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Performing a stereotyped behavior successfully over time requires
both maintaining performance quality and adapting efficiently to
environmental or physical changes affecting performance. The
bird song system is a paradigmatic example of learning a stereo-
typed behavior and therefore is a good place to study the interac-
tion of these two goals. Through a model of bird song learning, we
show how instability in neural representation of stable behavior
confers advantages for adaptation and maintenance with minimal
cost to performance quality. A precise, temporally sparse sequence
from the premotor nucleus HVC is crucial to the performance of
song in songbirds. We find that learning in the presence of sequence
variations facilitates rapid relearning after shifts in the target song
or muscle structure and results in decreased error with neuron loss.
This robustness is due to the prevention of the buildup of correlations
in the learned connectivity. In the absence of sequence variations,
these correlations grow, due to the relatively low dimensionality of
the exploratory variation in comparison with the number of plastic
synapses. Our results suggest one would expect to see variability in
neural systems executing stereotyped behaviors, and this variability
is an advantageous feature rather than a challenge to overcome.

motor learning | songbird | reinforcement learning | maintenance
learning | skilled movement

When we first learn to play the piano or ride a bicycle, the
learning trajectory is similar: Initial attempts are clumsy

and erratic, one quite different from the next. Over time, we can
improve and eventually complete these tasks skillfully and reliably.
Typically, we think of learning as complete when we execute de-
sired tasks repeatedly and well. This trial-and-error learning pro-
cess is common to many stereotyped tasks learned in development
and performed in a seemingly automatic manner in adulthood.
However, ongoing plasticity is needed to perform in a stereotyped
manner despite changes over time, such as new environmental
conditions or physiological growth or injury. Active maintenance
must therefore be an important element of the neural pathways
that carry out these repetitive tasks.
A well-characterized biological example of a learned, stereo-

typed behavior is the courtship song of songbirds, in which we
might expect such maintenance to occur. Juvenile male songbirds
learn to sing from a male tutor in a trial-and-error manner. Once
the bird reaches adulthood, the song becomes stereotyped with
millisecond precision. Despite the adult song stability, song
plasticity continues in adulthood (1–6). Adult songbirds shift the
pitch of individual syllables in response to white noise stimuli or
shifted auditory feedback (1, 2). In deafened birds, song even-
tually degrades, implying ongoing plasticity (3, 4, 6).
One hypothesis about how stereotyped motor output is gen-

erated is that it emerges from precisely controlled and sequenced
neural activity. Is stable behavior therefore underpinned by long-
term, stable representations at the population and single-neuron
level? This question applies to the bird song system, where
singing is governed by precisely timed and sequenced firing in the
premotor nucleus HVC (proper name) (Fig. 1A). HVC neurons

project to RA (the robust nucleus of the arcopallium) and, in the
adult, fire in a rapid burst exactly once during the song (7).
Temporally precise, although less sparse, firing patterns in RA
drive downstream motor neurons, which then drive the vocal
muscles during song (8–11). The HVC projection neurons’ burst-
onset times collectively tile the duration of the song (7). In most
mechanistic descriptions of the bird song system, the synaptic
weights of the HVC projections onto RA are understood to
encode the form of the song at each moment in time (12–14).
The long-term precision in song has been assumed to rely upon

the scaffolding provided by long-term precision in HVC firing.
Song maintenance has been thought to occur through retuning
motor output relative to this precise timing. However, HVC
neurons undergo cell death and replacement by neurogenesis,
both continuously and in a seasonal manner (15). In addition,
recent experimental results have revealed some degree of longer-
term changes in single, premotor neuron activity patterns during
singing (16, 17). These variations in the sequence dynamics raise
intriguing questions. How can a static, stereotyped behavior sur-
vive variable premotor firing patterns? What advantage might be
gained by instabilities in the neural representation of the song?
We investigate these questions through a computational model

of the bird song learning system. Previous theoretical work has
used a reinforcement learning (RL) framework to model song
learning in the projection structure from HVC to RA (12–14). We
adopt an RL model based on Fiete et al. (12) (Fig. 1B) and as-
sume HVC’s sparse firing pattern has emerged earlier in devel-
opment. The learning process trains RA to drive low-dimensional,
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motor outputs (here, the time-varying, scalar quantities m1 and
m2, which represent the activity of pools of motor neurons) to
reproduce the target song based on variable inputs from lateral
magnocellular nucleus of the anterior nidopallium (LMAN) (Fig.
1B). Via gradient descent, RL changes the connection strengths
from HVC to RA depending on the levels of coincident activation
of an HVC-to-RA synapse and an LMAN-to-RA synapse, fol-
lowed by a global reinforcement signal.
We explore three different approaches to perturbing premotor

