trial, and

the positions then swapped in the second trial. Stimulus mice were age- and sex-matched to subject mice (3–6 months old).

In each trial, the subject mouse was free to explore the arena. Periods of interaction with cups or conspecifics in the arena, defined

as times when the subject’s head was oriented towards the center of the cup within a zone equal to 2x the cup radius (10 cm), while

the subject was actively sniffing, were manually scored. In a minority of tests and trials, the subject mouse climbed on top of the wire

pencil cups. In these cases, the period atop the cupwas excluded from analysis. The behavior videos were run through a deep neural

network trained using DeepLabCut to recognize the position of the mouse head and body, as well as location of the objects placed in

the arena. Errors in the DeepLabCut output were corrected using an automated custom Matlab script.

Interaction with mice with similar degrees of novelty or familiarity

Six subject mice (n=439 neurons) were exposed to two novel mice using three 5-min trials: habituation trial, two empty cups; trial 1,

two novel mice; trial 2, the same two novel mice with positions swapped (Figure 1C). The same six subject mice (n=595 neurons) were

exposed to two familiar littermates using three 5-min trials: habituation trial, two empty cups; trial 1, two familiar littermates in the

cups; trial 2, the same familiar littermates with positions swapped (Figure 2E). Subsequent tests were run at least one week apart.

The neurons for each subject were not registered across sessions.

Social Novelty Recognition Test

Five subject mice (neuron n=438) underwent the following three 5-min trials: habituation trial, two empty cups; trial 1, novel mouse 1

and familiar littermate 1; trial 2, novel mouse 2 and familiar littermate 2, with novel/familiar animal positions swapped relative to trial 1

(Figure 7A).

Familiar versus novel mouse recognition test

Twelve subject mice underwent the following three 5-min trials: habituation trial, two empty cups (left and right); trial 1, novel mouse

and familiar littermate in the two cups; trial 2, same novel mouse and familiar littermate with positions swapped (Figure 6A). Of these

twelve subject mice, six were additionally run in the two-novels and two-littermates tests as described above.

Effect of CA2 silencing on social memory

Three weeks after iDREADD viral injection, Amigo2-Cre heterozygous mice (n=12) and wild-type littermates (n=8) were habituated to

IP injection for four days. On the third and fourth day, mice were additionally habituated to the same oval arena used in calcium

recording experiments for 5minutes and to an individual holding cage for 30minutes. On the fifth day, miceweremoved to the exper-

imental room and allowed to acclimate to the environment for 30 minutes in their individual holding cages. Mice were then injected

intraperitoneally 30 minutes prior to testing with 10 mg/kg clozapine-n-oxide (CNO), the ligand for the iDREADD receptors, to reduce

CA2 activity.

Thirty-minutes post-injection, subject mice were run through two 5-minute learning trials in the oval arena: trial 1, novel mouse 1

and novel mouse 2 in the two cups; trial 2, the same two mice with positions swapped. In between each trial, the subject mouse was

returned to the holding cage for approximately 2minutes. Following trial 2, the subject mousewas returned to its holding cage. After a

two-hour interval, the subject mouse was returned to the arena for a memory recall trial: trial 3, one of the previously encountered

mice in the learning trials (e.g. novel 1, now familiar 1) and a third previously unencountered novel mouse (novel 3). The behavior

videos were manually scored for interactions, defined by the same criteria as those applied during calcium imaging behavior, by

an investigator blinded to the identities of the subject mice and the individuals under the cups. Memory recall was assessed by

the greater interaction time with novel 3 compared to the previously encountered mouse, using the same statistical analysis

described to determine social memory above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior Statistical Analysis
To determine whether there were significant differences in the interaction times of the subject mouse with different social stimuli, we

ran a two-way ANOVA of trial and interaction partner with repeated measures for both factors using Graphpad Prism software

(version 9.0.1). �Sidák’s multiple comparisons test was used post-hoc to determine significant differences between interaction part-

ners. Statistical significance was defined as p < 0.05.

