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SUMMARY
Adaptive sensory behavior is thought to depend on processing in recurrent cortical circuits, but how dy-
namics in these circuits shapes the integration and transmission of sensory information is not well under-
stood. Here, we study neural coding in recurrently connected networks of neurons driven by sensory
input. We show analytically how information available in the network output varies with the alignment be-
tween feedforward input and the integrating modes of the circuit dynamics. In light of this theory, we
analyzed neural population activity in the visual cortex of mice that learned to discriminate visual fea-
tures. We found that over learning, slow patterns of network dynamics realigned to better integrate input
relevant to the discrimination task. This realignment of network dynamics could be explained by
changes in excitatory-inhibitory connectivity among neurons tuned to relevant features. These results
suggest that learning tunes the temporal dynamics of cortical circuits to optimally integrate relevant sen-
sory input.
INTRODUCTION

Cortical circuits process sensory information through both

feedforward and recurrent synaptic connections (Lamme

and Roelfsema, 2000). Feedforward connectivity can filter

(Hubel and Wiesel, 1962; LeCun et al., 2015) and propagate

(Abeles, 1991; Van Rossum et al., 2002) relevant information,

allowing rapid categorization and discrimination of stimuli

(Thorpe et al., 1996; Resulaj et al., 2018). However, the major-

ity of synaptic input received by neurons in sensory cortex

arises from neighboring cortical cells (Peters et al., 1994;

Douglas et al., 1995), and recurrent cortical dynamics exerts

a powerful influence on network activity during sensory stim-

ulation (Fiser et al., 2004; Reinhold et al., 2015). The functional

role of such recurrent synapses in the integration and trans-

mission of sensory information remains poorly understood.

Many of the stimulus features represented in the spiking

output of neurons in primary sensory cortex are already present

in the net feedforward input they receive (Lien and Scanziani,

2013). Previous studies have proposed two possible functions

of recurrent cortical synapses. First, recurrent synapses may in-

crease the signal-to-noise ratio (SNR) of the relevant sensory

features through selective amplification (Douglas et al., 1995;

Ben-Yishai et al., 1995; Somers et al., 1995; Murphy and Miller,
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Cossell et al., 2015). Second, recurrent synapses may enhance

the efficiency of the encoding by suppressing redundant re-

sponses in similarly tuned cells (Olshausen and Field, 1996;

Lochmann and Deneve, 2011; Chettih and Harvey, 2019). How-

ever, although recurrent amplification and competitive suppres-

sion can increase the SNR of single-neuron responses and

improve coding efficiency, respectively, such mechanisms

cannot increase the amount of sensory information transmitted

through the network beyond the information that the network re-

ceives in its input (Cover and Thomas, 2006; Seriès et al., 2004;

Beck et al., 2011; Kanitscheider et al., 2015; Zylberberg et al.,

2017; Huang et al., 2022).

Recent studies have shown that visual features such as

orientation become easier to decode from both single-cell

and population responses in primary visual cortex (V1) when

mice and monkeys learn to associate them with behavioral

contingencies (Poort et al., 2015; Khan et al., 2018; Jurjut

et al., 2017; Yan et al., 2014). This apparent improvement in

representation is accompanied by changes in functional in-

teractions among excitatory and inhibitory cell types with-

in the local circuit (Khan et al., 2018). Since changes in

recurrent amplification or competitive suppression cannot in-

crease the total available information, it remains unclear how
blished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Stimulus discrimination performance depends on temporal integration of weighted sensory input

(A) Feedforward inputs to a two-neuron network, shown for two different stimuli (red and blue).

(B) A weighted sum (linear projection) of the instantaneous inputs shown in (A).

(C) The temporally integrated input projection for each stimulus (cumulative sum of projected inputs shown in B).

(D) Distributions of instantaneous feedforward input for each of the two stimuli (colored ellipses), their optimal linear discriminant (dashed black arrow), and a

second suboptimal projection (dashed gray arrow).

(E) The signal (difference inmean; solid lines) and noise (standard deviation; dashed lines) of activity following linear projection and temporal integration, shown for

the two projections in (D).

(F) The instantaneous (dashed) and temporally integrated (solid) signal-to-noise ratio of these two projections.
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changes in cortical connectivity could generate the observed

improvements.

Here, we ask whether improvements in stimulus decodability

over learning could arise through selective temporal integration

of relevant feedforward sensory input. We first show analyti-

cally how the output of a network can be tuned to optimally

discriminate pairs of input stimuli by matching its recurrent dy-

namics to their sensory input statistics. In particular, we show

that a stimulus decoder applied to network output performs

best if the dimension of network input with greatest SNR acti-

vates a pattern of recurrent network dynamics that decays

slowly. We then study how the dynamical properties of neural

circuits in mouse V1 change as animals learn to discriminate vi-

sual stimuli. Using a dynamical systems model fit to experi-

mental data (Khan et al., 2018), we find that slowly decaying

patterns in the recurrent dynamics became better aligned

with high-SNR sensory input over learning. Finally, we analyze

circuit models with excitatory and inhibitory neurons to explore

how this alignment might arise through changes in the circuit.

We find that stimulus-specific changes in connectivity between

excitatory and inhibitory neurons increase the alignment of

recurrent dynamics with sensory input as observed experimen-

tally. These connectivity changes predict changes in stimulus

tuning and cell type-specific reorganization of dynamics within

the model, which we find to be recapitulated in the experi-

mental data. Our findings suggest a critical role for cortical dy-

namics in selective temporal integration of relevant sensory

information.
RESULTS

Sensory discrimination relies on temporal integration of
optimally weighted sensory input
We first asked how the dynamical properties of a recurrent

network influence its capacity to discriminate sensory inputs.

The scenario we considered had one of two possible stimuli

appear for the duration of a trial. Each stimulus generated an

input to each neuron in the network with constant mean corrup-

ted by additive, temporally uncorrelated, Gaussian noise (this

approximates the net feedforward synaptic input a neuron re-

ceives from a large number of upstream neurons; see Stein,

1967; Capocelli and Ricciardi, 1971; Lansky, 1984). To deter-

mine how these inputs should be integrated for optimal discrim-

ination performance, we adopted a signal processing perspec-

tive (see Methods S1 File).

Two noisy stimuli can be optimally discriminated from the

instantaneous sensory input to the network by taking a one-

dimensional linear combination of the inputs to different neurons

(Figures 1A and 1B) weighted according to the ‘‘linear discrimi-

nant.’’ This is the linear combination of inputs that achieves the

best compromise between separating the mean inputs under

the two stimuli and avoiding projected noise (Figure 1D, black

dashed arrow). Writing uðtÞ for a vector collecting the inputs

to all neurons at time t, the linear discriminant is a vector w of

the same dimension such that the projected input vector

dðtÞ = w$uðtÞ has the greatest possible SNRinputðwÞ for the

discrimination of the two stimuli (Figures 1B and 1D). Then, to
Neuron 111, 106–120, January 4, 2023 107
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Figure 2. Alignment of dynamical modes with feedforward input determines sensory discrimination performance

(A–C) Illustration of a two-neuron network receiving feedforward input and generating an output activity pattern with rapidly and slowly decaying dynamical

modes (brown and light purple). (A) (Top) Constant input to each neuron, and a small input perturbation to neuron 2. (Bottom) The same input shown following

projection onto the two modes of network dynamics. (B) Illustration of network dynamics. Gray arrows depict the dynamical flow of network activity from a given

state when input is held at the constant level shown in (A). Light purple and brown arrows depict modes’ activation patternsm. The trajectory of neural activity in

response to the input in (A) is shown in dark purple. The input perturbation to neuron 2 generates a dynamical response along both modes, each decaying with a

different time constant t. (C) Network output shown for each neuron and along each mode. Single-neuron responses exhibit complex and heterogeneous time

courses, but the network response projected onto any mode exhibits a simple exponential decay.

(legend continued on next page)
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discriminate stimuli over a window of duration T, the optimal

strategy is simply to integrate the linear discriminant projection

across the time window (Figure 1C), yielding an output with

SNRoutput = SNRinputðwÞ ffiffiffiffi
T

p
(Figures 1E and 1F).

These results demonstrate that a network can best generate

distinct activity patterns in response to two different continuous

stimuli if it temporally integrates the input stimuli weighted ac-

cording to their projection onto an optimal linear discriminant.

Recurrent networks enhance sensory discrimination by
alignment of slowly decaying dynamical modes with
optimal sensory input
How might this optimal discrimination function be achieved us-

ing a recurrent network? To address this, we considered how

noisy stimulus input is filtered through the recurrent network dy-

namics. A core feature of recurrent networks is their capacity to

generate multiple distinct activity patterns, which may unfold

with different dynamical time constants within the network’s

high-dimensional activity space (Rabinovich et al., 2006; Miller,

2016; Sussillo et al., 2014). We asked if these different time con-

stants of network dynamics could allow a network to act as an

optimal integrator of sensory input by providing windows of tem-

poral integration over the optimal input discriminant (Goldman

et al., 2009a).

For networks that settle into a steady pattern of firing rates

when driven by a constant input (Figures 2A and 2C), the

behavior of small fluctuations around that input-driven fixed

point can be approximated with a linear dynamical system

(Figure 2B). The dynamics of this linearized network can be

described by a set of dynamical ‘‘modes,’’ each of which asso-

ciates a time constant t with a unique pattern of network activa-

tionm (Figure 2B). The activation patternm is a vector describing

a particular deviation of network activity from the fixed point, with

elements equal to the relative deviation of each neuron, whereas

t determines the time taken for an activity fluctuation alongm to

decay back toward the fixed point through the network dy-

namics. In particular, when network activity is perturbed away

from its input-driven fixed point along any direction, the ensuing

population activity trajectory projected onto any given mode’sm

decays as an exponential function with the corresponding time

constant t (Figures 2B and 2C). Moreover, when the network is

driven by a stimulus input with continuously fluctuating noise

as considered here (Figure 1A), population activity projected

onto any mode’s m behaves as a leaky integrator, with each

mode independently aggregating inputs that fall along its activa-

tion pattern with an integration window of duration t (Figures 2D

and 2E). In the discrimination task, input associated with one of

the two possible stimuli drives the network on any given trial
(D) Distributions of instantaneous feedforward input under two different stimuli

varying noise).

(E) A network with a slowly decaying mode aligned to the input linear discriminan

network is driven by a single-trial input from each of the two stimulus distribution

(F) Distributions of instantaneous network output at equilibrium under each stimu

(G and H) As in (E) and (F) but with a rapidly decaying mode aligned to the input

(I) Signal and noise of instantaneous network output along each mode, as a func

(J) Signal-to-noise ratio of instantaneous network output along eachmode. Note th

more general case of non-normal dynamics is shown in Figure S1.
(Figures 1A, 1D, and 2D). In this case, provided that the two stim-

ulus-driven fixed points are sufficiently close to fall within the

domain of network linearization (Figures 2E and 2F), the SNR

of network output projected onto any single mode’sm following

network integration matches the signal processing solution

above, with SNRoutputðmÞ = SNRinputðmÞ ffiffiffiffiffi
2t

p
(Figures 2I and

2J). Thus, a recurrent network can achieve the optimal strategy

for stimulus decoding (Figure 1) if its recurrent connectivity gives

rise to a dynamical modewith activation patternm that is aligned

to the input linear discriminant w (i.e., m = w) and decay time

constant t that is longer than the stimulus window T (as in

Figures 2E and 2F; Figures 2G and 2H show suboptimal integra-

tion). In other words, the recurrent dynamics are optimized for

discrimination of a pair of input stimuli with linear discriminant

w if fluctuations of network activity along w decay slowly.

Biological neural networks exhibit complex ‘‘non-normal’’ dy-

namics which may rapidly amplify network input and produce

temporally extended ‘‘functionally feedforward’’ network re-

sponses (Ganguli et al., 2008; Murphy and Miller, 2009; Gold-

man, 2009b). In such networks, activation of one network activity

pattern causes subsequent activation of other activity patterns,

leading to transient activity sequences whose lifetime exceeds

the decay time of any individual mode (Goldman, 2009b). We

asked whether these non-normal dynamics might yield further

mechanisms for optimizing stimulus discrimination. We found

analytically that the discrimination performance of a network de-

pends on the geometry of its modes’ activation patterns

(Figures S1A and S1B). When these are orthogonal, correspond-

ing to ‘‘normal’’ networks, response information is maximized

when the most slowly decaying mode has its activation pattern

aligned to the input linear discriminant (Figures 2E, S1A, and

S1B). Analyzing non-normal networks, we found that response

information further improves when multiple modes have their

activation patterns aligned with the input linear discriminant

(Figures S1A and S1B). These improvements arise through func-

tionally feedforward dynamics, which increase the total window

of network integration relative to the decay time constants of the

individual modes (Figures S1A and S1E–S1J) (Ganguli et al.,

2008; Goldman, 2009b).