firing patterns in a subset of HVC cells: pausing activity while im-
posing synaptic decay, only pausing activity, and shifting firing timing.
These approaches explore types of perturbation reported in HVC:
cell death and replacement and variable cell participation. We then
test the effects of these perturbations on network robustness in three
different ways: performance error, robustness to RA cell loss, and
speed of relearning an altered motor output. Next, we explore the
underlying mechanisms for these effects. Finally, we make a quan-
titative comparison of the three different approaches. The three
perturbation methods produce qualitatively similar results.
We find that varying HVC activity patterns balances two goals

of the system: maintaining quality in song performance and
adapting efficiently to environmental or physical changes that
affect performance. Instability in HVC firing activity slightly de-
grades the performance quality. In exchange, however, the system
is able to learn changes in muscle activity faster and is more robust
to cell loss in the RA network. Our results also suggest a possible
mechanism underlying this effect. Variability in neural represen-
tation of stereotyped tasks may thus confer robustness and facil-
itate active maintenance of motor performance.

Results
Basic Learning Framework. Fig. 1D shows the learning trajectory,
defined as the total error between the m1 and m2 templates and

the produced versions. Although learning converges, error continues
to fluctuate and does not go to zero, in part because gradient
descent converges to a local, not a global, minimum and in part
because of the fixed learning rate in our model. Continued error
fluctuations are due to the ongoing variable inputs from LMAN to
RA, which drive both trial-to-trial variability in the RA firing
patterns and changes in the HVC-to-RA connection strengths.
After the initial convergence, the average error is stable over the
∼105 subsequent iterations of the simulation (Fig. 1D, red trace)
and is consistent with the stable form of adult birdsong (18).

Introducing Changes in HVC Activity.We next examine how random
changes in HVC firing activity affect circuit activity and plasticity
once the song has been learned. We assume the basic temporal
structure of HVC inputs and the song dynamics have been learned
previously during development, but synaptic plasticity and learn-
ing continue in adulthood (1–6). In our first perturbation scheme,
“paused with synaptic weakening,” we halt activity in 6% of active
HVC projection cells while simultaneously activating the same
number of previously paused cells in discrete offline episodes that
occur periodically throughout the 105 song trials (see Methods)
(Fig. 1D, black trace). The timing of the activity patterns of the
paused and activated cells is independent and random. The syn-
aptic projections of paused cells undergo synaptic weakening.
Figs. 2 and 3 report effects of this perturbation scheme.
As expected, changing a subset of HVC firing activity in-

creases song error (Fig. 1 D and E). However, asymptotic error is
only slightly increased by increasing the frequency of HVC dis-
ruption events (Fig. 1 D and E). This error trajectory is consis-
tent with the behavioral observation that song is more variable in
the morning than in the evening (Fig. 1D) (19).

Impacts of HVC Perturbations on Network Robustness. Although
introducing pauses in a subset of HVC firing increases the
overall error in song performance, advantages are gained. A
likely change during aging is cell loss. After completing the 105
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song iterations, we first ask how robust the song system is to partial
loss of the RA network, a test which replicates experimental
ablations or cell death. We also consider changes in the muscle
transformation of the RA output to song or in the target song
itself, both of which require a relearning of the upstream HVC-to-
RA connection structure. Although adult zebra finch song is
highly stereotyped, there are several reasons an adult bird might
alter the network structure generating song. Injury or simply aging
in the vocal muscles leads to the same neuronal drive generating a
different song output; to keep the song stable, the bird must learn
to control the altered muscles in a new manner. These two tests of
robustness are conducted independently of one another and after
the HVC perturbations and 105 song iterations are complete.

Adaptations to Partial Loss of Network.After 105 iterations of song,
we randomly remove a subset (8%) of RA cells and measure the
resulting increase in error when the song is performed using the
partial RA network without any additional relearning (Fig. 2A).
Removing a subset of RA cells increases error; however, the
magnitude of the induced error decreases with the introduction
of HVC perturbation episodes (Fig. 2B). Perturbing HVC firing
activity allows subsets of the RA network to continue to repre-
sent the song more accurately.

