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ABSTRACT

Quantifying similarity between neural representations—e.g. hidden layer activa-
tion vectors—is a perennial problem in deep learning and neuroscience research.
Existing methods compare deterministic responses (e.g. artificial networks that
lack stochastic layers) or averaged responses (e.g., trial-averaged firing rates in bi-
ological data). However, these measures of deterministic representational similar-
ity ignore the scale and geometric structure of noise, both of which play important
roles in neural computation. To rectify this, we generalize previously proposed
shape metrics (Williams et al., 2021) to quantify differences in stochastic repre-
sentations. These new distances satisfy the triangle inequality, and thus can be
used as a rigorous basis for many supervised and unsupervised analyses. Leverag-
ing this novel framework, we find that the stochastic geometries of neurobiological
representations of oriented visual gratings and naturalistic scenes respectively re-
semble untrained and trained deep network representations. Further, we are able to
more accurately predict certain network attributes (e.g. training hyperparameters)
from its position in stochastic (versus deterministic) shape space.

1 INTRODUCTION

Comparing high-dimensional neural responses—neurobiological firing rates or hidden layer ac-
tivations in artificial networks—is a fundamental problem in neuroscience and machine learn-
ing (Dwivedi & Roig, 2019; Chung & Abbott, 2021). There are now many methods for quantifying
representational dissimilarity including canonical correlations analysis (CCA; Raghu et al., 2017),
centered kernel alignment (CKA; Kornblith et al., 2019), representational similarity analysis (RSA;
Kriegeskorte et al., 2008a), shape metrics (Williams et al., 2021), and Riemannian distance (Shah-
bazi et al., 2021) . Intuitively, these measures quantify similarity in the geometry of neural responses
while removing expected forms of invariance, such as permutations over arbitrary neuron labels.

However, these methods only compare deterministic representations—i.e. networks that can be
represented as a function f : Z 7→ Rn, where n denotes the number of neurons and Z denotes
the space of network inputs. For example, each z ∈ Z could correspond to an image, and f(z) is
the response evoked by this image across a population of n neurons (Fig. 1A). Biological networks
are essentially never deterministic in this fashion. In fact, the variance of a stimulus-evoked neural
response is often larger than its mean (Goris et al., 2014). Stochastic responses also arise in the deep
learning literature in many contexts, such as in deep generative modeling (Kingma & Welling, 2019),
Bayesian neural networks (Wilson, 2020), or to provide regularization (Srivastava et al., 2014).

Stochastic networks may be conceptualized as functions mapping each z ∈ Z to a probability
distribution, F (· | z), over Rn (Fig. 1B, Kriegeskorte & Wei 2021). Although it is easier to study
the representational geometry of the average response, it is well understood that this provides an
incomplete and potentially misleading picture (Kriegeskorte & Douglas, 2019). For instance, the
ability to discriminate between two inputs z, z′ ∈ Z depends on the overlap of F (z) and F (z′), and
not simply the separation of their means (Fig. 1C-D). A rich literature in neuroscience has built on
top of this insight (Shadlen et al., 1996; Abbott & Dayan, 1999; Rumyantsev et al., 2020). However,
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Figure 1: (A) Illustration of a deterministic network mapping inputs, (color-coded images) into
points in Rn. (B) Illustration of a stochastic network, where each input, z ∈ Z , maps onto a dis-
tribution, F (· | z), over Rn. (C) Example where noise correlations impair discriminability between
two image classes. (D) Example where noise correlations improve discriminability (see Abbott &
Dayan, 1999). (E) Illustration of two stochastic networks with equivalent representational geometry.

to our knowledge, no studies have compared noise correlation structure across animal subjects or
species, as has been done with trial-averaged responses. In machine learning, many studies have
characterized the effects of noise on model predictions (Sietsma & Dow, 1991; An, 1996), but only
a handful have begun to characterize the geometry of stochastic hidden layers (Dapello et al., 2021).

To address these gaps, we formulate a novel class of metric spaces over stochastic neural represen-
tations. That is, given two stochastic networks Fi and Fj , we construct distance functions d(Fi, Fj)
that are symmetric, satisfy the triangle inequality, and are equal to zero if and only if Fi and Fj are
equivalent according to a pre-defined criterion. In the deterministic limit—i.e., as Fi and Fj map
onto Dirac delta functions—our approach converges to well-studied metrics over shape spaces (Dry-
den & Mardia, 1993; Srivastava & Klassen, 2016), which were proposed by Williams et al. (2021)
to measure distances between deterministic networks. The triangle inequality is required to derive
theoretical guarantees for many downstream analyses (e.g. nonparametric regression, Cover & Hart
1967, and clustering, Dasgupta & Long 2005). Thus, we lay an important foundation for analyzing
stochastic representations, akin to results shown by Williams et al. (2021) in the deterministic case.