A surprising consequence of this analysis is that networks

which optimally integrate their input tend to exhibit strong infor-

mation-limiting correlations (Figures S1B–S1D; Moreno-Bote

et al., 2014). This phenomenon occurs in both normal and non-

normal networks and can be understood intuitively by consid-

ering the effect of temporal integration on the mean and trial-

by-trial variability of responses: as temporal integration of the

input discriminant is increased, response variability along the di-

rection separating the two stimuli increases, but the mean
(red and blue ellipses), as in Figures 1A and 1D (note that inputs have time-

t. Blue and red traces show example trajectories of network output when the

s.

lus.

linear discriminant.

tion of the mode’s time constant.

at (A)–(H) show a special case of orthogonal modes, i.e., normal dynamics. The

Neuron 111, 106–120, January 4, 2023 109
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responses to the two stimuli diverge at a faster rate, leading to

increased stimulus discriminability despite increased informa-

tion-limiting correlations (Figures 2D–2F, 2I, 2J, S1A, and S1B).

Thus, strong information-limiting correlations are a signature of

optimal integration of sensory input through recurrent network

dynamics.

Taken together, our findings demonstrate that recurrent net-

works maximize their capacity to discriminate sensory inputs

when they align one ormore slowly decayingmodes of dynamics

with the optimal input discriminant. We reasoned that such a

mechanism may underlie improvements in cortical representa-

tions for relevant stimuli over learning (Poort et al., 2015; Khan

et al., 2018).

Learning reorganizes cortical networks to enhance
integration of relevant sensory input
With this description of recurrent processing in mind, we exam-

ined the effects of learning on cortical dynamics and sensory

representations. We analyzed the activity of neuronal popula-

tions in primary visual cortex of head-fixed mice as they learned

to perform a visual discrimination task within a virtual reality envi-

ronment. Over a period of 7–9 days, mice learned to selectively

lick a reward spout in a virtual corridor lined with vertical but

not angled stripes (Figures 3A and 3B). The responses of the

same populations of neurons to these stimuli were measured

before and after learning using chronic two-photon calcium im-

aging. Learning led to an improvement in the linear discriminabil-

ity of these two stimuli based on instantaneous population re-

sponses (Figure 3E right, p = 0.035, one-sided sign test on

pre- versus post-learning linear Fisher information; see STAR

Methods for details). Given that instantaneous sharpening or

amplification of sensory input by the V1 circuit cannot increase

response information (Cover and Thomas, 2006; Zamir, 1998;

Seriès et al., 2004; Beck et al., 2011), we hypothesized that

such improvements could arise via either (1) an increase in sen-

sory information provided through external input to the circuit

(i.e., an increase in SNRinputðwÞ caused by changes in upstream

processing) or (2) a reorganization of cortical circuit dynamics to

enhance temporal integration of sensory input (Figures 1 and 2).

To address these hypotheses, we first asked whether mouse

behavior or neural activity showed signatures of temporal inte-

gration. As predicted by the temporal integration hypothesis,

reaction times were slower on hit trials than false alarm trials

(p< 10� 16, Wilcoxon rank sum test, median lick time on hit/false

alarm trials 1.24 and 0.87 s) and error rates decreased as a func-

tion of time from stimulus onset (Figures S2A and S2B).

Moreover, stimulus discriminability based on instantaneous

population responses increased over the course of a trial

(Figure 3D, right; Figure 7C), and network responses along the

linear discriminant ramped toward the vertical stimulus before

licking on false alarm trials (Figure S2C) and exhibited slower au-

tocorrelations after learning than before (Figures S2D and S2E),

consistent with an increased integration timescale along the

discriminant. These findings provide neural and behavioral evi-

dence for the temporal integration hypothesis. However, they

do not exclude changes in sensory input or distinguish among

alternative dynamical mechanisms (e.g., Figures 2 and S1),

which we next sought to investigate.
110 Neuron 111, 106–120, January 4, 2023
Distinguishing among these possibilities requires a complete

characterization of the dynamics of the imaged circuit and the

sensory input it receives before and after learning. As it is not

currently possible to achieve this experimentally, we sought to

infer the recurrent dynamics and stimulus inputs which best

accounted for the coordinated activity patterns of the imaged

circuit using a statistical model fit to the data. To this end, we

examined a multivariate autoregressive (MVAR) linear dynamical

systemmodel we had previously fit to population activity imaged

before or after learning (Khan et al., 2018). TheMVARmodel pre-

dicts the activity of each cell at imaging frame t based on (1)

recurrent input from all imaged cells at time step t-1, with stim-

ulus-independent weights; (2) a time-varying stimulus-depen-

dent input, locked to stimulus onset and the same for all trials

with a given stimulus; and (3) the running speed of the animal

at time t (Figure 3C). Imaged responses in the population covar-

ied in time and across trials, in a way that could not be explained

by changes in the stimulus or changes in running behavior (Khan

et al., 2018). The model depended on the recurrent interaction

term to capture such ‘‘noise’’ covariance, and hence, once the

model was fit to data, these weights were effectively determined

by the structure of observed trial-by-trial variability. Conversely,

the stimulus-dependent trial-invariant terms were determined

during fitting so that the input signals, once fed through the

recurrent terms of the model, captured the trial-averaged

response profiles. Any remaining trial-by-trial variability in the

data was assigned to a residual term (see STAR Methods and

Khan et al., 2018 for a detailed discussion of the MVAR model

and its validation on the present dataset). Given this character-

ization of the imaged responses in terms of stimulus-related

input and recurrent interactions (Figure 3D), we then sought to

determine the respective contributions of these components to

the improvements in response information over learning (Fig-

ure 3E right).

To assess whether input information increased over learning,

we computed the linear discriminability of stimuli based on the

stimulus-related input inferred by the MVAR model, assigning

model residuals to noise in this input (Figure 3D, left). Information

contained in this input did not increase (p = 0.36, one-sided sign

test on linear discriminability pre- versus post-learning over all

mice; Figure 3E, left). However, there was an increase with

learning in the gain of output over input information for 7/8

mice (Figures 3E and 3F, p = 0.035, one-sided sign test on rela-

tive percentage difference between MVAR input and output in-

formation). Thus, the MVAR model ascribed improvements in

population response information to learning-related changes in

recurrent interactions acting on stimulus-related input that was

itself unchanged in information content.

If these recurrent changes acted to improve temporal integra-

tion, then the network response to an input pattern aligned with

the linear discriminant should be observed to decay more slowly

after learning than before. Indeed, theMVAR response to a pulse

of such input decayed more slowly after learning for all mice in

which improvements in response information were attributed

to recurrent dynamics (p = 0.035, one-sided sign test on all

mice, Figures 3G–3I). Moreover, when this analysis was

repeated for an input pattern that was orthogonal to the input

discriminant, the decay time did not change over learning
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Figure 3. Changes in V1 population dynamics over learning selectively enhance temporal integration of relevant sensory input

(A) Visual discrimination task.

(B) Behavioral performance of each mouse pre- versus post-learning.

(C) Schematic describing MVAR model fit to imaged population activity. The MVAR model fits variability in single-trial responses of each cell by estimating the

contribution of stimulus-locked input, recurrent input from the local cell population, and running speed.

(D) The inferred stimulus-related and recurrent input and the imaged network output, each projected onto the optimal linear discriminant (mean ± SD over trials for

one mouse post-learning).

(E) Information in MVAR stimulus-related input and network output for each mouse pre- versus post-learning (gray line delineates a particular mouse whose

improvements occurred through enhanced stimulus-related input). (Input information p > 0.36, output information p = 0.035, one-sided sign tests on N = 8mice).

(F) MVAR input-output information gain, pre- versus post-learning for each mouse. (p = 0.035, one-sided sign test on N = 8 mice).

(G) Simulated response of the MVAR model to a synthetic pulse of input aligned to the linear discriminant, pre- and post-learning for one mouse.

(H) As in (G), showing mean ± SEM over mice. Inset shows zoomed in traces.

(I) Left: the decay time constant of responses in (G) and (H) for eachmouse, pre- versus post-learning. Right: the decay time constants for a second input pattern that

carriesno informationaboutstimulus identity. (Discriminant inputp=0.035,non-discriminant inputp=0.64,one-sidedsign testsonN=8mice).SeealsoFiguresS2–S4.
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Figure 4. Improvements in temporal integration of relevant sensory input could arise from either slowing or realignment of dynamical modes

(A) Example of pre-learning dynamics for a two-neuron network.

(B) According to the dynamical slowing hypothesis, modes whose activation patterns are best aligned with the input linear discriminant extend their decay time

constants over learning, leading to longer timescales of integration over the relevant input patterns.

(C) In the dynamical realignment hypothesis, modes which decay most slowly become better aligned to the input linear discriminant over learning.
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(p = 0.64, one-sided sign test, Figure 3I right; Figure S3A). Thus,

learning induced changes in temporal integration which were se-

lective for task-relevant sensory input.

Enhanced temporal integration could arise through changes

in the interaction weights or the stimulus-related input (for

example, if stimulus input realigned to drive more slowly de-

caying network activity patterns). To distinguish between

these possibilities, we refit the MVAR model with either inter-

action weights or stimulus-related input constrained to remain

fixed over learning (see STAR Methods). Changes in temporal

integration did not occur when interaction weights were fixed

(p = 0.36, one-sided sign test) but persisted when stimulus-

related input was fixed (p = 0.004, one-sided sign test,

Figures S3B and S3C). This suggested that the improvements

relied on changes in interaction weights but not stim-

ulus input.

Motor signals such as running and licking are known to modu-

late responses in visual cortex (Niell and Stryker, 2010; Musall

et al., 2019; Stringer et al., 2019). Thus, a possible explanation

for our findings is that stimulus-locked changes in motor

behavior drive changes in cortical responses, which are miscon-

strued as changes in recurrent dynamics by the MVAR model.

We tested this hypothesis using an MVARmodel which included

an additional lick-dependent input and inwhich both velocity and
112 Neuron 111, 106–120, January 4, 2023
licking coefficients were free to change with learning, allowing

not only for changes in motor behavior to drive changes in activ-

ity through fixed coefficients but also for possible effects of

changes in coupling of neural activity to these motor signals

(see STAR Methods). Even in this more flexible model, we found

that the running and licking contributions to population activity

along the linear discriminant were negligible both before and

after learning (Figure S3H). Moreover, repeating key analyses us-

ing this more flexible model did not alter our results (Figures S3I–

S3L). Thus, changes in recurrent integration with learning could

not be explained by stimulus-locked changes in motor behavior.

Taken together, these findings suggest that stimulus informa-

tion in network responses improved over learning through

changes in recurrent dynamics that selectively enhanced tempo-

ral integration of task-relevant sensory input.

Enhanced integration depends on realignment of slowly
decaying modes with sensory input
Altered recurrence could selectively enhance temporal integra-

tion of relevant sensory input in two ways. First, it could lengthen

the decay time constants of those modes whose activation

patterns are already best aligned with the input linear discrimi-

nant (‘‘dynamical slowing hypothesis,’’ Figures 4A and 4B).

Alternatively, it could realign the activation patterns of existing
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Figure 5. The MVAR model supports the

dynamical realignment hypothesis but not

the dynamical slowing hypothesis

(A) Dependence of the time constants of modes on

their input SNR, pre- and post-learning (average

time constant conditioned on normalized input SNR,

mean ± SEM taken over pooled modes over ani-

mals).

(B) Difference between pre and post curves in (A)

(solid black line). Dashed gray lines show 2.5% and

97.5% of shuffled distributions.

(C and D) As in (A) and (B) but for an average of

normalized input SNR conditioned on time constant.

(E) Time constants and normalized input SNRs of

modes pooled over animals pre- and post-learning.