Adaptation to Environmental and Physical Changes. We model en-
vironmental and physical changes in song context as shifts in the
motor target trajectory that the network is trying to produce:
m1→m1’ and m2 →m2’ (Fig. 2C). We then ask how quickly and

successfully the shifted song target is learned by the network as a
function of the number of HVC perturbation episodes occurring
in the initial 105 iteration maintenance protocol. Speed of
relearning increases with the frequency of HVC perturbation
episodes (Fig. 2 D and E). However, a penalty is paid for the
increased adaptation speed, with an increase in final error after
3,000 iterations of relearning (Fig. 2D and SI Appendix, Fig. S1).

Origins of Increased Robustness. What changes in the network
structure due to perturbations in HVC activity that could increase
robustness? The learned components of our model are the syn-
aptic strengths of projections, W. Each entry, Wij, represents the
connection strength from HVC cell “j” to RA cell “i.” The dis-
tributions of synaptic weights after 105 song iterations change little
due to HVC perturbations (SI Appendix, Fig. S2). However, when
we order the HVC cells according to the time in the song when
the cell fires, a clear change in W emerges due to HVC pertur-
bations, although motor trajectories are very similar (Fig. 3A).
Without variations in HVC activity, projection patterns from
HVC cells that fire at similar times become highly correlated (Fig.
3 B and C). HVC perturbations decorrelate nearby HVC pro-
jections as a monotonic function of the frequency of HVC per-
turbations. This is quantified by the average pairwise correlation
values of individual HVC cells’ projections to RA as a function of
the time difference of the HVC cells’ burst onset (Fig. 3 B and C).
These correlations grow much more slowly than the learning

trajectory (Fig. 3C, Inset). In the absence of any HVC activity
changes, error decreases to within 5% of its final value within
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2,000 iterations, whereas correlations in the weight matrix reach
95% of their final values only at 75,000 iterations (Fig. 3C, Inset).
This suggests the continued plasticity causes drift in the weight
matrix structure along a valley of solutions with approximately
equal error but increasing correlation strength (Fig. 3D).
What causes this drift? HVC synapses made onto a single RA cell

share variability from LMAN. Because of the extended synaptic time
course of inputs from LMAN [∼70 ms to 75 ms (20)], a single
LMAN firing event affects plasticity at synapses from multiple HVC
cells that fire at similar times. We expect that correlated variability
from LMAN biases the reachable search space toward solutions that
themselves are correlated. We confirm that LMAN’s synaptic time-
scales drive the buildup of correlations in a simplified linear version
of our system (SI Appendix) as well as in additional simulations where
we vary the synaptic time course of the inputs from LMAN. We
observe a monotonic dependency of the correlations in W on the
time course of individual LMAN inputs (SI Appendix, Fig. S3).
Disrupting the activity of HVC cells slows this growth in cor-

relation. Temporarily silencing HVC cells while weakening syn-
apses introduces a random change into the local projection
structure from HVC to RA at that moment in song. This lowers
the total exposure sequentially firing HVC cells have to corre-
lated noise inputs and therefore allows the cells’ synaptic
strengths to remain more independent.
Because HVC and RA have many more degrees of freedom

than the downstream motor pools, multiple firing patterns in RA
will produce the same m1 and m2 output. Within these firing
patterns with identical motor pool output, the correlation struc-
ture of W can vary substantially. These redundancies give rise to a
manifold of equivalent local minima on the error function (21).
Randomly varying HVC activity pushes the synaptic weight

structure into a region in W space with higher error but lower
pairwise correlation. Learning that begins in a less correlated state
first approaches the asymptotic error value in a less correlated so-
lution state, even though the value of the local error minimum is
essentially the same (Fig. 3E) (22). This daily repositioning of the
projection structure on the error landscape leads to a slower accu-
mulation of passive correlations due to the correlated LMAN var-
iability. The flexibility and generality of this repositioning is possible
because of the multiplicity of solutions with comparable error.
To test the hypothesis that correlations across cells’ synapses