As a measure of preference for one interaction partner (B) against the other (A), in Figure 7D and 7E, we calculated the social pref-

erence score defined as:

Preference Score ðB : AÞ =
tB � tA
tB+tA

Where tA and tB are the length of time the subject mouse interacted with mouse A andmouse B across both social interaction trials.
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Single-neuron analysis
The response of each neuron to the experimental variables was quantified using a linear model approach combined with an ANOVA

table to assess the statistical significance of adding individual terms to the linear model. Neural activity was binarized and fitted by a

linear model comprised of a cell-specific intercept and three terms: identity (mouse 1 or mouse 2), position (left or right cup) and the

interaction term (position x identity), along with a baseline intercept. The F-score of the ANOVA test for adding or removing each of

these three termswas taken as ameasure of individual response of the neuron to these variables. For analyses that compare the two-

novels and two-littermates experiments, data was balanced across the two setups so that each of the four conditions has the same

number of exploration time in the two experiments.

PCA analysis
To visualize the four conditions in a reduced-dimensionality space, we first performed a principal component analysis on the data

resampled, as described below in the population decoding analysis, so that the pseudo population data contained the same num-

ber of samples for each of the four conditions. We then projected the resampled data in the space defined by the first three prin-

cipal components. For each of the four conditions, we took the median of each position in the PC space as the position of the

corresponding centroid. We then used the resulting four centroids to perform our geometrical quantifications as described in

Figure 4.

Population decoding analysis
The decoding analysis was performed using a linear classifier based on a support vector machine (SVM) with custom-written Python

scripts based on the scikit-learn SVC package.47

Data labeling

For each subject and session, we selected neural data corresponding to periods inwhich the subject was actively interactingwith one

of the two cups. We then divided the neural recordings into 100 ms time bins and labeled them according to whether the subject was

interacting with the left or right cup and to the identity of the animal under the cup (labeled as #1 or #2). In each test there were always

two trials, with the positions of animals swapped in trials 1 and 2. Thus, for each test there were a total of 4 social/spatial conditions

[mouse 1 on left (#1-left), mouse 1 on right (#1,-right), mouse 2 on left (#2-left), mouse 2 on right (#2-right)]. We then divided the four

conditions into binary dichotomies (class 0 and class 1) according to the variable we wished to decode. For example, social stimulus

identitywas decoded by grouping firing data around the familiar animal as class 0 (#1-left & #1-right) and grouping activity around the

novel animal as class 1 (#2-left & #2-right). We decoded stimulus position by grouping activity around the left cup as class 0 (#1-left &

#2-left) and grouping firing activity around the right cup as class 1 (#1-right & #2-right). For XOR decoding, we grouped together con-

ditions that have no identity or position values in common, defining two classes that incidentally correspond to trial 1 and trial 2 of our

experimental setup: (#1-left & #2-right) as class 0 and (#1-right & #2-left) as class 1.

Cross-validation and pseudo-simultaneous population activity

For each subject and session, we divided data from each class of conditions (0 and 1) into training and test pseudo-trials, which each

trial defined by a bout of interaction, with bout duration lasting from the beginning to end of a given interaction. Bout durations lasting

longer than 1 s were split into multiple 1-s-long pseudo-trials. We randomly selected 75% of pseudo-trials for training a classifier and

the remaining 25% were used for testing decoding performance. We next constructed a set of pseudo-population activity vectors

from the training and testing datasets from a given animal by dividing each pseudo-trial into 100-ms bins, with each bin having its

associated population activity vector containing the mean event rate observed during that time bin for each neuron recorded. We

then randomly sampled q population vectors (where q=5 unless otherwise noted) from the training data set of each subject and

concatenated them to form a single qn-long vector, where n is the total number of recorded neurons in a given subject. This proced-

ure was repeated T = 2qn times to create a training data set of pseudo-population firing rate vectors. We then followed the same

procedure to build the pseudo-population testing data vectors, by sampling population vectors from the testing data set of each sub-

ject. In some cases, we performed decoding analysis on data from all N neurons from all animals tested in a given behavioral task. In

this case, we randomly sampled q population vectors from the training data set for each individual animal. Next, we concatenated

those extended population vectors into one pseudo-simultaneous qN-long vector. We repeated this process sampling successive

sets of random population vectors for a total of T = 2qN pseudo-simultaneous training set vectors. We then repeated this process to

obtain the testing data set vectors. To disentangle the selectivity to position and stimulus identity, which are correlated variables, the

sampling procedure described above was performed in a balanced way so that each condition within each class was equally rep-

resented in the training and testing pseudo-simultaneous data set (e.g., for identity decoding: balancing #1-right and #1-left for class