(F) Smoothed histogram of difference over learning

in number of modes with a given input SNR and time

constant (normalized by standard deviation over

shuffles). Dashed black and gray lines show regions

where the number fell below 2.5%and above 97.5%

of shuffled distributions, respectively (see STAR

Methods). See also Figures S2–S4.
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slowly decaying modes toward that discriminant (‘‘dynamical

realignment hypothesis,’’ Figure 4C).

To distinguish between these two hypotheses, we computed

modes of network dynamics and their time constants from the

pre- and post-learning MVAR interaction weight matrices. For

each mode, we computed the proportion of stimulus-related
sc

inc

inp

on

lea

fo
input information that fell along its activa-

tion pattern (its ‘‘normalized input SNR,’’

SNRnormðmÞ = SNRinputðmÞ=SNRinputðwÞ,
which is maximized when the mode is

aligned to the input linear discriminant).

The dynamical slowing hypothesis pre-

dicts that the time constants of modes

with high input SNR should increase

(Figures 4A and 4B). However, the time

constants of modes did not change signif-

icantly over learning, either across all

modes (p = 0.79, one-sided Wilcoxon

rank sum test on pre- versus post-learning

time constants for all modes pooled across

animals) or the subset of modes with high

input SNR (Figures 5A, 5B, and S3J). In

contrast, the dynamical realignment

hypothesis predicts that the normalized

input SNRs of slowly decaying modes

should increase (Figures 4A and 4C). This

prediction was borne out by a striking in-

crease over learning in normalized input

SNR (p = 0.03, one-sided Wilcoxon rank

sum test on all modes pooled across ani-

mals pre- versus post-learning) which

was most pronounced for modes with

time constants of � 700–1,000 ms

(Figures 5C, 5D, and S3K). The range of

time constants for which input SNR

increased was consistent with the time-
ale at which response SNR and behavioral performance

reased (Figures 3D, 7C, and S2B). The increase in normalized

ut SNR occurred for 7/8 mice (p = 0.035, one-sided sign test

average over modes within each mouse pre- versus post-

rning, Figure S3D), whereas time constants increased

r only 3/8 mice (p = 0.86, one-sided sign test on average
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over modes within each mouse pre- versus post-learning, Fig-

ure S3E). Examining the joint distribution of the time constants

and normalized input SNRs of modes before and after learning

(Figures 5E, 5F, and S3L), we found a fall in the number of slowly

decaying modes with low input SNR matched by an increase in

the number with similar decay time constants but high input

SNR. These changes are consistent with a realignment of slowly

decaying modes toward the input linear discriminant.

Signatures of dynamical realignment could also be detected

through non-MVAR based analyses of the data. First, the

response SNRs before and after learning were related by a mul-

tiplicative scaling, as predicted by dynamical realignment but not

slowing of modes (Figure S2F). Second, principal component

analysis revealed slowly varying population modes whose time

course did not change substantially with learning but whose

neuronal activation pattern became better aligned to the

response discriminant (Figures S2G and S2H). These findings

further reinforce the conclusion that network dynamics realign

with learning to optimally integrate task-relevant sensory input.

In principle, enhanced integration could also arise through

greater non-normality in the recurrent dynamics (Figure S1).

However, we found that for 6/8 animals the recurrent dynamics

became less non-normal over learning (p = 0.03, two-sided Wil-

coxon rank sum test), suggesting that this mechanism did not

contribute to the enhancements detected in the MVAR model

(Figures S3F and S3G). Thus, changes in non-normality of dy-

namics did not account for improvements in integration with

learning.

Our dataset comprised multiple molecularly distinct cell types,

which were simultaneously imaged before and after learning (py-

ramidal [PYR], parvalbumin [PV], somatostatin [SOM], and vaso-

intestinal peptide [VIP] expressing, see Khan et al., 2018). We

next sought to determine whether improvements in integration

in the MVAR model relied on cell type-specific changes in

sensory input or recurrent dynamics. To test whether learning

modified the relative contribution of different cell classes to the

population-level representation of task-relevant stimuli, we

computed the total loading of each cell class onto the linear

discriminant before and after learning (Figure S4A, loading was

defined as the proportion of the length of the discriminant vector

that was generated by a given cell class, normalized by the num-

ber of cells in that class). There were no statistically significant

changes in discriminant loading of any cell class with learning,

suggesting that learning did not alter the distribution of popula-

tion information across cell classes (note that this is not inconsis-

tent with the differential improvements in single-cell response

SNR found in Khan et al., 2018, as these may be offset at the

population level by changes in noise correlations). However,

there was a cell type-specific reorganization of the network

response to task-relevant input perturbations, consistent with

the hypothesis that improvements in integration are caused by

changes in dynamical interactions among distinct cell classes

(Figure S4B). Moreover, PV neurons coupled more weakly into

the high-SNR modes that emerged after learning than the low-

SNR modes that disappeared with learning (Figures S4C and

S4D). This suggested that changes in PV cell response dy-

namics, but not SOM or VIP, were important for learning-related

improvements in V1, consistent with the changes in PV func-
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tional interactions and stimulus selectivity found by Khan et al.

(2018) (see also Figure S7B).

In summary, these results support the hypothesis that learning

reorganizes cortical dynamics in order to align slowly decaying

modes of recurrent dynamics with the optimal linear discriminant

of sensory input (Figure 4C), thereby enhancing temporal inte-

gration of task-relevant sensory information.

Stimulus-specific but not uniform connectivity changes
reproduce the changes in dynamical integration
observed in the MVAR model
How might the dynamical realignment observed in the MVAR

model relate to systematic changes in synaptic connectivity

and response tuningwithin the V1 circuit? Constraints in the orig-

inal experiment meant that we were unable to determine the

orientation tuning of the imaged neurons. Thus, we turned to a

canonical circuit model for feature selectivity to investigate the

relationship between network connectivity, tuning curves, and

dynamical modes (Ben-Yishai et al., 1995; Rubin et al, 2015;

Hennequin et al., 2018). The model comprised excitatory and

inhibitory neurons arranged on a ring corresponding to their

preferred orientation before learning. Neurons at nearby loca-

tions formed stronger synaptic connections and received more

similarly tuned feedforward input than those more separated

around the ring (Figure 6A). This is consistent with local microcir-

cuits in visual cortex in which neurons receive feature-tuned

feedforward input (Lien and Scanziani, 2013) and interact

through feature-specific local synapses (Cossell et al., 2015;

Znamenskiy et al., 2018).

We first analyzed the tuning curves and modes of dynamics in

the E-I ring network. The network formed a stable bump of activ-

ity centered on the stimulus orientation (Figure 6B, solid black

line), and each of the four most slowly decaying modes reflected

an interpretable fluctuation about this stable activity pattern:

side-to-side translation (Figure 6B, dashed gray lines), sharp-

ening/broadening, gain of amplitude, and asymmetric shear

(Figures 6C and S5A–S5C). Responses were sharpened relative

to feedforward input (Figure 6B, black versus yellow line) and the

degree of sharpening depended on the strength and tuning

of excitatory and inhibitory synapses around the ring

(Figures S5D–S5F). We askedwhether changes in recurrent con-

nectivity that act to sharpen network responses could account

for the reorganization of dynamical modes observed in the

MVAR model. We found that connectivity changes that

increased recurrent sharpening also reduced alignment of the

slowest dynamical mode with the input linear discriminant, in

contrast to the increased alignment observed in the MVAR

model (Figures S5G–S5L). This relationship between sharpening

and alignment of modes persisted over a broad range of net-

works with varying strength and feature-tuning of excitatory

and inhibitory synaptic weights (Figures S6A–S6D). Thus, uni-

form changes in the strength or tuning of synaptic weights did

not reproduce the realignment of modes with learning observed

in the data.

In Khan et al. (2018), we found that response SNRs of both

PYR and PV cells increased over learning and that these im-

provements were driven by an emergence of stimulus-specific

PYR to PV interaction weights in the MVAR model. We
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Figure 6. Stimulus-specific inhibition aligns the slowest-decaying mode with the input linear discriminant

(A) Excitatory-inhibitory ring network model for V1 orientation selectivity.

(B) Steady-state network response (solid black) and perturbations along the most slowly decaying mode (dashed gray). Feedforward input (yellow) was rescaled

for aid of visual comparison. Only excitatory cells are shown.

(C) Activation patternsm for the four most slowly decaying modes (in order of time constant). Size and color of circles depicts weighting of cell in mode activation

pattern (see B and E bottom, and Figure S5 for alternative visualizations).

(D) Synaptic weight matrix for a ring network with uniform (left) and non-uniform (right) connectivity.

(E) (Top) Feedforward input and steady-state responses for the two networks. (Bottom) The most slowly decaying modem for each of the two networks, overlaid

with the input linear discriminant. The greater overlap between red and yellow lines compared with cyan and yellow indicates increased alignment.

(F–H) Input SNRs (F), time constants (G), and response SNRs (H) for the four most slowly decaying modes. See also Figures S5–S7.
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therefore reasoned that a change in E-I connectivity that is

specific to the learned stimuli might account for the observed

realignment of slow dynamical modes. Thus, we considered a

non-uniform ring network in which excitatory to inhibitory syn-

aptic weights were strengthened locally among neurons tuned

to a particular orientation (Figure 6D). We found that the re-

sulting non-uniform inhibition induced changes in dynamical

modes that were consistent with those observed over learning

in the MVAR model: the slowest-decaying mode became bet-
ter aligned with the input discriminant, whereas its time con-

stant was unchanged (Figures 6E, 6F, S6E, and S7A). Inter-

neurons exhibited substantially weakened coupling into the

translation mode in the non-uniform network, as found for

PV interneurons in the MVAR model (Figures S7B and S4C).

When stimuli were presented at ±20� relative to the subnet-

work center (reflecting the 40� stimulus separation in the

experiment), information was enhanced via a greater separa-

tion of responses around the ring (Figures 7A and S7C). In
Neuron 111, 106–120, January 4, 2023 115
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Figure 7. Stimulus-specific inhibition predicts observed changes in stimulus tuning

(A) Network responses to two stimulus orientations separated by 40�.
(B) SNR of instantaneous network output for three networks (based on simulation of nonlinear dynamics).

(C) SNR of imaged V1 population responses (mean ± SEM over mice).

(D) The change in responses of excitatory neurons to their preferred and non-preferred stimuli induced by non-uniform inhibition (mean and variance over cells).

The greater variance for the preferred stimulus reflects a more heterogeneous response change including both boosting and suppression.

(E) Mean (left) and variance (right) of the change in pyramidal responses to their preferred and non-preferred stimuli over learning. Responses to the non-preferred

stimulus decreased (p = 0.003, two-sided sign test, n = 776 cells), but responses to the preferred stimulus did not (p = 0.8, two-sided sign test; p = 0.025, one-

sided Wilcoxon rank sum test on difference between preferred and non-preferred stimulus response change, n = 776 cells). The variance over cells of response

changes was higher for the preferred than non-preferred stimulus (p = 0.035, shuffling test, n = 776 cells). Error bars show SEM and standard error in the variance

(SEV). See also Figure S7.
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simulations of the full nonlinear network response to feed-

forward input, accumulation of stimulus information was

accelerated by non-uniform inhibition but slowed by uniform

sharpening (Figure 7B). Experimental data showed an acceler-

ated rate of integration over learning consistent with the non-

uniform connectivity change (Figures 7C and S2F). Thus, in

both the analysis of local linearized modes and the evolution

of the nonlinear network responses over time, non-uniform

changes in E-I connectivity accounted for the learning-related

changes in responses imaged from the V1 circuit.

The tuning curve changes induced by non-uniform connec-

tivity (Figure 7A) generated further predictions that we subse-

quently tested on the experimental data. Responses of

excitatory neurons to their non-preferred stimulus were

consistently suppressed by non-uniform inhibition, whereas

responses to their preferred stimulus showed a heteroge-

neous combination of boosting and suppression (Figure 7D).

Changes over learning in imaged PYR cell responses showed

a similar pattern (Figure 7E). Moreover, the average response

SNR of both excitatory and inhibitory neurons increased in the

model (Figures S7D and S7E), as previously reported for the
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imaged responses of PYR cells and PV-expressing interneu-

rons (Khan et al., 2018; reproduced in Figure S7E). Despite

these improvements in single-cell response SNR, neither E

nor I populations increased their loading onto the linear

discriminant, as found for PYR and PV neurons in the data

(Figure S7B). Finally, non-uniform inhibition increased the

slope of tuning curves flanking the E-I subnetwork, as

observed in primate V1 following learning of a fine-scale orien-

tation discrimination task (Figure S7F; Schoups et al., 2001).