2 METHODS

2.1 DETERMINISTIC SHAPE METRICS

We begin by reviewing how shape metrics quantify representational dissimilarity in the deterministic
case. In the Discussion (sec. 4), we review other related prior work.

Let {f1, . . . , fK} denote K deterministic neural networks, each given by a function fk : Z 7→ Rnk .
Representational similarity between networks is typically defined with respect to a set of M inputs,
{z1, . . . ,zM} ∈ ZM . We can collect the representations of each network into a matrix:

Xk =

 fk(z1)
...

fk(zM )

 . (1)

A naı̈ve dissimilarity measure would be the Euclidean distance, ‖Xi−Xj‖F . This is nearly always
useless. Since neurons are typically labelled in arbitrary order, our notion of distance should—at
the very least—be invariant to permutations. Intuitively, we desire a notion of distance such that
d(Xi,Xj) = d(Xi,XjΠ) for any permutation matrix, Π ∈ Rn×n. Linear CKA and RSA achieve
this by computing the dissimilarity betweenXiX

>
i andXjX

>
j instead of the raw representations.

Generalized shape metrics are an alternative approach to quantifying representational dissimilarity.
The idea is to compute the distance after minimizing over nuisance transformations (e.g. permuta-
tions or rotations in Rn). Let φk : RM×nk 7→ RM×n be a fixed, “preprocessing function” for each
network and let G be a set of nuisance transformations on Rn. Williams et al. (2021) showed that:

d(Xi,Xj) = min
T∈G

‖φi(Xi)− φj(Xj)T ‖F (2)
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is a metric over equivalent neural representations provided two technical conditions are met. The
first is that G is a group of linear transformations. This means that: (a) the identity is in the set
of nuisance transformations (I ∈ G), (b) every nuisance transformation is invertible by another
nuisance transformation (if T ∈ G then T−1 ∈ G), and (c) nuisance transformations are closed
under composition (T1T2 ∈ G if T1 ∈ G and T2 ∈ G). The second condition is that every nuisance
transformation is an isometry, meaning that ‖XiT −XjT ‖F = ‖Xi −Xj‖F for every T ∈ G.
Several choices of G satisfy these conditions including the permutation group, P , and the orthogonal
group, O, which respectively correspond to the set of all permutations and rotations on Rn.

Equation (2) provides a recipe to construct many notions of distance. To enumerate some ex-
amples, we will assume for simplicity that φ1 = . . . = φK = φ and all networks have n neu-
rons. Then, to obtain a metric that is invariant to translations and permutations, we can set
φ(X) = (1/n)(I − 11>)X and G = P(n). If we instead set G = O(n), we recover the well-
known Procrustes distance, which is invariant to rotations. Finally, if we choose φ(·) to whiten the
covariance of X , we obtain notions of distance that are invariant to linear transformations and are
closely related to CCA. Williams et al. (2021) provides further discussion and examples.

An attractive property of equation (2) is that it establishes a metric space over deterministic represen-
tations. That is, distances are symmetric d(Xi,Xj) = d(Xj ,Xi) and satisfy the triangle inequality
d(Xi,Xk) ≤ d(Xi,Xj) + d(Xj ,Xk). Further, the distance is zero if and only if there exists
a T ∈ G such that φi(Xi) = φj(Xj)T . These fundamental properties are needed to rigorously
establish many statistical analyses (Cover & Hart, 1967; Dasgupta & Long, 2005).

2.2 STOCHASTIC SHAPE METRICS

Let {F1, . . . , FK} denote a collection of K stochastic networks. That is, each Fk is a function that
maps each input z ∈ Z to a conditional probability distribution Fk(· | z). How can equation (2)
be generalized to measure representational distances in this case? In particular, the minimization in
equation (2) is over a Euclidean “ground metric,” and we would like to choose a compatible metric
over probability distributions. Concretely, let D(P,Q) be a chosen “ground metric” between two
distributions P and Q. Let δx and δy denote Dirac masses at x,y ∈ Rn and consider the limit
that P → δx and Q→ δy . In this limit, we seek a ground metric for which D(δx, δy) is related
to ‖x − y‖. Many probability metrics and divergences fail to meet this criterion. For example,
if x 6= y, then the Kullback-Leibler (KL) divergence approaches infinity and the total variation
distance and Hellinger distance approach a constant that does not depend on ‖x− y‖.
In this work, we explored two ground metrics. First, the p-Wasserstein distance (Villani, 2009):