0 and balancing #2-right and #2-left for class 1). The pseudo-simultaneous training data set was then used to train a SVM linear clas-

sifier, which was tested on the pseudo-simultaneous testing data set to assess the decoding performance as the fraction of correctly

classified pseudo simultaneous vectors. The whole procedure, from training-testing division to performance assessment, was

repeated for k = 20 times to implement a k-fold cross-validation scheme, taking themean score (mdata) as the estimated performance

value of the decoding procedure. To allow for a meaningful comparison of decoding results across experiments, only subjects that

explored the four conditions (#1-left, #1-right, #2-left, #2-right) for aminimumof 3 s each, divided into aminimumof 4 pseudo-trials, in

all three experiments (two-novels, two-littermates, novel-littermate) were used in the decoding analysis.
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Null model and p-value
We tested the decoding performance obtained by the cross-validated procedure described above against a null model where the

labels (0 and 1 as defined above) of pseudo-trials were randomly shuffled. After each shuffling, the same cross-validation procedure

was repeated, obtaining a null-model value for decoding performance. We repeated the shuffling nnull times to obtain a distribution of

null model performance values, yielding a mean null decoding performance (<mnull>) and standard deviation of the null distribution

(snull). The p value was then derived from the z-score of the performance computed on data compared to the distribution of nnull
null-model values: z = [mdata - <mnull>]/snull.

Mixed selectivity analysis
We performed the following analysis to assess whether cells were specialized for one of two variables (hereby called variable A and

variable B) or whether they encode the variables with mixed selectivity based on decoding weights. For a given variable X and each

cell i; we identified its coding importance, defined as wX
i , as the absolute value of its average decoding weight normalized by the

standard deviation over k cross-validation folds48:
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i;n is the SVM decoding weight of cell i in the nth cross-validation fold. We obtained a vector of all the values across the re-

corded population of cells:
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We denoted these vectors as W

�!A, for variable A and W
�!B for variable B. If the recorded population is specialized, neurons that

encode A will not encode B, and vice-versa. Therefore, a population of specialized neurons will be characterized by anti-correlated

values of W
�!A and W

�!B (Figure S2A). On the other hand, if neurons are not specialized (mixed selectivity), we expect no relationship

between A and Bcoding, resulting in a null correlation between W
�!A and W

�!B (Figure S2B). A third possibility is that neurons are not

specialized, but information is unevenly distributed across the population. In this case, neurons will typically encode neither or both

variables, resulting in a positive correlation between W
�!A and W

�!B (Figure S2).

To assess whether the recorded population was specialized, we computed the Spearman correlation between the two coding

importance vectors, denoted as rð W�!A; W
�!BÞ. We then compared the value of rð W�!A; W

�!BÞ with those obtained by a null model

where mixed selectivity is implemented by performing a solid random rotation of the coding weights of the two variables in the neural

activity space. In this null model, the two coding vectors W
�!A and W

�!B have no relationship with each other. For each null model

iteration k we sample a random rotation matrix Rk and use it to rotate the weights vectors of A and B decoding before taking the

average across cross-validations. This procedure was repeated 100 times, each time with a new rotation matrix, to obtain a popu-

lation of null values. The recorded population of cells was then classified as either mixed or selective depending on the significance of

the correlation, computed using the z-score of the Spearman correlation compared to the null model:

- rð W�!A; W
�!BÞ < null model: selective population

- rð W�!A; W
�!BÞ � null model: mixed selectivity

- rð W�!A; W
�!BÞ > null model: mixed selectivity

Ablation analysis to assess decoding importance of specialized cells

To assess the relative importance of specialized and mixed neurons in the decoding performance for a given variable, we per-

formed an "ablation" analysis where each class of cells (specialized and mixed) is selectively excluded from the data used for

the decoding analysis. Say we are testing the decoding importance of two variables, A and B. First, we identified the nA special-

ized cells for variable A and the nB specialized cells for variable B as described in the multi-selectivity analysis methods. Those

neurons that are not specialized for either A or B were labeled as "mixed." We then excluded all the nA + nB neurons that were

identified as specialized and performed the decoding analysis for variables A and B (as described in the decoding methods) to

get the decoding performances DPsel
A and DPsel

B . We then randomly selected the same number of mixed neurons by choosing

a random value of selectivity lower than the selectivity threshold used to identify specialized neurons, which is equivalent to a

random angle in the WA vs. WB graph (see Figures S2C and S2E and multi-selectivity methods), and choosing the nA + nB neurons

that have the selectivity closest to this random value (orange dots in Figures S2C and S2E). We excluded these neurons and

repeated the decoding analysis to obtain the decoding performances DPmix
A and DPmix

B . By repeating this random choice proced-

ure 20 times, we obtained a population of decoding values for both variables when excluding mixed selectivity neurons from the

decoding analysis (blue error bars in Figures S2G and S2H). Finally, the decoding performances DPsel
A and DPsel

B were compared to

the population of DPmix
A and DPmix

B values to assess whether excluding specialized neurons affected decoding performance differ-

ently than excluding mixed-selective neurons. Statistical significance for each variable was assessed by computing the z-score of

DPsel compared to the corresponding DPmixpopulation.
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Cross-condition generalization performance
Cross-condition generalization performance (CCGP) was computed as described in Bernardi et al.21 We first constructed pseudo-

simultaneous activity vectors as described above, except we did not group data from pairs of conditions with the same decoding

variable. Rather, pseudo-trials used for training a given classification came from one of the pairs of conditions that both contained

the decoding dichotomy for a given classification while sharing the same non-decoding variable. The corresponding testing set con-

sisted of data from the other pair of conditions that shared the non-decoding variable. For example, when decoding social identity,

one training set consisted of data during interactions withmouse 1 versusmouse 2, when both were in the left cup, and the testing set

consisted of data with mouse 1 and mouse 2 in the right cup. The decoding for a given dichotomy was then repeated, swapping the

classes of pseudo-trials used for the training and testing data (e.g., training with data obtained with mouse 1 and mouse 2 in the right

cup and testing on data with mouse 1 and mouse 2 in the left cup). CCGP was obtained from the mean decoding performance from

the two pairs of training and testing conditions.

We estimated the null model CCGP as described in Bernardi et al.21 To obtain a meaningful null model for generalization perfor-

mance, it is important to maintain the level of decodability observed experimentally while selectively randomizing generalization be-

tween different pairs of conditions. To achieve this, we performed a solid rotation-translation of the pseudo-population vectors

sampled from each condition in the neural activity space (using q=5 as described for the decoding analysis) by random shuffling

of the neuron index. After the four independent rotations, we computed the CCGP as described above to obtain a null model

CCGP value and repeated this to obtain 20 null model CCGP values. As described in the decoding section, the significance of

the CCGP value for the experimental data was computed from its z-score with respect to the population of null model CCGP values.

Comparing decoding performance and CCGP across experiments

To compare the decoding performance or CCGP of the same subject in different experimental paradigms (for example, interacting

with the two novel or the two littermates), we balanced the subject’s behavior so that each of the four conditions had the same inter-

action time (the minimum) between the two paradigms. If the two sessions had a different number of recorded neurons, say nmin and

nmax, we randomly sub-sampled the session with a larger number of neurons tomatch the smaller one. The random choice of nmin out

nmax neurons was repeated for each cross-validation (for decoding) or each pseudo-simultaneous data sampling (for CCGP) when

decoding the nmax session.

Null model for decoding difference

To assess the significance of a difference between two decoding performances mA and mB, we first obtain a distribution of null model

values for both performances as described above. We then created a null model distribution for the difference mA � mB by taking all

possible differences between null model values for mA and null model values for mB. The p value of the difference was then derived

from the z-score of the performance difference mA � mB compared to this distribution of differences. Note that the null model dis-

tribution of differences has a standard deviation that is approximately the sum of the two standard deviations of individual null model

distributions.