slow relearning, we compare learning trajectories from sets of
initial random weight matrices wherein each HVC cell’s initial
projection weights are drawn from identical Gaussian distribu-
tions but the correlations between HVC cells’ synapses vary by
set (SI Appendix, Extended Methods and Fig. S4 A–C). This isolates
correlation level in W while holding the overall distribution of
weight values constant. Increasing correlations in the initial W
structure also slows learning (SI Appendix, Fig. S4 D and E),
further suggesting this network feature leads to variable relearning
speeds. When we similarly compare learning trajectories across
sets of initial projection weights with identical correlation levels
but different weight distributions, there is no significant change in
learning speed (SI Appendix). This suggests that the observed
change in synaptic strengths (SI Appendix, Fig. S2B) does not
significantly impact relearning speed. We have not tested this
same explicit correspondence to robustness to cell loss.
The network structure due to HVC perturbations additionally

leads to a more efficient representation of song in RA: Fewer
RA cells fire at any one time in song, and the overall firing rate is
lower (SI Appendix, Fig. S5). RA sparsity increases robustness to
cell loss: Removing a cell from the RA population, on average,
impacts the song less (SI Appendix, Origins of Robustness).
Sparser RA activity is likely due to two changes in the HVC to RA
projection structure: The low correlations in projections from HVC
cells hinder the integration of voltage to threshold in RA cells, and
weaker weights from HVC to RA decrease the overall excitatory
drive to RA. Weaker weights affect only our first HVC perturbation

scheme (paused with synaptic weakening); in the two other schemes,
the weight distributions are unchanged (SI Appendix, Fig. S2).

Other Forms of HVC Plasticity. Lastly, we compare our initial form
of HVC plasticity with two other perturbation schemes (Fig. 4 A–
C). The second scheme (“paused”) is the same as the original
scheme but with no synaptic decay in paused cells (Fig. 4B). In
our third scheme (“time shift”), instead of silencing subsets of
HVC cells, we shift the timing of 6% of HVC projection cells
such that they fire at new, random times in the song (Fig. 4C).
This third scheme represents an extreme version of HVC plas-
ticity in our hypothesized role decorrelating synaptic structure.
All of the tested perturbations lead to qualitatively similar

increases in network robustness (Fig. 4 D–F). The perturbation
scheme we show in detail (paused with synaptic weakening)
performs best under cell loss and motor relearning. However,
this form of perturbation is the only scheme that leads to slightly
higher error in motor relearning (Fig. 2D and SI Appendix, Fig.
S1A). From these comparisons, we predict that this robustness
advantage is a general property of varying upstream HVC firing
activity and does not rely on the form of variations we chose.

Discussion
The main finding of this work is that perturbations in the activity
of HVC cells, while slightly elevating overall song error, increase
robustness to physical, environmental, and neural changes.
Broadly, this work identifies a way in which ongoing plasticity can
lead to deleterious correlations when a portion of the system is
static and to a mechanism for preventing these correlations from
building. Here, keeping the firing activity of HVC cells fixed while
allowing plasticity at the HVC to RA synapses leads to a buildup
of correlations and weakens the system’s response to stressors that
the continued plasticity presumably exists to address. In contrast,
when HVC activity patterns vary, synaptic weights remain decor-
related, allowing greater robustness. This work suggests that re-
petitive behaviors should be performed in a dynamic manner that
pushes the system to retain access to many degrees of freedom.
These behaviors are made more robust to environmental change
by continually seeking new ways of performing the same task.
The extent to which stable behavior is underpinned by stable

representation at the population and single-neuron level varies
across systems and contexts and is a question of active debate. A
common assumption is that, once mastered, stereotyped tasks are
represented by stable neural activity, and plasticity occurs due to
learning. However, when monkeys perform a familiar reaching task,
the tuning curves of neurons in the supplementary motor area un-
dergo slow, random drift (21). Ref. 21 attributed this drift to noisy
synaptic plasticity and found that behavior remains stable despite this
noise, presumably due to the high redundancy of the active neural
networks. This type of random drift is exactly what one would expect
from the ongoing plasticity we consider in this work, and we predict
that similar shifts in RA firing properties should be observable over
long timescales. We theorize that this random drift, although still
allowing stable representation of an otherwise static system, will pose
a challenge to the long-term maintenance of the task unless ac-
companied by other types of variation in the network dynamics.
The presence of correlations in exploratory inputs across