Importantly, although dynamical realignment through non-uni-

form inhibition required that feedforward input was more

broadly tuned than network output (Figures 6B and 6E), feed-

forward and recurrent input could nonetheless have very

similar tuning widths as reported experimentally (Lien and

Scanziani, 2013; see Figures S7G–S7L).

Taken together, these findings demonstrate that the learning-

related changes in imaged network responses are consistent

with the emergence of stimulus-specific excitatory to inhibitory

synaptic connectivity within cortical circuits. These connectivity

changes act to increase response information by aligning slowly

decaying dynamical modes with the optimal discriminant of
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sensory input in order to selectively integrate relevant sensory in-

formation over time.

DISCUSSION

We have developed a general framework for modeling the inte-

gration and transmission of sensory information through recur-

rent networks and leveraged this framework to uncover the

changes in recurrent processing that drive improvements in sen-

sory representations over learning. Previous studies suggested

that recurrent synapses selectively amplify or sharpen the

tuning of feedforward input (Douglas et al., 1995; Ben-Yishai,

1995; Somers et al., 1995; Murphy and Miller, 2009; Liu et al.,

2011; Li et al., 2013; Lien and Scanziani, 2013; Cossell et al.,

2015); however, theoretical analyses concluded that sharpening

reduces population response information (Seriès et al., 2004;

Beck et al., 2011). Others proposed that recurrent synapses

selectively suppress responses to remove redundancy between

similarly tuned neurons (Olshausen and Field, 1996; Lochmann

and Deneve, 2011; Znamenskiy et al., 2018; Chettih and Harvey,

2019); however, such mechanisms cannot explain the improve-

ments in response information as animals learn to discriminate

simple sensory features such as oriented grating stimuli (Poort

et al., 2015; Khan et al., 2018). Instead, we show that recurrent

cortical dynamics perform selective temporal integration of rele-

vant sensory information and that learning modifies cortical dy-

namics in order to selectively integrate task-relevant sen-

sory input.

While recurrent integration of sensory information has long

been implicated in decision-making tasks (Shadlen and News-

ome, 2001; Wong and Wang, 2006; Goldman et al., 2009a;

Mante et al., 2013), our work makes three novel contributions.

First, previous work has analyzed recordings of single neurons

(or small populations) and has therefore turned to hand-crafted

circuit models or task-trained recurrent neural networks to inves-

tigate possible dynamical mechanisms for the integration of sen-

sory input (e.g., Wong and Wang, 2006; Mante et al., 2013).

Instead, we fit a dynamical model directly to large-scale cortical

population activity and analyzed how sensory input was inte-

grated within this model, an approach that was made possible

by the simultaneous nature of our recordings. Second, previous

studies have not addressed how learning modifies recurrent

integration to prioritize relevant sensory information. By fitting

a dynamical systems model to population activity from the

same neurons before and after learning, we identified the

changes in dynamics that drive improvements in cortical repre-

sentations for task-relevant stimuli with learning. Third, previous

studies focused on decision-making tasks in which the distal

stimulus was noisy or variable, requiring temporal integration

even when neural processing is perfectly noiseless (Brunton

et al., 2013). Here, we show that temporal integration occurs

even for noiseless stimuli, where all information relevant to the

decision is immediately available in the distal stimulus. This

suggests a role for temporal integration in mitigating internal

physiological noise that would otherwise degrade information

propagation during sensory processing (Faisal et al., 2008).

We inferred cortical dynamics by fitting linear dynamical

models to imaged population activity. Such an approach is
prone to model mismatch, such that temporally coordinated

external input may be erroneously attributed to local interactions

among cells. Thus, although theMVARmodel identified changes

in dynamics over learning, it is possible that such dynamics are

inherited by the local circuit or generated through a broader

network of cortical and subcortical structures. Although our E-I

circuit model (Figures 6 and 7) synthesizes and predicts

numerous findings in our data, including the increase in PYR

and PV selectivity for relevant stimuli, reorganization of PYR-

PV but not PYR-PYR interactions, realignment but not slowing

of dynamical modes, weakened coupling of PV but not PYR neu-

rons into high SNRmodes, and suppression of PYR responses to

their non-preferred stimulus with learning, it is nonetheless

possible that all of these properties are inherited by the V1 circuit

via external input from a downstream integrator. Such hypothe-

ses could be tested in future experiments by recording neuronal

population activity in multiple brain regions simultaneously dur-

ing sensorimotor decision-making tasks. Additional confounds

in the MVAR analysis may arise through the convolution of

neuronal responses by slow calcium dynamics and the temporal

resolution of the data ( � 125 ms). However, although these may

lead to an overestimate of the time constants of network dy-

namics, they cannot trivially explain the change in alignment

of dynamical modes observed over learning. Although we

observed an apparent decrease in non-normality over learning,

measurements at higher temporal resolution are necessary to

detect rapid forms of non-normal dynamics and their changes

over learning (Murphy and Miller, 2009).

Responses of cells in primary visual cortex have been found to

decaywithin a single neuronal time constant when thalamic input

is removed (Reinhold et al., 2015). Can the long timescales of

recurrent dynamics required for selective temporal integration

be reconciled with these observations? One possibility is that

the dynamical regime of cortex is dependent on tonic thalamic

input or on thalamocortical loops. Alternatively, Reinhold and

colleagues may have predominantly activated and measured

rapidly decaying modes of dynamics which obscured the pres-

ence of weakly activated slowly decaying modes intermixed

with the population response. Unless these slowly decaying

modes of dynamics comprise a substantial fraction of the total

response variance, their detection requires recording from neu-

ral populations, whereas Reinhold and colleagues recorded sin-

gle neurons. Future studies could test these hypotheses by

measuring and perturbing different patterns of population activ-

ity during sensory stimulation and quantifying the time constants

of network responses.

Our theory explains a recent report that information-limiting

noise correlations are higher when animals make correct de-

cisions compared with incorrect ones (Valente et al., 2021).

Because these correlations reduce the information about the

stimulus available in the network response relative to an un-

correlated population and yet were associated with improved

behavioral accuracy, these findings were considered to be

paradoxical by Valente and colleagues. Instead, we show

that these findings are an expected signature of optimal inte-

gration of sensory input through the recurrent circuit dy-

namics. In particular, we observe that information-limiting

response correlations across neurons are maximized when
Neuron 111, 106–120, January 4, 2023 117
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networks integrate their sensory input optimally (compare

Figures 2F with 2H and S1A, ellipses which are more elon-

gated along the direction which separates the two means

have higher information-limiting correlations; see also

Figures S1B–S1D). Valente and colleagues also found that

correlations between responses at different time points within

a trial are higher when animals make correct decisions, which

was considered paradoxical because such correlations limit

the ability of downstream readers to decode the stimulus

over the duration of a trial. We show that strong temporal cor-

relations are an expected signature of optimal integration of

sensory input through time by the circuit. Thus, we suggest

that optimal sensory coding is best understood in terms of

the transformation of sensory input signals by the neural cir-

cuit, a perspective which leads to fundamentally different

experimental predictions for the optimal response statistics

than those obtained using abstract neural encoding models

(see also Seriès et al., 2004; Beck et al., 2011; Huang

et al., 2022).

Several previous studies have investigated information trans-

mission through recurrent networks (Seriès et al., 2004; Ganguli

et al., 2008; Beck et al., 2011; Toyoizumi and Abbott, 2011; Dam-

bre et al., 2012; Najafi et al., 2020; Huang et al., 2022). Although

most studies (correctly) concluded that information in network

output cannot exceed that contained in the input, such studies

either (1) quantified information in time-integrated network re-

sponses (Seriès et al., 2004; Moreno-Bote et al., 2014), (2)

modeled sensory input as being static within each trial, varying

only from trial to trial (Najafi et al., 2020), or (3) analyzed network

models which lack the capacity for dynamical integration (Beck

et al., 2011). In our analysis, input noise was time varying, and

recurrent dynamics could integrate input over the course of a

trial, allowing the instantaneous response to carry more informa-

tion than that of the instantaneous input. Although Toyoizumi

and Abbott considered a similar scenario, their analysis was

restricted to networks of randomly connected neurons with anti-

symmetric, saturating transfer functions.

Our analysis provides a general framework for understanding

evidence integration in neural circuits, such as path integration in

grid cells, vestibular integration in head direction cells, and inte-

gration of motion in higher visual areas. While several of these

systems have been studied mechanistically as attractor net-

works (Wong and Wang, 2006; Burak and Fiete, 2009) or statis-

tically as drift-diffusion and population coding models (Ratcliff

and McKoon, 2008; Averbeck et al., 2006), our approach pro-

vides a unifying formalism which links statistical properties of

evidence integration and population coding to the dynamical

properties of the underlying recurrent network. Although we

have focused on changes in network dynamics over learning,

the mechanism of dynamical alignment may also provide a sub-

strate for contextual or attentional modulation of sensory pro-

cessing (Gilbert and Li, 2013). Specifically, top-down input may

modulate the dynamics of recipient neural populations, tran-

siently aligning dynamical modes of the local circuit with relevant

features of bottom-up sensory input according to task context.

Such a mechanism could allow for flexible routing and gating

of information between brain areas through the dynamical

formation and coordination of ‘‘communication subspaces’’ (Se-
118 Neuron 111, 106–120, January 4, 2023
medo et al., 2019; Kohn et al., 2020; Javadzadeh and Hofer,

2022), configured through selective alignment of local modes

across anatomically distributed circuits.
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METHOD DETAILS

Analysis of optimal stimulus discrimination function (Figure 1)
In theMethods S1 File we analyze the problem of stimulus discrimination from a signal processing (or ideal observer) perspective. We

consider a network receiving noisy but stimulus-tuned input and tasked with reporting stimulus identity in its output. Under the

assumption that the input time series for a given stimulus follows amultivariate normal distributionwith temporally uncorrelated, stim-

ulus-independent noise, we show that the statistically optimal method for discriminating two stimuli is to perform a linear projection

and temporal filtering of the input time series. We derive the optimal projection weights and filter, and the signal to noise ratio (SNR)

obtained using an arbitrary projection and filter. While our conclusions rely on the specific assumptions mentioned above, these re-

sults provide intuition that could be extended to more complex scenarios. For example: if input noise is stimulus-dependent or non-

Gaussian the optimal decoder typically becomes nonlinear (Shamir and Sompolinsky, 2004; Yang et al., 2021), if stimulus-indepen-

dent temporal correlations are present in the input the benefits of temporal integration are typically reduced (seeMethods S1 File), but

stimulus-dependent temporal correlations could be extracted by a nonlinear filter to enhance discrimination performance. The key

insight of this signal processing analysis is therefore that stimuli can be optimally discriminated based on a spatiotemporal filtering of

single-trial sensory input, and that the form of the optimal filter depends on the statistics of the input signals.

In Figure 1 we sought to illustrate these observations in a minimal toy example consisting of a reduced two-dimensional

system describing the feedforward input to two neurons under each of two stimuli. The dimensionality and statistics of the

input were chosen primarily to optimize visualization and conceptual insight - our analysis allows for arbitrary numbers of

neurons receiving input with arbitrary stimulus-tuning and noise covariance. For each stimulus si ði = 1;2Þ and at each timestep t,

feedforward inputsuðsi; tÞ � NðgðsiÞ;ShÞwere sampled independently fromamultivariate normal distributionwith stimulus-dependent

mean gðs1Þ = ½1;2�, gðs2Þ = ½2; 1� and stimulus-independent covariance Sh = ½2;1;1;2� (here and throughout, we will use the

shorthand notation that matrix elements separated by commas are on the same row, while elements separated by a semicolon

are on separate rows, e.g. ½x; y� = ½x; y�T ). These time series were projected onto the linear discriminant wLD = S� 1
h ðgðs2Þ �gðs1ÞÞ

to obtain dwLD
ðs; tÞ = wT

LDuðs; tÞ before being summed cumulatively over time to obtain DwLD
ðs; tÞ =

Pt
t0 = 1dwLD

ðs; tÞ. The signal

(difference in mean), noise (standard deviation), and signal to noise ratio of the projection of instantaneous input onto a vector w,

dwðs; tÞ = wTuðs; tÞ, were plotted using analytical expressions DminputðwÞhhdwðs2; tÞ � dwðs1; tÞi = wT ðgðs2Þ � gðs1ÞÞ,
sinputðwÞh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5

P
i = 1;2hðdwðsi; tÞ � hdwðsi; tÞiÞ2i

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTShw

p
, SNRinputðwÞ = DminputðwÞ=sinputðwÞ. Following temporal integration,

the corresponding quantities Dwðs; tÞ =
Pt

t0 = 1dwðs; tÞ were plotted as Dminputðw; tÞhhDwðs2; tÞ � Dwðs1; tÞi = DminputðwÞt, sinputðw;

tÞh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5

P
i = 1;2

hðDwðsi; tÞ � hDwðsi; tÞiÞ2i
r

= sinputðwÞ ffiffi
t

p
, andSNRinputðw;tÞhDminputðw;tÞ=sinputðw;tÞ = SNRinputðw;tÞ ffiffi

t
p

. Iso-probabil-

ity contours at one standard deviation under each stimulus were plotted as gðsiÞ +
ffiffiffiffiffiffi
Sh

p ½cosq; sinq� for q˛ ½0;2pÞ.