Geometrical model
To test our geometrical interpretation of the experimental data, we developed a statistical model in which increasing degrees of fa-

miliarity led to a progressive and continuous change in the geometry of social/spatial representations. The model is composed of a

population of N neurons whose firing rate is described by two binary latent variables, corresponding to position and stimulus identity

of animals with the same degree of familiarity, reproducing the data from the interaction test with two novel animals or two littermates

(Figures 2 and 5).

In the absence of noise, each of the four conditions of an experiment would be associatedwith a point in N-dimensional neural firing

space. To introduce response variability to the same stimulus, the population firing probability for each condition was described by an

isotropic Gaussian distribution with unit variance centered around a condition-specific centroid in the neural firing space.

To account for our results during interactions with two novel animals, themeans of the four gaussian distributions were arranged so

that the two coding directions for the variables were orthogonal – reproducing a low-dimensional, or abstract, representational ge-

ometry in the firing space approximated by a two-dimensional rectangle. The length of two arms of the rectangle, denoted as m0
pos and

m0
id, correspond to the signal-to-noise ratio in the representations of position and social identity variables, respectively, which in turn

are reflected in decoding performance.

We accounted for the changes we observed in decoding of familiar compared to novel animals by introducing a familiarity latent

variable, denoted as f, in which increasing degrees of familiarity modify the planar, rectangular representation of novel animals as

follows.

1. Reduces signal-to-noise ratio of the identity variable: midðfÞ = m0
id � hf

2. Performs a global shift by vector length af along a third coding direction orthogonal to identity and position axes

3. Increases the representational dimensionality of the two variables by shifting each of the four condition centroids by a vector of

length gf along a random direction for each condition

Using this model, we created simulated data for the activity of N neurons during a set of simulated sessions as a mouse is allowed

to interact with two individuals of the same degree of familiarity, f, in left and right cups, with positions swapped in two trials. For each
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given condition (given mouse in a given cup), we randomly sampled T=5000 N-dimensional points from the distribution in neural ac-

tivity space for that condition. We then analyzed the simulated data using the same linear decoding and CCGP procedures we used

for the experimental data analysis. For each value of f, we repeated the sampling and analysis for n = 200 simulated sessions and

took the mean and standard deviation for all decoding performance values (shown in Figure 4E). We carried out this analysis for a set

of values of f ranging from 0 (fully novel) to 1 (completely familiar) at increments of 0.1. Wemanually selected values of m0
id, m

0
pos, g, and

h to reproduce the values of CCGP identity, CCGP position, and XOR decoding across the two-littermates and two-novels exper-

iments at two optimized values of fNN and fFF , for a total of 6 fitted parameters to reproduce 10 experimental values: position decoding

and CCGP, identity decoding and CCGP, and XOR decoding in the two-novels and two-littermates experiments. For the results

shown in Figure 4, we used N = 80, m0
pos = 0:8, m0

id = 0:6;h = 0:45;a = 3:0, g = 0:55, fNN = 0:23, and fFF = 0:78.

Tradeoff between memory capacity and generalization in a Hopfield recurrent neural network
To study the trade-off between memory capacity and generalization capacity, we sampled patterns from geometries of different

latent dimensionality, andmeasured (1) howmany of these patterns a Hopfield recurrent neural network (RNN) can store and retrieve

and (2) how well a linear classifier trained to decode a latent variable from these patterns is able to generalize across values of the

other latent variables.

Sampling patterns with varying dimensionality

To obtain patterns of varying dimensionality, we first defined L and N as the minimum and maximum dimensionality, with N[ L. A

set of P binary L-dimensional latent patterns lm;m˛ ½1;P� was then obtained by sampling L i.i.d. Bernoulli random variables P times:

lm = ðlm1; lm2 ;.; lmLÞ; lmi ˛ f0;1g
We then expanded each pattern lm into an N-dimensional embedding by repeating each l

m
i value N=L times, so that the collection

of patterns kept the original dimensionality (L) in the new (N-dimensional) space.

xm = ðxm1; xm2 ;.; xmNÞ = ðlm1;.; lm1; l
m

2 ;.; lm2 ; l
m

L;.; lmLÞ
We call the L-dimensional space the latent space, with li being the ith latent variable, and the N-dimensional space the embedding

space, which corresponds to the neural activity space of N neurons.