plastic synapses is critical to our findings and is based on neu-
roanatomical observations in the song system. While using a
single Poisson varying LMAN input for each RA cell is a mod-
eling simplification, we expect that the true connectivity struc-
ture still gives rise to high correlations. There are ∼50 synaptic
connections from LMAN onto a single RA cell, possibly from a
small number of colocalized LMAN cells (23–25). There are as
many as 1,000 HVC synaptic projections onto one RA cell from
as many as 200 HVC cells (26). Therefore, if all HVC synapses
are affected by some portion of LMAN activity, correlations in
LMAN activity across HVC inputs must exist.
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Furthermore, correlations in an exploratory drive are likely for
any system where synaptic strengths are learned individually: If
the most relevant unit of independent variation in a network is a
single cell, then the number of independent exploratory pro-
cesses will be approximately the number of independent cells,
whereas the number of synaptic connections to be learned will be
the number of synapses per cell times the total number of cells.
The finite dimensional space of the exploratory inputs will limit
the independent variation the learning synapses can undergo.
How much variation is enough for adaptation advantages to be

relevant? Fully answering this question depends on the rate of
ongoing plasticity as well as the degree to which adaptation is
needed and is likely to depend critically on the specific system.
However, we saw a significant robustness advantage even at our
lowest frequency of perturbation (once per 20,000 song iterations).
Note that the two experimental, zebra finch results differ in the
amount of variability reported in the HVC nucleus: Liberti et al.
(16) report that, in undirected song, ∼40% of HVC projection cells
change activity patterns over a period of 5 d, whereas Katlowitz
et al. (17) report that, in directed song, 3.6% of projection cells
change activity patterns over timescales ranging from 3 d to 56 d, as
well as ongoing, random jitter in the burst-onset timing. In other
songbird species, HVC cell death and neurogenesis are seasonally
regulated, with an almost doubling of HVC projection cells to RA
during breeding season (27). Our model considers a range of var-
iation frequencies and approximately spans the frequency regimes
of these experimental results. We predict that our results would be
qualitatively the same were perturbations to happen continuously,
and would perhaps result in even better performance, since punc-
tate changes to network structure would not exist.
In addition to HVC perturbations, other methods could po-

tentially accomplish the same decorrelation of HVC projections.
Recent experimental work has identified synaptic plasticity in the
LMAN to RA synapses, but it is not known whether this form of
plasticity redistributes LMAN−HVC coincident activity onto in-
dividual RA neurons (28). In addition, recurrent connections
among RA neurons show synaptic plasticity (29); their functional

role in a learning model has not yet been explored, but they could
contribute to the type of decorrelation needed for robust learning.
In other systems, a variety of decorrelation mechanisms could
achieve the same effect that we observed with HVC perturbations.
Furthermore, the notion of robustness is broad, and other studies
have approached network robustness in different ways (30, 31).
Our perturbations span the space of possible perturbations by
adding in features at arbitrary times. This method could, in theory,
create spectral or temporal changes. However, spectral changes
are separable from temporal changes and require LMAN, whereas
temporal changes do not necessarily require inputs from LMAN
(32). This suggests that temporal changes may come from changes
in HVC dynamics. We have not explored this issue.
This biological learning strategy can be seen in the context of

machine-learning techniques that introduce a stochastic element in
the forward pass of the network, such as “dropout.” Methods using
dropout are similar to the bird song strategy presented here, wherein
a subset of neurons and the connections to and from the subset are
probabilistically removed during portions of training to avoid over-
fitting (33). In the context of artificial neural networks, overfitting is
generally taken to mean that a network has been too closely tuned
to the training set of inputs and outputs. The result is that, when a
new input is introduced from the same statistical class, the network
has learned the vagaries of the training set rather than the statistical
properties of the full set of possible inputs. Again, there is an in-
teresting parallel to the bird song strategy: Maintenance of song
through the trials of normal life may require adapting to an altered
version of the target song or muscle program. Varying HVC inputs
prevents the system from overfitting to a single target. The addition
of synaptic weakening during the equivalent dropout periods in our
model presents a potentially beneficial feature in artificial learning
systems as well. Another biophysical mechanism for dropout that we
have not explored is synaptic failure, which could provide similar
benefits. However, there are important ways in which this finding is
uniquely biological. The issue of maintenance plasticity is currently
specific to biological systems; it is not a feature of most machine
learning algorithms, because it is not needed. Once an artificial RL
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system reaches an asymptotic final error, changes to the weight
structure of the system are halted. However, ongoing plasticity is an
inherent feature of biological systems. It is in the context of this
ongoing plasticity that correlations grow around static components
of the system.
In this work, we find perturbing HVC firing activity balances two