Analysis of linear Fisher Information in recurrent networks (Figures 2 and S1)
Linear Fisher Information quantifies the accuracy of a locally optimal linear estimator of a stimulus from network responses (Seriès

et al., 2004; Beck et al., 2011). When network responses follow a multivariate normal distribution, the linear Fisher Information takes

the form of a (squared) signal to noise ratio. We derived analytical expressions for the linear Fisher Information of the instantaneous

output of a recurrent network as a function of its input statistics and dynamics, and for the SNR of network output projected onto any

one of its dynamical modes (seeMethods S1 File). Our results hold for networks with arbitrary numbers of neurons with arbitrary non-

linearities and synaptic connectivity, receiving sensory input with arbitrary stimulus-tuning and noise covariance. Our strongest

modeling assumptions were the linearization of dynamics about a fixed point and the analysis of stationary state response statistics.

We note that under the assumptions made for the sensory input described above, these linearized networks can achieve the optimal

solution to stimulus decoding. However, in the more general case of non-Gaussian, stimulus-dependent and temporally correlated

input noise, integration through nonlinear network dynamics may be required for optimal stimulus discrimination. Thus, our analysis

may be considered as the simplest scenario, but the insight obtained about how information is integrated through both space and

time to optimize neural coding should generalize to more complex situations.

Signal to noise ratio along dynamical modes (Figure 2)

To illustrate the relationship between network dynamics and population coding, we constructed a minimal toy model comprising a

two-dimensional linear dynamical system dr =dt = Ar + uðsi; tÞ corresponding to the linearized dynamics of the firing rates r = ½r1; r2�
of two reciprocally connected neurons. The weight matrix A was constructed by defining two dynamical modes with activation pat-

ternsmi and corresponding time constants ti. We consider a system without oscillations, i.e. one in which the eigenvalues li of A are

real. In that case, ti = � 1=li and the unique weight matrix which generates these dynamical modes is given by A = M� 1LM, where

M = ½mT
1 ;m

T
2 � and L = ½l1; 0;0; l2� (note that we define the mode activation patternsmi to be the left eigenvectors of A, see Methods

S1 File for details). We constructedmi as unit length vectors with a given angle relative to the input linear discriminant using the equa-

tion mi = RðqiÞwLD=kwLDk , where RðqiÞ = ½cosðqiÞ; � sinðqiÞ; sinðqiÞ; cosðqiÞ� is a rotation matrix. wLD was defined as the linear

discriminant of two stimulus inputs with gðs1Þ = ½6;6� , gðs2Þ = ½5; 7� , Sh = ½20;10; 10;20� (these values, along with the modes

and time constants, were chosen to primarily to optimize visualization). We constructed networks with one mode aligned to input
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linear discriminant and the other orthogonal to the first by setting q1 = 0:02p, q2 = q1 + 3p=2. For the network with slowly-decaying

mode aligned to the linear discriminant we set t1 = 10, t2 = 2, and for the network with rapidly-decaying mode aligned to input

linear discriminant we set t1 = 2 , t2 = 10 (in arbitrary units of time).

As Figures 2A–2Cwere designed to illustrate the dynamical modes of the network rather than the stimulus input, we set the input to

u = ðgðs1Þ + gðs2ÞÞ=2 (or u = ½0;0� before input onset). Network responses rwere computed using the solution to the linear dynamics

rðtÞ = expðAtÞðrð0Þ � rNÞ + rN where rð0Þ = ½0; 0� , rN = � A� 1u and exp is the matrix exponential function. The perturbation was

modeled by setting rðtpertÞ = rN + ½0; 10� and computing all future time points as rðtÞ = expðAðt � tpertÞÞðrðtpertÞ � rNÞ + rN
For Figures 2D–2J, network responses to the two stimulus input time series were simulated using the Euler methodwith dt = 0:01,

i.e. rðt + dtÞ = rðtÞ + ðArðtÞ + gðsiÞ + hðtÞÞdt where hðtÞ � Nð0;ShÞ. For visualization purposes, trajectories were smoothed before

plotting for Figures 2E and 2G using a moving average box filter containing 100 time samples.

Input and output iso-probability ellipses were generated as in Figure 1, using the relevant mean and covariance matrix in each con-

dition. Response means were computed using the analytical solution for a linear system at steady state, rNðsÞ = � A� 1gðsÞ, and
response covariance matrices (Figures 2F and 2H) were computed as the solution to the Lyapunov equation AS + SAT + Sh = 0 us-

ing the Matlab function lyap.

Thesignal, noise,andsignal tonoise ratioof stationarystate responsesprojectedalongeachmodedmi
ðs; tÞ = mT

i rðs; tÞwerecomputed

using the equations DmoutputðmiÞhhdmi
ðs2; tÞ � dmi

ðs1; tÞi = DminputðmiÞti, soutputðmiÞhh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5

P
k = 1;2ðdmi

ðsk ; tÞ � hdmi
ðsk ; tÞiÞ2

q
i =

sinputðmiÞ
ffiffiffiffiffiffiffiffiffi
ti=2

p
, and SNRoutputðmiÞ = SNRinputðmiÞ

ffiffiffiffiffiffiffi
2ti

p
respectively, where Dminput; sinput;SNRinput are as described for Figure 1 (see

Methods S1 File for a derivation).

Non-normal dynamics (Figure S1)

Wederived expressions relating linear Fisher Information to the dynamics of an arbitrary normal or non-normal network (subject to the

same approximations described above). These expressions had a simple and interpretable form in three special cases: two-dimen-

sional networks, normal networks, and non-normal networks with strong functionally-feedforward dynamics. Related findings have

been presented previously (Ganguli et al., 2008; Goldman, 2009b).

To illustrate our analytical findings for the two-dimensional case, we constructed networks with modesm1 = ½cosq1; sinq1�,m2 =

½cosq2; sinq2�. Figure S1Awas constructed using the sameprocedure as for Figure 2, but this timewith t1 = 10;t2 = 5. For Figure S1B

we chose input with isotropic covarianceSh = I2 (where IN is the N x N identity matrix) and Dg = gðs2Þ � gðs1Þ = ½1;0�. These inputs

were chosen in order to demonstrate the influence of non-normality as clearly as possible. We set t1 = 10, t2 = 1; 5;7:5;9 and varied

q1; q2 from�p=2 top=2 for each value. For each network (defined by the parameters q1; q2; t1; t2 using the procedure described for Fig-

ure 2), the Fisher Information of the stationary state network response IF = Dr,S� 1Dr was computed by substituting the long-run so-

lution for the mean Dr = � A� 1Dg and the numerical solution to the Lyapunov equation for S (described above). We normalized this

linear Fisher Information by the maximum achievable SNR in any normal network with the same time constants by defining IF;norm =

IF=ðDgTS� 1
h Dg2t1Þ. For each network, we computed the information-limiting correlations as rILC = DrTSDr=ðDrTDrTraceðSÞÞ. For

each choice of t2, we computed the Pearson correlation between the Fisher information and the information-limiting correlations

corrðIF ;rILCÞ, where the correlation was computed over a set of networks spanning the range of q1; q2 ˛ ½�p =2;p =2Þ . We computed

this correlation for various settings of Sh = ½v1; v2�½l1; 0;0; l2�½v1; v2�T , by varying the angle of its principal eigenvector v1 from Dg

and the ratio of its two eigenvalues l2=l1 with l1 = 1 and l2 ˛ ½0;1�.
To illustrate functionally-feedforward networks (Goldman, 2009b), we constructed networks with NxN weight matrix Aij = ð�

1 =tÞdij + udi;j + 1, while varying the weight u and number of neurons N for fixed single-cell time constants t = 10 (where dij is the

Kronecker delta symbol). We set Dgi = di1 and Sh = IN. We derived analytical expressions in the u/N limit for the linear Fisher

Information of network output at stationary state, the temporal filter the network applies to its input, and the optimal linear

readout of network responses. We numerically extended our results to the finite u case by computing the response signal,

response covariance, and linear Fisher Information in the same way as for the two-dimensional networks. To understand

how the finite u and large u networks differ and where the large u approximation breaks down, we also computed the SNR

of the finite u network responses projected onto the large u optimal readout. Full derivations can be found in the Methods

S1 File.

Multivariate autoregressive system model and analysis of neural data (Figures 3, 5, and S2–S4)
Details of the experiment, data preprocessing, calculation of behavioral d-prime (Figure 3B), and fitting and validation ofMVARmodel

on this dataset have been described in detail in previous publications (Khan et al., 2018; see also Poort et al., 2015, 2022). TheMVAR

model used in this study, and the data themodel were fit to, were identical to those of Khan et al. (2018). In particular, in all studies the

data comprised multiple cell types (PYR, PV, SOM and VIP) and the model was fit to all simultaneously imaged cells using a least-

squares method that was blind to cell type. Any cell type-specific analyses were performed post hoc based on the fitted model. For

model performance on held out data, see Figure S10 of Khan et al. (2018). Here, we summarize the MVARmodel and provide details

of novel MVAR analyses used in the present study.

The imagedDF=F signals for each cell were divided into trials of duration -1 to 1 s relative to the onset of a visual stimulus. Here and

below, all sums over time samples are restricted to the Nt = 9 time samples contained in the post-stimulus window of 0 to 1 s

(although the model was fit to the full window of -1 to 1 s containing 17 time samples). We collect the population activity of N
Neuron 111, 106–120.e1–e10, January 4, 2023 e3
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simultaneously imaged neurons at imaging frame t on trial i into an N -dimensional vector denoted r
ðiÞ
t . We define the following quan-

tities which we will make use of below. The trial-averaged activity conditioned on stimulus s and time relative to stimulus onset t is

r
ðsÞ
t = ð1 =NTrialsðsÞÞ

P
i ˛ TrialsðsÞr

ðiÞ
t , where NTrialsðsÞ is the number trials of stimulus s. The grand average over both time samples and

trials conditioned on the stimulus s is rðsÞ = ð1 =NtÞ
PNt

t = 1r
ðsÞ
t . The pooled covariance over vertical ðVÞ and angled ðAÞ stimuli is

P
=

ðNtðNTrialsðVÞ + NTrialsðAÞÞÞ� 1P
s = V ;A

P
i ˛ TrialsðsÞ

PNi

t = 1ðrðiÞt � r
ðsÞ
t ÞðrðiÞt � r

ðsÞ
t ÞT . The linear discriminant of population responses to

the vertical and angled stimuli was defined as woutput
LD = S� 1ðrV � rAÞ.

Description of Model

To infer linear dynamics and stimulus input of the imaged circuit, we fit amultivariate autoregressive linear dynamical systemmodel to

the imaged responses. In the MVAR model, the imaged activity is modeled as:

r
ðiÞ
t = ðA + INÞrðiÞt� 1 + u

ðsÞ
t + xv

ðiÞ
t + e

ðiÞ
t (Equation 1)

where A is an N3N matrix of interaction weights, u
ðsÞ
t is a vector of N stimulus-related inputs, x is a vector of N running speed co-

efficients, v
ðiÞ
t is the running speed of the animal and e

ðiÞ
t is a vector of residuals.