We then increased the dimensionality of the patterns by randomly flipping each value x
m
i in each pattern with probability d. There-

fore, d controls the dimensionality of the resulting set of patterns, which ranges from L (at d = 0) to N (at d = 0:5). We denote the

collection of patterns obtained after applying this distortion as fxmgd.
Computing the memory capacity as a function of dimensionality

We then tested how d affects the memory capacity of a Hopfield RNN of N neurons. Notably, when patterns are random and uncor-

related (in our case, d=0.5) we expect a capacity that scales with the number of neurons N.49,50 In the next section below, we show

through a theoretical argument that, in the case of patterns that span a L-dimensional space in an N-dimensional embedding (d=0),

the critical capacity is reached at O(L) patterns. In the simulation shown in Figure 3H, we numerically computed the memory capacity

for the intermediate cases by varying d in 10 equally-spaced values from 0 to 0.5. For each value of d, we constructed a set of P pat-

terns fxmgd as explained above. We then used these patterns to train a Hopfield model and tested its ability to retrieve each of the

patterns used for training from a noisy version of the original (see the next section for more details). We then defined the maximum

capacity of the model as the maximum value of P such that the fraction of retrieved patterns was larger than 95%. The resulting value

of PðdÞ for all 10 values of d was normalized with Pð0:5Þ to be visualized in Figure 3H.

Computing the generalization capacity (CCGP) as a function of dimensionality

To compute how the generalization capacity of the neural code is affected by dimensionality, we used the same set of patterns fxmgd
generated at a given value of d and tested how well a decoder trained to report one of the latent dimensions ll generalizes across

values of a second latent dimension lm. For a given pair of latent dimensions ðl;mÞ, we divided the set of patterns fxmgd into four clas-

ses depending on the value of the two latent variables. We then trained a linear SVM decoder to discriminate patterns in the

(ll = 0; lm = 0Þ class from patterns in the (ll = 1; lm = 0Þ class, and tested it in the task of reporting patterns in the (ll = 0; lm = 1Þ
class from patterns in the (ll = 1; lm = 1Þ class. This gave us a CCGP for the ðl;mÞ pair, denoted as CCGPlm. We then took the

mean CCGP value over all the possible pairs 1
LðL� 1Þ

P
l;m

CCGPlm as a measure of generalization performance.

Theoretical derivation of the memory capacity of disentangled representations
Our goal is to compare memory storage capacity of low- and high-dimensional representations. We assume that a memory of an

experience is recollected when the neural circuit is presented with a cue and it can reconstruct the patterns of activity corresponding

to the experience stored in memory. This can be implemented with a feed-forward network that essentially implements an autoen-

coder (see e.g. Benna and Fusi35) or in recurrent neural network like the Hopfield network,49,50 in which each attractor of the neural

dynamics represents one memory (this scenario would be compatible with the anatomy of dCA2, which is known to have recurrent

excitatory connections.51 In both cases, the synaptic weights are chosen in a way that the recollected memory is reconstructed: for

the autoencoder the memory is simply reconstructed in the output layer, and for a recurrent network it is reconstructed after relax-

ation in an attractor. Also, in both cases a partial cue (e.g. a pattern that has a limited overlap with the one stored in memory) will lead

to the reconstruction of the full stored memory.
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In order to estimate the memory capacity we need to make assumptions about the nature of the memories. For random uncorre-

lated patterns the memory capacity of the Hopfield model is p � N: the number of attractors p scales linearly with the number N of

neurons. Random patterns are high dimensional, as long as p is not too large (i.e. when p<N) and N is large enough, so this is one

illustrative and highly representative case of memories that are represented with high dimensional geometries. Real world memories

are not random and uncorrelated but it is not unreasonable to consider the random representations if one assume that the brain has a

neural circuit that decorrelates the representations (recoding), at least so some extent, before storing them in memory (see for

example Benna and Fusi35). This neural circuit could be implemented in the dentate gyrus, which is known to play an important

role in pattern separation28,32,52 (pattern separation is clearly a form of decorrelation).