goals of the system: maintaining quality in song performance and
adapting efficiently to environmental or physical changes that affect
performance. This result is, to an extent, antioptimal: In our model,
the bird is not learning a single stereotyped behavior to the greatest
possible precision but retains the ability to adapt to environmental
and physical changes. In this contingent picture, optimality must be
broadly interpreted as maximizing performance quality across
competing goals. It is notable that this contingent strategy is possibly
present even in the zebra finch song system, which has traditionally
been thought of as an extreme example of learning a single, highly
stereotyped behavior. For biological systems, learning always takes
place in a fluctuating environment that may, at any moment, change
the conditions of performance. This requires a contingent relation-
ship to optimal behaviors and to the notion of optimality itself.

Methods
Base Model. The base model comprises three feed-forward layers, HVC (n =
500), RA (n = 48), and Motor Pools (n = 2), with an independent, Poisson
firing process synapsing onto each RA cell from LMAN and was modified
from Fiete et al. (12). HVC and RA layers are modeled as conductance-based
leaky integrate-and-fire neurons. We model song production as nonspiking
motor pool output units that receive input from RA. The learning goal is for
the motor pools to a reproduce a target motor trajectory.

Learning Parameters. Only HVC projections to RA are plastic and are de-
termined by dWij=dt = ηRðtÞeijðtÞ, whereWij is the synaptic strength from the
jth HVC cell to the ith RA cell, R(t) is the reinforcement signal, η is the learning
rate, and eijðtÞ is the eligibility trace over which weight changes occur, de-

fined as eijðtÞ =
Rt
0
dt’Gðt − t’Þ

�
sLMAN
i ðt’Þ− ÆsLMAN

i æ
�
sHVCij ðt’Þ  ,whereGðtÞ= tnet=τe ,

sLMAN
i ðtÞ is the LMAN input to the ith RA cell, and sHVCij ðtÞ is the synaptic input

from the jth HVC cell to the ith RA cell. The reinforcement signal, R(t), is

defined as RðtÞ= 2*Θ½DðtÞ− �DðtÞ�− 1, where D(t) is the mean-squared error
of the current motor output and �DðtÞ is the average mean-squared error of
the previous five trials.

Perturbations to HVC. HVC perturbation events occur offline at regular in-
tervals. We vary the number of perturbation events from 0 to 50 over 105

song iterations. We model three perturbation schemes: (i) In the paused
with synaptic weakening scheme, 500 cells are active and 200 cells are silent.
At each perturbation event, 30 active cells go silent and 30 silent cells acti-
vate. Synaptic decay occurs while cells are silent. (ii) The paused scheme is
the same as i except synapses of silent cells are frozen. (iii) In the time-shift
scheme, 500 cells are active. At each perturbation event, 5% of cells ran-
domly shift burst-onset times within the song. We simulate each perturba-
tion frequency and scheme 50 times.

Tests of Network Robustness.
Shift in motor targets. We add a Gaussian deformation to the target motor
output and measure the time to half-decay of error and the final error after
3,000 iterations of relearning.
Cell loss in RA. We silence 1/12 of the RA network, and measure performance.
We average the resulting error over 500 randomly drawn subpopulations.

Pairwise Correlation of HVC Synaptic Structure. We calculate the pairwise
correlation between HVC cells’ projections as a function of the difference in
timing between the HVC cells’ burst onsets. We denote the outgoing
weights for HVC cell p at time t as Wt

p ≡Wt ð : ,pÞ. For all pairs of HVC pro-

jection vectors Wt
p and Wt’

q for which the HVC cells’ burst onset times t and
t’ are within τ±Δτ (Δτ = 0.5 ms), we compute the average pairwise corre-
lation at time separation, τ, as

Cτ

�
Wt

p,Wt’
q
�
= Æ �

Wt
p −Wt

p

��
Wt’

q −Wt’
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Wt

p −Wt
p

�2
�
Wt’

q −Wt’
q

�2
s æ all   p,q : ðt − t’Þ⊆ τ±Δτ.
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