The MVAR model was fit to each dataset by minimizing the sum of squared residuals across all neurons and trials of the vertical,

angled, and gray corridor stimuli before or after learning (-1 to 1 s about the onset of the corridor, which appeared suddenly). Analyt-

ical expressions for the model parameters obtained under this least-squares fit offer insight into their interpretation (Equations 2, 3,

and 4 in Khan et al. [2018]). In particular, the interaction weights depend only on the stimulus-independent covariance of the data

(both the instantaneous covariance S and the covariance between consecutive imaging frames). Given these interaction weights,

the stimulus-related input depends only on the stimulus-conditioned trial-averaged responses r
ðsÞ
t . Thus, the MVAR model uses

the imaged noise covariance of the data (both within and across consecutive time samples) in order to infer interactions between

cells and ascribes any remaining stimulus-dependent variation in trial-averaged responses to sensory input. The residuals have

zero mean under each condition, i.e.
P

i ˛ TrialsðsÞe
ðsÞ
t = 0 for any t and s (Equation 4 in Khan et al. [2018]).

In the main version of the model used in both this study and Khan et al. (2018), x was constrained to have the same value pre- and

post-learning. In this model, changes in running behavior with learning could generate changes in response dynamics via the term

xv
ðiÞ
t with fixed x and varying v

ðiÞ
t . We also considered a second variant of the model with an additional lick-dependent input zl

ðiÞ
t added

to the right hand side of Equation 1, where l
ðiÞ
t = 1 if the mouse licked at time t on trial i and l

ðiÞ
t = 0 otherwise and z was a vector of N

lick coefficients that determined the influence of licking on neural activity. This model was used to determine whether behavioral

changes with learning could offer an alternative explanation for the changes in responses. To allow the model maximum flexibility

to capture neural responses via behavioral variables, we allowed the running and licking coefficients x and z to change with learning

in this model. This allowed for the contribution of running and licking to vary over learning not only due to changes in behavior (v
ðiÞ
t and

l
ðiÞ
t ) but also through changes in the relationship between behavior and neural activity (x and z). The results of this analysis are shown in

Figures S3H–S3L.

Visualization of MVAR input and output along discriminant axis

Havingfit theMVARmodel to theexperimental data,wesought tovisualize how the imaged responsesweregenerated through recurrent

integration of stimulus-related input within the inferred dynamical system. To do so, we projected the sensory input, recurrent input, and

MVAR output onto the linear discriminant in order to see how stimulus-discriminability evolved over time. Single-trial sensory input was

defined as u
ðsÞ
t + e

ðiÞ
t (i.e. residuals were assigned as input noise), recurrent input as ðA + INÞrðsÞt� 1, and MVAR output as r

ðiÞ
t . The linear

discriminant vectors were winput
LD = S� 1

e ðuV �uAÞ and woutput
LD = S� 1ðrV � rA), where uðsÞ = ðNTrialsðsÞNtÞ� 1P

t;j ˛ TrialsðsÞ

ðuðsÞ
t + e

ðiÞ
t Þ = ð1 =NtÞ

P
tu

ðsÞ
t and

P
e = ððNTrialsðAÞ + NTrialsðVÞÞNtÞ� 1 P

s = A; V

P
t;i˛ TrialsðsÞ

e
ðiÞ
t e

ðiÞT
t . The sensory input was projected onto

winput
LD , while both recurrent input and imaged responses were projected onto woutput

LD . We plotted the mean and standard deviation

over trials of these projected activity patterns for a representative mouse in the post-learning condition.

For the more flexible MVAR model containing a lick-dependent term and allowing licking and running coefficients to change with

learning, we computed the projection of each term along the input and output learning discriminants for eachmouse before and after

learning. We averaged these projections across trials for each mouse and then averaged across animals to obtain the results shown

in Figure S3H.

Quantification of MVAR input and output information

The stimulus information (or linear discriminability) of single-imaging frame population responses was quantified as Iout =

ðrV � rAÞTS� 1ðrV � rAÞ. The stimulus information of inferred input was quantified as Iin = ðuV � uAÞTS� 1
e ðuV � uAÞ. Thesemetrics

were computed separately for the pre- and post-learning data for eachmouse. The gain in output to input information was defined as

1003 ððIout =IinÞ � 1Þ.
Quantification of temporal integration of relevant and irrelevant input

To test how temporal integration of relevant and irrelevant input changed over learning in the MVAR model, we analyzed the impulse-

response of the MVAR to two different input perturbations. The impulse-response to a perturbation p was modelled by setting the
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MVAR to an initial state r0 = p and forward-simulating the system over multiple time steps with no other input, i.e. ut;et;vt = 0. This

gave the response rt = ðA + INÞtp. Simulated responses rt were then projected onto a vectorw. For the relevant input, we chose p to

be the MVAR input linear discriminant pfS� 1
e ðuV �uAÞ and w to be the linear discriminant of the imaged population responses wf

S� 1ðrV � rAÞ (w and pwere computed separately pre- and post-learning).With this choice (i.e., by choosing not to enforcew = p), we

allow for the possibility that temporal integration occurs through either normal or non-normal dynamics (Figure S1). For the task-irrel-

evant input we chose pfS� 1
e ðuV + uAÞ and wfS� 1ðrV + rAÞ. Time constants of network responses were defined as t =

ðTs =2Þ½
PN

t = 0rt,wout�2=
PN

t = 0½rt$wout�2, which was adapted from the analytically-derived temporal integration factor ITðfÞ in the

Methods S1 File (see section titled signal processing analysis).

As a more comprehensive control analysis, we generated a distribution of input vectors sampled as random combinations of the

vertical and angled stimulus inputs to each neuron, pif
P

jðS� 1
e ÞijðhVj uVj � hAj u

A
j Þ and wif

P
jðS� 1ÞijðhVj rVj � hAj r

A
j Þ with hXi � Nð0; 1Þ a

set of independent standard normal random variables. We generated 10,000 such random input vectors and computed the time con-

stant t before and after learning for each one. The results are shown in Figure S3A. Note that the linear discriminant input and the task-

irrelevant input described in the previous paragraph are both contained in this distribution of input vectors.

Constrained model fits

To test whether the learning-related changes in temporal integration in the MVAR model require changes in interaction weights or

stimulus input, we refit the MVAR with either A or u constrained be the same both pre- and post-learning. We then repeated the an-

alyses for Figure 3 on the constrained MVAR model fits. Details of the constrained model fitting procedure are provided in Khan

et al. (2018).

Input and output SNR along MVAR modes

To compute the SNR of network input and output projected onto each mode, we used analytically derived expressions which relate

these SNRs to the eigenvectors and eigenvalues of A. Eigenvectors (right vRi and left vLi hmi) and eigenvalues li of the pre- and post-

learning MVAR interaction weight matrices A were numerically computed using the Matlab function eig. The SNR of stimulus input

projected along eachmodewas then given by the equation SNRinputðmiÞhDminputðmiÞ=sinputðmiÞ =
��mi $ðuV � uAÞ��= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi$Semi

p
. The

normalized input SNR was SNRnormðmiÞ = SNRinputðmiÞ=SNRinputðwLD;inputÞ , where wLD;input = S� 1
e ðuV �uAÞ is the input linear

discriminant and SNRinputðwLD;inputÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuV � uAÞTS� 1

e ðuV � uAÞ
q

is the SNR of input projected along the linear discriminant. We

computed the time constant of each mode using the equation ti = � Ts=logðli + 1Þwhich converts from a discrete-time dynamical

system of sampling period Ts to a time constant in an equivalent continuous-time dynamical system. We restricted our analysis of

individual modes to those with real eigenvalues li + 1> 0 (which ensures that ti are real, so that the mode is not oscillatory).

We pooled modes across animals separately in the pre- and post-learning conditions (note that individual modes are not matched

pre- vs post-learning). Both pre- and post-learning, we performed averages over time constants conditioned on normalized input

SNRs and over normalized input SNRs conditioned on time constants. These conditional averages were obtained using a moving

average analysis. To obtain an average normalized input SNR conditioned on time constant, we used a box filter of width 100 ms

with center increasing from 100ms to 1400ms in increments of 25ms. For each increment, we computed the mean normalized input

SNR of all modes within that window. Similarly, we used a box filter of width 0.025 increasing from 0.025 to 0.25 to compute average

time constant conditioned on normalized input SNR. As an additional analysis, we computed a two-dimensional histogram

describing the number of modes nðt;SNRnormÞ with time constant t and normalized input SNR SNRnorm by applying a moving

two-dimensional Gaussian filter over the set of modes using the equation nðt; SNRnormÞ =
PNmodes

i = 1 exp � ½ðti � tÞ2 =ð2s2t Þ +

ðSNRnormðmiÞ � SNRnormÞ2 =ð2s2SNRÞ�. We set st = 100 ms and sSNR = 0:025. We computed the change over learning Dn =

npost � npre and normalized this quantity by its standard deviation across shuffled data (see below) to obtain Dn=sðDnshuffÞ, a mea-

sure of the change relative to chance level, which is plotted in Figure 5F.

To determine whether learning-related changes in time constants or normalized input SNRs exceeded chance level, we performed

a bootstrapping procedure based on shuffling of trials. For each mouse, we pooled pre- and post-learning trials and randomly re-

sampled (without replacement) two sets of trials of equal number to the pre- and post-learning datasets. These shuffled datasets

constituted the null hypothesis that no changes occurred over learning. We then refit theMVARmodel to each of these shuffled data-

sets and repeated the above analyses to obtain the time constants and normalized input SNRs under the null hypothesis. In this way,

we generated a null distribution for each statistic (moving average of change in time constant, moving average of change in normal-

ized input SNR, andDn). We then formed 95% confidence intervals for each statistic based on their respective null distributions. Our

null distributions consisted of 1000 such shuffles.

To test whether our results were biased by individual mice, we also performed within-animal averages of the time constants and

normalized input SNRs pre- and post-learning (Figures S3D and S3E). For this analysis, individual mice were considered as the sta-

tistical unit when performing significance testing.

MVAR non-normal dynamics

Thenon-normality ofdynamicswasquantifiedusingHenrici’s departure fromnormality (Henrici, 1962):H =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAk2F � PN

i = 1jlij2=kAkF
q

,

where kAkF is the Frobenius norm. This measure was computed separately on the interaction weight matrix for pre- and post-learning
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data for eachanimal (FigureS3F).Wealsocomputed the angle between the input lineardiscriminantp = S� 1
e ðuV �uAÞ andoutput linear

discriminantw = S� 1ðrV � rAÞ as a measure of functionally-feedforward integration of task-relevant sensory input (Figure S3G).

Analysis of false alarm trials

Analysis of behavioral errors was restricted to the post-learning data. False alarm trials and hit trials were defined as trials in which the

mouse licked within 4 seconds of the angled and vertical grating stimulus onset respectively. Using a sliding time window of width 2

time bins (� 250ms), we computed the number of hit and false alarm trialsNhitðtÞ andNFAðtÞ for which the first lick fell in that window.

The hit and false alarm rates were defined as rhit = NhitðtÞ=ðNhitðtÞ + NFAðtÞÞ , rFA = NFAðtÞ=ðNhitðtÞ + NFAðtÞÞ i.e. the fraction of first

licks at time t relative to stimulus onset that were hits or false alarms.

Lick-triggered averages on false alarm trials were obtained as LTAðtÞ = ð1 =NFAtrialsÞ
P

i ˛ FAtrials
bwTðrðiÞt� t

lðiÞ
� r

ðAÞ
t� t

lðiÞ
Þ, and similarly

for hit trials, where w = S� 1ðrV � rAÞ and tlðiÞ is the first lick time on trial i (selected as described above). This gave a lick-triggered

average for each mouse, which we then averaged across mice.

Autocorrelation along linear discriminant

Autocorrelations were computed as RðiÞ
t =

PT � t� 1
t = 0 ðwTðrðiÞt + t � r

ðsÞ
t + tÞÞðwTðrðiÞt � r

ðsÞ
t ÞÞ with T = 8, which gave an autocorrelation for

each animal on each trial computed over the 0 to 1 s interval after stimulus onset (this was implemented using Matlab’s xcorr func-

tion). These single-trial autocorrelations were then averaged for each animal and normalized by their zero-lag value to obtain RðsÞ
t =P

i ˛ TrialsðsÞR
ðiÞ
t =

P
i ˛ TrialsðsÞR

ðiÞ
0 . The area under the curve was quantified as AUCðsÞ =

PT
t = �TR

ðsÞ
t =ð2T + 1Þ. This gave an AUC for

each mouse and each stimulus.