Wp(P,Q) = (inf E [‖X − Y ‖p])1/p (3)
where p ≥ 1, and the infimum is taken over all random variables (X,Y ) whose marginal distribu-
tions coincide with P and Q. Second, the energy distance (Székely & Rizzo, 2013):

Eq(P,Q) = (E [‖X − Y ‖q]− 1
2E [‖X −X ′‖q]− 1

2E [‖Y − Y ′‖q])1/2 (4)

where 0 < q < 2 andX,X ′ i.i.d.∼ P and Y, Y ′ i.i.d.∼ Q. As desired, we haveWp(δx, δy) = ‖x− y‖ for
any p, and Eq(δx, δy) = ‖x− y‖q/2. Thus, when q = 1 for example, the energy distance converges
to the square root of Euclidean distance in the deterministic limit. Interestingly, when q = 2, the
energy distance produces a deterministic metric on trial-averaged responses (see appendix F.1).

The Wasserstein and energy distances are intuitive generalizations of Euclidean distance. Both can
be understood as being proportional to the amount of energy it costs to transport a pile of dirt (a
probability density P ) to a different configuration (the other density Q). Wasserstein distance is
based on the cost of the optimal transport plan, while energy distance is based on the the cost of a
random (i.e. maximum entropy) transport plan (see Supp. Fig. 1, and Feydy et al. 2019).

Our main proposition shows that these two ground metrics can be used to generalize equation (2).
Proposition 1 (Stochastic Shape Metrics). Let Q be a distribution on the input space. Let
φ1, . . . , φK be measurable functions mapping onto Rn and let Fφi = Fi ◦ φ−1i . Let D2 denote
the squared “ground metric,” and let G be a group of isometries with respect to D. Then,

d(Fi, Fj) = min
T∈G

(
E
z∼Q

[
D2
(
Fφi (· | z), Fφj (· | z) ◦ T−1

)])1/2

(5)
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defines a metric over equivalence classes, where Fi is equivalent to Fj if and only if there is a T ∈ G
such that Fφi (· | z) and Fφj (· | z) ◦ T−1 are equal for all z ∈ supp(Q).

Above, we use the notation P ◦ φ−1 to denote the pushforward measure—i.e. the measure defined
by the function composition, P (φ−1(A)) for a measurable set A, where P is a distribution and φ
is a measurable function. A proof is provided in appendix C. Intuitively, T plays the same role
as in equation (2), which is to remove nuisance transformations (e.g. rotations or permutations;
see Fig. 1E). The functions φ1, . . . , φK also play the same role as “preprocessing functions,” imple-
menting steps such as whitening, normalizing by isotropic scaling, or projecting data onto a principal
subspace. For example, to obtain a translation-invariant distance, we can subtract the grand mean
response from each conditional distribution. That is, φk(x) = x− Ez∼Q[Ex∼Fk(x | z)[x]].

2.3 PRACTICAL ESTIMATION OF STOCHASTIC SHAPE METRICS

Stochastic shape distances (eq. 5) are generally more difficult to estimate than deterministic distances
(eq. 2). In the deterministic case, the minimization over T ∈ G is often a well-studied problem,
such as linear assignment (Burkard et al., 2012) or the orthogonal Procrustes problem (Gower &
Dijksterhuis, 2004). In the stochastic case, the conditional distributions Fk(· | z) often do not
even have a parametric form, and can only be accessed by drawing samples—e.g. by repeated
forward passes in an artificial network. Moreover, Wasserstein distances suffer a well-known curse
of dimensionality: in n-dimensional spaces, the plug-in estimator converges at a very slow rate
proportional to s−1/n, where s is the number of samples (Niles-Weed & Rigollet, 2022).

Thus, to estimate shape distances with Wasserstein ground metrics, we assume that, Fφi (· | z), is
well-approximated by a Gaussian for each z ∈ Z . The 2-Wasserstein distance has a closed form
expression in this case (Remark 2.31 in Peyré & Cuturi 2019 and Theorem 1 in Bhatia et al. 2019):

W2(N (µi,Σi),N (µj ,Σj)) =
(
‖µi − µj‖2 + min

U∈O(n)
‖Σ1/2

i −Σ
1/2
j U‖2F

)1/2
(6)

where N (µ,Σ) denotes a Gaussian density. It is important not to confuse the minimization over
U ∈ O(n) in this equation with the minimization over nuisance transformations, T ∈ G, in the
shape metric (eq. 5). These two minimizations arise for entirely different reasons, and the Wasser-
stein distance is not invariant to rotations. Intuitively, we can estimate the Wasserstein-based shape
metric by minimizing over U ∈ O(n) and T ∈ G in alternation (for full details, see appendix D.1).