Theoretical derivation
We start by considering one possible way of constructing disentangled representations. The representations we now define are not

the only possible type of disentangled representations, but they are a representative and illustrative example. Moreover, they have a

geometry that is compatible with the observed low dimensional representations. Each pattern is obtained by concatenating L vectors

of NL neurons, each encoding one latent variable Ll, with l = 1; :::; L (e.g. we could assume that L = 2 and the first NL neurons of the

full vector encode the position of the animal, and the second NL neurons encode the identity). For simplicity we assume that each

latent variable is encoded by the same number of neurons. All the neurons within each group of NL neurons have the same activation

state, which equal to the value of the latent variable Ll that they encode, and hence they are perfectly correlated. Following50 we

assume that there are only two activation states ± 1 for each neuron.

The patterns to be memorized are x
m
i where m is the memory index, i is the index of the neuron (i = 1; :::;N). As discussed above,

the patterns are obtained by concatenating vectors that encode different latent variables. Hence x
m
i = Lm

l for i = ðl � 1ÞNL + 1; :::;

ðl � 1ÞNL +NL, where Lm
l is value of the latent variable indexed by l for memory m. For example if L = 2, the memory m would have

the following form:

xm = x
m

1; x
m

2 ; :::x
m

NL
;

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{NL

x
m

NL+1
; xmNL+2

; :::xmN

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{NL

= Lm

1 ;L
m

1 ; :::L
m

1 ;
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{NL

Lm

2 ;L
m

2 ; :::L
m

2

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{NL

We assume that Lm
l = ±1 with equal probability. In other words the patterns Lm

l are random and uncorrelated. This implies that

each memory is constructed by choosing randomly each latent variable. This could correspond to a particular episode in which,

for example, a certain animal is encountered at a particular location. The identity of the animal and the location are assumed to

be random. These representations are low dimensional as their dimensionality is L and L is assumed to be much smaller than N.

We now estimate the memory capacity using a simple signal to noise analysis, as in Hopfield.50 If the initial state is set by the input,

and it is slðtÞ, then the state of activation at time t + 1 of neuron sk is given by the following expression:

skðt + 1Þ = sign

 XN
l = 1

wklslðtÞ
!

where k; l = 1; :::N and N = LNL and wkl is the synaptic weight connecting neuron l to neuron k. The argument of the sign function is

total synaptic current to neuron k and we call it Ik . We assume that wkl is computed using the Hopfield prescription:

wkl =
Xp
m = 1

x
m

kx
m

l

We now focus on the total incoming synaptic current to neuron k:

Ik =
XN
l = 1

wklslðtÞ

We consider the case in which a generic pattern is presented, for example memory 1: sðtÞ = x1. In the sum over l, we can now

group together all the neurons that encode the same latent variable (they all have the same state of activation) and express the total

synaptic current as a function of the L variables, which are independent by construction (both with respect to l and to m):

Ik =
XNL

l = 1

wklx
1
l +

X2NL

l = NL+1

wklx
1
l +.

The first sum contains neurons that encode only the first latent variable L1, the second sum only the neurons that encode L2 etc.

and all the states of activation x1l within each sum are the same: for example x1l = L1
1 for all l = 1;:::;NL. It is now convenient to switch

to the indexes of the latent variables:

In = NLwn1L
1
1 +NLwn2L

1
2 + ::: =

XL
l = 1

wnlL
1
l
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Where n is the index of the latent variable encoded by neuron k, the neuron whose state of activation has to be updated. wnl is the

value of the weight between a neuron encoding latent variable l and a neuron encoding latent variable n and it is given by:

wnl =
Xp
m = 1

Lm
nL

m
l

We then separate the sum over m into two parts:

In = NL

 
L1

n

XL
l = 1

L1
lL

1
l +

X
m> 1

XL
l = 1

Lm
nL

m
lL

1
l

!