Principal component analysis of trial-averaged responses

For each time point t relative to the vertical stimulus onset, we concatenated the trial-averaged responses of all neurons r
ðVÞ
t

across all animals into a single vector xt, and compiled the set of such vectors with time indices from -0.5 to 1 s relative to stimulus

onset into a matrix X with dimensions N3T neurons by time samples. We then performed a singular value decomposition on this

matrix which gave X = USVT , where V contains temporal modes, U contains neuron modes describing the evolution of popula-

tion activity through time, and S is a rectangular diagonal matrix containing the singular values describing the amount each

component contributes to X. We performed this analysis separately on the pre- and post-learning data and plotted the two tem-

poral modes (columns of V ) with largest corresponding singular values (Figure S2G). Each neuron mode (the columns of U) was a

vector containing all cells across animals, so for each animal we extracted the corresponding subvector n and computed the

alignment of this subvector with the animal’s linear discriminant bnT bw, where w = S� 1ðrV � rAÞ. Figure S2H shows the resulting

alignments.

Analysis of cell types in MVAR model

The dataset comprised simultaneous calcium imaging of pyramidal (PYR), parvalbumin-expressing (PV), somatostatin-expressing

(SOM) and vasointestinal peptide-expressing (VIP) interneurons. Thus, the vector of responses at time t on trial i could be written

as r
ðiÞ
t = ½rðiÞPYR;t; rðiÞPV;t; rðiÞSOM;t; r

ðiÞ
VIP;t�, and similarly the output discriminant could be written as w = ½wPYR; wPV; wSOM; wVIP�, etc.

To test whether changes in loading of cell types onto the output linear discriminant occurred with learning, for each mouse we

computed the mean squared loading for a given cell type as Lðw;XÞ = ðkwXk2 =kwk2ÞðN =NXÞ, where X ˛ fPYR;PV;SOM;VIPg, N
is the length of the vectorw and NX is the length ofwX (i.e. the total number of cells and the number of cells of type X for that animal).

Thismeasures the fraction of the norm of vectorw that is generated by cell class X, normalized by the fraction of cells in class X. Mean

squared coupling of neurons into modes was computed in the same way, using the mode vectorm instead of the linear discriminant

w. This gave a single value of mean squared loading per animal and cell type for the input and output discriminants, and a single value

of mean squared coupling per mode and cell type.

We computed the response of cell type X to an input perturbation to cell type Y as wX0 ðA + INÞtpY , where wX , pY are the sub-

vectors of the response discriminant and input discriminant corresponding to cell types X and Y respectively. Note that our

network-level analysis of input perturbations can be decomposed into a sum over these cell class-specific perturbations, i.e.

w,ðA + INÞtp =
P

X;YwX0 ðA + INÞtpY . Thus, this analysis decomposes the network response to perturbations (Figures 3G–3I)

into multiple directed pathways between cell types.

Network models (Figures 6, 7, and S5–S7)
Model Description

Weconsidered two populations of cells (excitatory and inhibitory), each arranged on a ring, withNX cells in population X ˛ fE;Ig. Each
population is parameterized by its orientation on the ring qXi = 2pi=NX . Dynamics were governed by the Wilson-Cowan equation

tXðvrXi =vtÞ = � rXi + fðPY = E;I

PNY

j = 1W
XY
ij rYj + uXi ðqs;tÞÞ, where rXi is the firing rate of neuron i in population X , tX is the time con-

stant of neurons in population X ,WXY
ij is the weight from neuron j in population Y to neuron i in population X , uXi ðqs; tÞ is the external

input to neuron i in population X as a function of the stimulus orientation qs and time t, and f is an element-wise nonlinearity. For both

E and I populations we used a threshold-power law nonlinearity fðxÞ = ½x� g+ (Hansel and Van Vreeswijk, 2002; Miller and Troyer,

2002; Ahmadian et al., 2013; Rubin et al., 2015; Hennequin et al., 2018).
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External input had stimulus-tuned mean gX
i ðqsÞ and additive, temporally uncorrelated Gaussian noise hXi ðtÞ , i.e. uXi ðqs; tÞ =

gX
i ðqsÞ + hXi ðtÞ with hhXi ðtÞi = 0 and hhXi ðtÞhYj ðt0Þi = ðsXÞ2dijdXYdðt � t0Þ . Input tuning curves were circular-Gaussian, rotationally-

invariant functions of stimulus orientation, defined by vonMises functions gX
i ðqsÞ = ðgX

0 =2pI0ðkXÞÞexpðkXcosðqXi � qsÞÞ. The param-

eter kX determines how concentrated the inputs are around the ring (i.e., orientation selectivity of input), while gX
0 controls the total

strength of network input. I0 is the modified Bessel function of the first kind, which is included to normalize the total input strength so

as to be independent of the input tuning kX . To preserve rotational symmetry, inputs were chosen such that that qs = qEi = qIj for some

pair of integers i; j.

For the uniform network, weights had the same circular-Gaussian form as the input, WXY
ij = ðWXY

0 =I0ðkXY ÞÞexpðkXYcosðqXi � qYj ÞÞ
where kXY ,WXY

0 are the concentration and strength parameters for the weights from population Y to population X. For the non-uni-

form network, the excitatory to inhibitory weights were modified to WIE
ij = ðWIE

uniform + WIE
subÞijðhWIE

uniformi =hWIE
uniform + WIE

subiÞ where

WIE
uniform is the connectivity for the uniform network, ðWIE

subÞij = ðWIE
0;sub =I

2
0ðkIEsubÞÞexpðkIEsubcosðqIi � qsubÞÞexpðkIEsubcosðqEj � qsubÞÞ is

the additional subnetwork connectivity, hWi denotes an average over all elements of the weight matrix W and ksub , WIE
0;sub are the

concentration and strength parameters for the excitatory-inhibitory subnetwork.

Parameter settings and modeling assumptions

Wemodeled external input as being temporally and spatially uncorrelated. This choice wasmade to aid numerical analysis, to reduce

the number of parameters, and to aid interpretability of our findings, but does not qualitatively affect our results. For example,

choosing input to be spatially uncorrelated ensured that the response covariance was determined purely by recurrent network dy-

namics and not inherited through input, which allowed clearer insight into the relationship between dynamics and variability. Spatially

correlated input does not influence response tuning or dynamics in our linearized analysis, but does influence the input linear discrim-

inant and therefore also influences the optimal network dynamics. Similarly, if temporal correlations are spatially isotropic, they do not

affect our results other than scaling down the response information by a constant factor, while if temporal correlations vary across

input dimensions then the optimal solution is for the network to integrate input dimensions with high instantaneous SNR but low tem-

poral correlations (see Methods S1 File). Thus, the temporally uncorrelated input we consider gives an upper bound estimate for the

response information of a network that receives input with stimulus-independent temporal correlations.

With the exception of parameter sweeps and Figures S5 and S7G–S7L, all analyses of the uniform and non-uniform network used

the following baseline parameters: NE = 1000, NI = 200, tE = 10, tI = 5, g = 2, kE = 0:5, kI = 0, gE
0 = 0:5, gI

0 = 0, WEE
0 =

0:019, WII
0 = � 1:1WEE

0 , WEI
0 = � 0:04, WIE

0 = 0:04, kEE = 2, kII = 0, kIE = 0:1, kEI = 0:4, kIEsub = 4:2, WIE
0;sub = 0:004,

ðsEÞ2 = 2
PNE

i = 1g
E
i =N

E , ðsIÞ2 = ðsEÞ2=2. For parameter sweeps, all parameters other than those varied were held at these baseline

values. In Figure S5, the network with weak sharpening used kEE = 1:4, kIE = 0:9, while the network with strong sharpening used

kEE = 2:8, kIE = 0:4, with all other baseline parameters unchanged. Figures S7G–S7L used kE = 2,WII
0 = � WEE

0 , kEE = 3, kIE =

0:1, kEI = 1, ksub = 32, WIE
sub = 0:0005.

We found that there was substantial flexibility in the parameter settings in that very different parameter configurations often led to

qualitatively similar dynamics (see e.g., Figures S6 and S7G–S7L). Thus, while varying individual parameters altered the behavior of

the network, this could typically be offset by compensatory changes in other parameters. Wherever possible, our parameter choices

were chosen based on experimental data from mouse visual cortex. For example, Hofer et al. (2011) report untuned E to I synapses,

while Znamenskiy et al. (2018) report that E to I synapses exhibit some feature tuning but find that this tuning is weaker than I to E or E

to E synapses, so we chose to set kEE > kEI > kIE . To the best of our knowledge, there are no data on the feature tuning of I to I syn-

apses, so we set kII = 0.While the net feedforward input to E cells is orientation tuned (Lien and Scanziani, 2013), PV neurons receive

very weakly tuned (or untuned) thalamic input (Bereshpolova et al., 2020) and their responses are very weakly tuned to orientation in

mouse V1 (Hofer et al., 2011; Kerlin et al., 2010), so we set kE > 0 and kI = 0. Although PV neurons do receive feedforward input

(Bereshpolova et al., 2020), we set gI
0 = 0 since themodeled input can be interpreted as the tuned component relative to some base-

line level or firing threshold. We found that increasing gI
0 or k

I decreased the strength and tuning of excitatory network responses and

decreased network time constants but did not qualitatively alter our findings. Moreover, these changes could be compensated by

increases in recurrent excitation (WEE
0 or kEE ) or decreases in inhibition (WEI

0 , WIE
0 or kEI, kIE ). The magnitude of input noise to E

and I neurons sE ;sI were chosen in order to generate similar E and I response SNRs to those measured for PYR and PV neurons

in Khan et al. (2018) (note that I cells had broad tuning curves in our model as reported in experiment, see Hofer et al., 2011; Kerlin

et al., 2010). The input noise only affects response covariance in our linearized analysis, so varying sE ;sI would not alter the network

dynamics or tuning curves. Thus, our choice of parameters was broadly consistent with known data, but there was substantial

freedom in the precise configuration, so that our results were not dependent on fine-tuning of individual parameters.

Nonetheless, there were two general criteria that required somemild tuning of (sets of) parameters. First, the network was required

to exhibit integration time constants longer than those of individual neurons, which occurred when recurrent excitation was suffi-

ciently strong and tuned relative to recurrent inhibition (Figure S6). Second, the non-uniform inhibition mechanism required that I

to E input was sufficiently tuned to repel the E response bump away from the subnetwork center, which required that inhibition

onto E cells was sharply tuned relative to the width of the response bump. In Figures S7G–S7L where the response bump was
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much narrower than in our standard parameter setting, this was achieved by setting E to I weights to be broadly tuned (which enabled

strong recurrent excitation and long time constants, see Figure S6) and I to E weights to be more narrowly tuned (which ensured

sharply tuned inhibition of E cells). An alternative parameter setting in which both E to I and I to E were broadly tuned achieved

the same result provided that a narrowly tuned I to E subnetwork formed in addition to the E to I subnetwork (not shown).

We note that with our baseline parameters the network was in the ‘‘marginal regime’’ (Ben-Yishai et al., 1995) – when the input was

replaced with an untuned input with samemean strength over neurons, the network spontaneously formed a stable bump of activity,

albeit weaker and more broadly tuned than the bump driven by tuned input. When these untuned inputs were decreased slightly in

amplitude the bump no longer formed, suggesting that the network was near the boundary of the marginal regime (see also Ponce-

Alvarez et al., 2013).

Finally, we note that the parameters for the non-uniform network in Figures 6 and 7 were chosen to demonstrate the effect of non-

uniform inhibition as clearly as possible. In particular, while the suppression of responses in Figure 6E and separation of responses in

Figure 7A are large in magnitude, this should be understood as the most extreme parameter setting along a continuum of networks

shown in Figure S6E. Indeed, other parameter settings in Figure S6E showedmilder but qualitatively similar effects on response tun-

ing, and the parameter setting of Figures S7G–S7L showed a more modest separation of responses than that of Figure 7A while still

generating a similar improvement in alignment of modes and response SNR. Thus, our simulations were designed to illustrate the

qualitative behavior of the proposed mechanism over a wide range of parameters, rather than to provide a close quantitative match

to experimental data for a specific set of parameters.