Approximating Fφi (· | z) as Gaussian is common in neuroscience and deep learning (Kriegeskorte &
Wei, 2021; Wu et al., 2019). In biological data, we often only have enough trials to estimate the first
two moments of a neural response, and one may loosely appeal to the principle of maximum entropy
to justify this approximation (Uffink, 1995). In certain artificial networks the Gaussian assumption
is satisfied exactly, such as in variational autoencoders (see sec. 3.3). Finally, even if the Gaussian
assumption is violated, equation (6) can still be a reasonable ground metric that is only sensitive to
the first two moments (mean and covariance) of neural responses (see appendix E.3).

The Gaussian assumption is also unnecessary if we use the energy distance (eq. 4) as the ground
metric instead of Wasserstein distance. Plug-in estimates of this distance converge at a much faster
rate in high-dimensional spaces (Gretton et al., 2012; Sejdinovic et al., 2013). In this case, we
propose a two-stage estimation procedure using iteratively reweighted least squares (Kuhn, 1973),
followed by a “metric repair” step (Brickell et al., 2008) which resolves small triangle inequality
violations due to distance estimation error (see appendix D.2 for full details).

We discuss computational complexity in Appendix D.1.1 and provide user-friendly implementations
of stochastic shape metrics at: github.com/ahwillia/netrep.

2.4 INTERPOLATING BETWEEN MEAN-SENSITIVE AND COVARIANCE-SENSITIVE METRICS

An appealing feature of the 2-Wasserstein distance for Gaussian measures (eq. 6) is its decomposi-
tion into two terms that respectively depend on the mean and covariance. We reasoned that it would
be useful to isolate the relative contributions of these two terms. Thus, we considered the following
generalization of the 2-Wasserstein distance parameterized by a scalar, 0 ≤ α ≤ 2:

Wα

2 (Pi, Pj) =
(
α‖µi − µj‖2 + (2− α) min

U∈O(n)
‖Σ1/2

i −Σ
1/2
j U‖2F

)1/2
(7)

4
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Figure 2: Toy Dataset. (A) 16 out of 99 “toy networks” with different correlation structure (horizon-
tal axis) and covariance scale (vertical axis). Colors indicate distributions conditioned on different
network inputs (as in Fig. 1B). (B) Same as A, with random rotations applied in neural activation
space. These rotated representations are used in subsequent panels. (C) 2D embedding of networks
in stochastic shape space (α = 1 ground metric, G = O). Numbered points correspond to labeled
representations in panel B. Colormap indicates ground truth covariance parameters. (D) Same as C,
but with α = 2 (covariance-insensitive). (E) Same as C, but with α = 0 (mean-insensitive).

where Pi, Pj are distributions with means µi,µj and covariances Σi,Σj . In Appendix E we show
that this defines a metric and, by extension, a shape metric when plugged into equation (5).

We can use α to interpolate between a Euclidean metric on the mean responses and a metric on
covariances known as the Bures metric (Bhatia et al., 2019). When α = 1 and the distributions are
Gaussian, we recover the 2-Wasserstein distance. Thus, by sweeping α, we can utilize a spectrum of
stochastic shape metrics ranging from a distance that isolates differences in trial-average geometry
(α = 2) to a distance that isolates differences in noise covariance geometry (α = 0). Distances along
this spectrum can all be understood as generalizations of the usual “earth mover” interpretation of
Wasserstein distance—the covariance-insensitive metric (α = 2) only penalizes transport due to
differences in the mean while the mean-insensitive metric (α = 0) only penalizes transport due to
differences in the orientation and scale of covariance. Simulation results in Supp. Figure 2 provide
additional intuition for the behavior of these shape distances as α is adjusted between 0 to 2.

3 RESULTS AND APPLICATIONS

3.1 TOY DATASET

We begin by building intuition on a synthetic dataset in n = 2 dimensions with M = 5 inputs. Each
response distribution was chosen to be Gaussian, and the mean responses were spaced linearly along
the identity line. We independently varied the scale and correlation of the covariance, producing a
2D space of “toy networks.” Figure 2A shows a sub-sampled 4 × 4 grid of toy networks. To
demonstrate that stochastic shape metrics are invariant to nuisance transformations, we applied a
random rotation to each network’s activation space (Fig. 2B). The remaining panels show analyses
for 99 randomly rotated toy networks spaced over a 11× 9 grid (11 correlations and 9 scales).