the first term reproduces the stored memory (L1
n ) that has to be recollected and hence is usually called (memory) signal. The second

accounts for the interference from the other memories, and under the assumption that the values of the latent variables are random

and uncorrelated, it is basically just noise. AsL1
lL

1
l = 1, the signal scales likeNLL and the noise term has a variance of approximately

N2
LpL (there are pL independent terms in the noise). So the signal to noise ratio (SNR) is L=

ffiffiffiffiffiffi
pL

p
=

ffiffiffiffiffiffiffiffi
L=p

p
. This means that the SNR of

the memory to be recollected remains large enough, even in the presence of other memories, as long as p<L. Hence the maximum

number of memories that can be recollected scales as L, the number of latent variables. Notice that NL cancels out, hence the max

capacity p does not depend on the total number of neurons but only on the number of latent variables. This result is not surprising and

it holds also for other learning rules. For example for the pseudo-inverse approach49,53,54 it is clear that the memory capacity scales

linearly with the dimensionality of the input patterns, which in our case is L.

Numerical simulations
We verified this theoretical result by numerical simulations. Given a latent dimensionality L and a neural dimensionality N, we con-

structed p patterns Lm by expanding the latent space into correlated chunks of NL neurons each in the neural space, as described

above. We then used the p expanded patterns xm to train an Hopfield model and tested its ability to retrieve one of the patterns used

for training from a noisy version of the original. To construct noisy versions, we randomly flipped 10% of the units. A successful

retrieval was identified if the model converged to a pattern with less than 5% flipped neurons compared to the original pattern after

one step of the Hopfield dynamics, hence getting closer to the original pattern.

We then computed the fraction of retrieved patterns for different values of L andN. As shown in Figures S3A andS3B, the fraction of

retrieved pattern decreases when p increases, a sign of limited memory capacity. The decreasing profile varied with L (Figure S3B)

but not with N (Figure S3A), as expected by the theory. We then defined the maximum capacity as the maximum value of p such that

the fraction of retrieved patterns was larger than 95% (green dashed line in Figures S3A and S3B). As shown in Figure S3C, this ca-

pacity increases with N, but it saturates to a value that depends on the latent dimensionality N. Moreover, this value is much lower

than the one obtained with the same number of neurons in a high-dimensional setup where patterns are random and uncorrelated

(black dashed line in Figure S3C). Finally, we computed how the maximum storage capacity, i.e. the maximum value of memorized

patterns when N is large enough, scales with the latent dimensionality L. We found a good linear scaling of the maximum storage

capacity with L (Figure S3D), hence confirming the results obtained in the theoretical derivation above.

Limitations of the model
Notice that we had to assume that the weights between neurons encoding the same latent variable are all set to zero. Otherwise we

have a problem similar to the presence of autapses in the Hopfield model (synapses that connect a neuron with itself): the autapses

greatly enhance the stability of the input cue, at the expense of the ability to recall the stored memory.49,54 By setting all the synapses

between neurons encoding the same latent variable to zero, we ensure that the network recollects the memory stored in the synaptic

weights and it does not simply reproduce the cue. We neglected the corrections due to these zero weights in the formulae above

because they do not change the scaling properties we are interested in when L, NL and N are large enough.

The simple calculations reported here have only the purpose to illustrate some properties of memory systems storing disentangled

representations. It has several limitations: 1) the disentangled representations we considered are not the only possible low dimen-

sional representations, and in particular we should consider representations that are rotated, which would be more similar to those

observed in the experiment. In the simple case considered above each neuron encodes only one disentangled variable. 2) It will be

interesting to consider representations that are not fully disentangled and have a dimensionality that is intermediate 3) the learning

rule is very simple and it is biologically plausible but it doesn’t consider the problem of autapses (how does the system set to zero the

connections between neurons representing the same latent variable?). On the other hand it seems to be clear from the experimental

observations that CA2 is not really dealing with these low dimensional representations because the representations of familiar ani-

mals are high dimensional. The only purpose of the calculations reported here is to show that there is a problem of memory capacity

with low dimensional representations and that is probably the reason why they are not used in CA2 to represent familiar animals.
Neuron 112, 1–14.e1–e9, April 17, 2024 e9
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