Analysis of Linearized Dynamics

To computemodes of linearized dynamics and their time constants we used numerical methods to find the fixed points of the network

dynamics and then numerically computed the eigenvalues and eigenvectors of an analytically-derived Jacobian.

We found that fixed point estimates obtained by forward-simulating with the Euler method yielded inaccurate estimates of linear-

ized dynamics. Instead, we found the fixed points of the network using a root-finding algorithm applied to the equation _r = 0, where

r = ½rE ; rI�, W = ½WEE ;WEI;WIE ;WII� etc., T is a diagonal matrix of neuronal time constants, and _r = T� 1ð� r + fðWr + gÞÞ. We

used Newton’s methodwith the analytically-derived Jacobian JðrÞhv_r =vr = F0W � T� 1 (whereF0 = T� 1diagðgfðWr + gÞ1� 1=gÞ for
our choice of transfer function). Fixed point estimates rn were iteratively updated as rn + 1 = rn � J� 1ðrnÞ_rn. The algorithmwas termi-

nated when k_rnk< 10� 15 (where it was considered to have converged), or after 100 iterations (which was classed as a failure to

converge). The root-finding algorithm was initialized at r0 = 0 (or when performing a parameter sweep, at the fixed point obtained

from the previous set of parameters).

Having found a fixed point, the time constants, input SNRs, and output SNRs of linearized dynamical modes were computed using

analytically-derived equations ti = � 1=RealðliÞ, SNRinputð~vLi Þ =
��~vLi $g0ðqsÞ

��= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~vLi $Sh~v

L
i

q
, SNRoutputðvLi Þ = SNRinputð~vLi Þ

ffiffiffiffiffiffiffi
2ti

p
, where

li, v
L
i , are eigenvalues and left eigenvectors of the Jacobian J = F0W � T� 1, and ~vLi are the left eigenvectors of the matrix ~J =

WF0 � T� 1. Note that ~li = li, and that F0 = T� 1diagðgr1� 1=gÞ at the fixed point (see Methods S1 File). Where modes are explicitly

plotted (Figures 6B, 6C, 6E, S5A–S5C, S5G–S5I, S7A, S7B, and S7H), the quantities shown are the elements of ~vLi . The normalized

input SNRwas computed as SNRnormð~vLi Þ = SNRinputð~vLi Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðqsÞ$

P� 1
h g0ðqsÞ

q
. The degree of recurrent sharpeningwas quantified as

NE=NE
+ � 1, where NE

+ is the number of excitatory neurons with non-zero firing rate at the fixed point. Mean squared coupling of

excitatory and inhibitory neurons into the translation mode was computed as described above for the experimental data. Mean

squared loading onto the linear discriminant was computed using the discriminant vector w = ~S
� 1

r0 , where ~S = S + eIN is the

response covariance plus a small amount of ‘‘observation noise" which was added to avoid excessively large discriminant loadings

for neurons with very low firing rates (see Seung and Sompolinsky, 1993). We set e = 0:01
PN

i = 1ri=N

Analysis of two-stimulus discrimination and nonlinear dynamics

Our theoretical results are underpinned by two key approximations: the linearization of network dynamics about a fixed point and the

analysis of stationary state response statistics of the linearized system. The linearization of dynamics restricts the domain of appli-

cation of our theory to fine-scale sensory discrimination tasks, whereas the stimuli presented experimentally were separated by 40+.

We therefore sought numerically determine whether our linearized theory provides adequate insight into the full nonlinear and non-

stationary integration of the experimentally presented stimuli through the recurrent network.We took two approaches to do this. First,

to determine the stationary state response information for two stimuli separated by 40+, we separately computed the linearized sta-

tionary state response statistics about each stimulus (Figures 7A and S7C–S7E) and then used linear discriminant analysis to

compute response information. Second, to determine the non-stationary integration of input through the network dynamics following

stimulus onset, we numerically computed responses of the nonlinear system over time using the Euler method (Figure 7B). The

behavior of the linearized system made predictions that we were able to confirm in simulations of the nonlinear system: recurrent

sharpening caused themost slowly-decayingmode to increase its time constant and become less aligned with the input discriminant

(Figure S5), which predicts that input information should be integrated more slowly but over a longer time window, and should none-

theless achieve a greater stationary state information relative to the non-sharpened network; similarly, non-uniform inhibition caused

the most slowly-decaying mode to become better aligned to the input discriminant without changing its time constant (Figures 6E–

6H), which predicts that input information should be integrated more rapidly, with response information reaching its plateau before
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the sharpened or baseline uniform network. Both predictions were borne out in simulations of the non-stationary nonlinear dynamics

(Figure 7B), which demonstrates that the linearized stationary state approximation to the network dynamics captures the integrative

behavior of the nonlinear non-stationary system. We then verified that the same qualitative behavior could be observed in the data

(Figure 7C), as would be expected based on the observed changes in MVAR modes (Figure 4).

For Figures 7A and S7C–S7E we computed the fixed points and Jacobians associated with the two stimulus orientations qs1 =

qsub � 20+, qs2 = qsub + 20+. We computed stationary state response covariance around each of these fixed points by numerically

solving the corresponding Lyapunov equation J
P

+
P

JT + F0P
hF

0 = 0. We computed response information as I = ðrðqs2 Þ �
rðqs1 ÞÞ$½ð1=2ÞðSðqs1 Þ + Sðqs2 ÞÞ�� 1ðrðqs2 Þ � rðqs1 ÞÞ. Response information was then normalized by the response information

computed for a network withWIE
0;sub = 0 (computed using the same method with all other parameters unchanged). The SNR of excit-

atory and inhibitory responses were computed as SNRX
i = ð��rXi ðqs2 Þ � rXi ðqs1Þ

�� = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2ÞðSX

ii ðqs1 Þ + SX
ii ðqs2 ÞÞ

q
Þ. In Figures S7C and

S7D, we plotted ðð1=NXÞPNX

i = 1SNR
X
i Þ

2
normalized by its value in the network with WIE

0;sub = 0 in order to facilitate direct comparison

with the response information. In Figure S7E we plotted the unnormalized ð1 =NXÞPNX

i = 1SNR
X
i to facilitate comparison with previously

defined measures of neuronal response SNR (see Khan et al., 2018, in which this measure is reported as the mean absolute

selectivity).

To investigate the non-stationary and non-linear integration of sensory input following stimulus onset, we numerically solved the

Wilson-Cowan equation using the Euler method. We used a time step of dt = 1 and initialized the simulation at the fixed point rðqsubÞ
with external input given by one of the two stimuli qsi = qsub ± 20+. At each time step we computed the projection of responses onto

the stationary state linear discriminant dðt;qsi Þ = wT
LDrðt;qsi Þ, with wLD = ½ð1=2ÞðSðqs1 Þ + Sðqs2ÞÞ�� 1ðrðqs2 Þ � rðqs1 ÞÞ computed using

the analytical equations for the stationary state means and covariances in the linearized systems about each fixed point. We simu-

lated 1000 trials with 1000 time steps each. We computed the signal-to-noise ratio of this quantity as SNRðtÞ = hdðt; qs2 Þ � dðt;
qs1 Þi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5½Varðdðt; qs1ÞÞ + Varðdðt; qs2ÞÞ�

p
, where averages and variances were taken over trials at each point in time. For the baseline

and non-uniform networkswe set kEE = 1:8, and for the sharpened network kEE = 2. For the non-uniform networkwe set kIEsub = 4:2 ,

WIE
0;sub = 0:004 and for the baseline and sharpened network kIEsub = 0,WIE

0;sub = 0. We normalized SNRðtÞ by the average value in the

final 300 time steps under the baseline network model.

To compute response SNR as a function of time in the experimental data, we computed the linear discriminant as wLD =

S� 1ðrV � rAÞ where S and rðsÞ were computed as in Figure 3. We projected imaged responses r
ðiÞ
t onto wLD at each time point

t on each trial for the vertical and angled stimuli to obtain d
ðiÞ
t = wT

LDr
ðiÞ
t . We computed the signal-to-noise ratio of this projection

at each time point relative to stimulus onset by computing its mean difference between stimuli and its pooled standard deviation

across stimuli, i.e. SNRt =
���hdðiÞ

t ii ˛ TrialsðVÞ � hdðiÞ
t ii ˛ TrialsðAÞ

���= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5½VarðdðiÞ

t Þi ˛ TrialsðVÞ + VarðdðiÞ
t Þi ˛ TrialsðAÞ�

q
. We performed this

analysis separately for the pre- and post-learning data for each animal. The SNR ratio (Figure S2F) was computed as

SNRpost
t =SNRpre

t for each animal and then averaged over animals. We compared this to predictions from the dynamical

slowing and dynamical realignment hypotheses (Figure S2F inset) by computing analytically the SNR of responses along a

dynamical mode m with time constant t as a function of time from stimulus onset, SNRoutputðm; tÞ = SNRinput

ðmÞ ffiffiffiffiffi
2t

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � e� t=tÞ=ð1 + e� t=tÞ

p
. We plotted the ratio SNRoutput;postðm; tÞ=SNRoutput;preðm; tÞ by setting either tpre = tpost = 0:5 ,

SNRinput;preðmÞ = 1 , SNRinput;postðmÞ = 1:5 (dynamical realignment) or tpre = 0:5 , tpost = 1:125 , SNRinput;preðmÞ = SNRinput;post

ðmÞ = 1 (dynamical slowing).

Comparison of response changes to preferred and non-preferred stimuli in model and data

We computed the change in the response of excitatory and inhibitory cells to their preferred and non-preferred stimuli over learning

(in the experimental data) and between the uniform and non-uniform ring network models.

In the network models, we defined the preferred stimulus of excitatory cell i as the stimulus which generates the greater firing rate

value at the fixed point, i.e. qprefðiÞ = argmaxqsk
½rEi ðqsk Þ� where k = 1; 2 . The change in response to its preferred stimulus was defined

as the difference in response between the two networks, i.e.DrEi ðqprefðiÞÞ = ½rEi ðqprefðiÞÞ�non� uniform � ½rEi ðqprefðiÞÞ�uniform (note that cells

did not change stimulus preference). The mean and variance of this change in response were then taken over the population of excit-

atory cells, i.e. mean½DrEðqprefÞ� = ð1 =NEÞPNE

i = 1Dr
E
i ðqprefðiÞÞ , and var½DrEðqprefÞ� = ð1 =NEÞPNE

i = 1½DrEi ðqprefÞ � mean½DrEðqprefÞ��2. The
non-preferred stimulus was analyzed similarly but with qnon�prefðiÞ = argminqsk

½rEi ðqsk Þ� .
In the experimental data we considered learning-related response changes of putative pyramidal cells to the vertical and angled

grating corridors (see Khan et al. for how cells were identified). For each cell, we computed the difference in its response to the

vertical and angled stimuli both pre- and post-learning DV�Arl = rVl � rAl (where l = pre;post). We also computed the change in

response to the vertical and angled stimulus over learning Dpost�prer
ðsÞ = r

ðsÞ
post � rðsÞpre (where s = A;V ). We then took the mean and

variance of Dpost�prer
ðsprefÞ over all pyramidal cells which passed a set of inclusion criteria (where spref = argmaxs½rðsÞl � is the

preferred stimulus of the cell). The inclusion criteria were as follows: the cell had a significant preference for one of the vertical
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and angled stimuli both before and after learning (defined as p< 0:05 under a Wilcoxon rank sum test on the responses on vertical

vs angled trials); the preferred stimulus spref was the same before and after learning. These criteria were necessary to avoid con-

founds relating to regression to the mean. The same analysis was performed for the non-preferred stimulus, in this case using

snon�pref = argmins½rðsÞl �.
We computed the average response SNR of individual E and I cells in both the model and data (Figures S7D andS7 E). The method

for computing E and I response SNR in the network models is described in the above section. Quantification of mean SNR of indi-

vidual pyramidal and parvalbumin cells was similar and has been reported in Khan et al. (2018).

Replication of Schoups et al.

For each stimulus orientation qs, we computed the fixed point of the network dynamics rðqsÞ as described above and computed its

derivative r0ðqsÞ = � J� 1F0g0ðqsÞ. For each excitatory neuron i, we plotted the relative slope of its tuning curve at the trained orien-

tation (corresponding to the subnetwork center) as
��r0i ðqsubÞ��=maxqs ðriðqsÞÞ.
e10 Neuron 111, 106–120.e1–e10, January 4, 2023
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