Because the mean neural responses were constructed to be identical (up to rotation) across net-
works, existing measures of representational dissimilarity (CKA, RSA, CCA, etc.) all fail to capture
the underlying structure of this toy dataset (Supp. Fig. 3). In contrast, stochastic shape distances can
elegantly recover the 2D space of networks we constructed. In particular, we computed the 99× 99
pairwise distance matrix between all networks (2-Wasserstein ground metric and rotation invariance,
G = O) and then performing multi-dimensional scaling (MDS; Borg & Groenen, 2005) to obtain a
2D embedding. This reveals a 2D grid of networks that maps onto our constructed arrangement
(Fig. 2C). Again, since the toy networks have equivalent geometries on average, a deterministic
metric obtained by setting α = 2 in eq. 7 (covariance-insensitive metric) fails to recover this struc-
ture (Fig. 2D). Setting α = 0 in eq. 7 (mean-insensitive stochastic metric) also fails to recover a
sensible 2D embedding (Fig. 2E), since covariance ellipses of opposite correlation can be aligned
by a 90◦ rotation. Thus, we are only able to fully distinguish the toy networks in Figure 2A by taking
both the mean and covariance into account when computing shape distances.

5
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Figure 3: (A) In an example mouse VISp, neuronal responses form different means and covari-
ances for six grating orientations. (B) In an example mouse VISp, neuronal responses form different
means and covariances for six different natural scenes. (C) Covariance distances dominate dif-
ferences between recording sessions for artificial grating stimuli, but not for natural scenes. (D)
Averaged distance (across sessions) between mean responses for natural scenes is larger compared
to for gratings. (E) Observations in (C) generally hold for individual pairs of recording sessions.

In Supp. Fig. 4 we show that using energy distance (eq. 4, q = 1) as the ground metric produces
a similar result. Similar to Fig. 2C, MDS visualizations reveal the expected 2D manifold of toy
networks. Indeed, these alternative distances correlate—but do not coincide exactly—with the dis-
tances shown in Figure 2 that were computed with a Wasserstein ground metric (Supp. Fig. 4D).

3.2 BIOLOGICAL DATA

Quantifying representational similarity is common in visual neuroscience (Shi et al., 2019;
Kriegeskorte et al., 2008b). To our knowledge, past work has only quantified similarity in the geom-
etry of trial-averaged responses and has not explored how the population geometry of noise varies
across animals or brain regions (e.g. how the scale and shape of the response covariance changes).
We leveraged stochastic shape metrics to perform a preliminary study on primary visual cortical
recordings (VISp) from K = 31 mice in the Allen Brain Observatory.1 The results we present
below suggest: (a) across-animal variability in covariance geometry is comparable in magnitude
to variability in trial-average geometry, (b) across-animal distances in covariance and trial-average
geometry are not redundant statistics as they are only weakly correlated, and (c) the relative contri-
butions of mean and covariance geometry to inter-animal shape distances are stimulus-dependent.
Together, these results suggest that neural response distributions contain nontrivial geometric struc-
ture in their higher-order moments, and that stochastic shape metrics can help dissect this structure.

We studied population responses (evoked spike counts, see appendix B.2) to two stimulus sets: a set
of 6 static oriented grating stimuli and a set of 119 natural scene images. Figure 3A shows neural
responses from one animal to the oriented gratings within a principal component subspace (top),
and the isolated mean and covariance geometries (bottom). Figure 3B similarly summarizes neu-
ral responses to six different natural scenes. In both cases, the scale and orientation of covariance
within the first two PCs varies across stimuli. Furthermore, the scale of trial-to-trial variance was
comparable to across-condition variance in the response means. These observations can be made
individually within each animal, but a stochastic shape metric (2-Wasserstein ground metric, and ro-
tation invariance G = O) enables us to quantify differences in covariance geometry across animals.
We observed that the overall shape distance between two animals reflected a mixture of differences
in trial-average and covariance geometry. Specifically, by leveraging equation (7), we observed
that mean-insensitive (α = 0) and covariance-insensitive (α = 2) distances between animals have
similar magnitudes and are weakly correlated (Fig. 3C-E).

1See appendix B.2 for full details. Data are available at: observatory.brain-map.org/visualcoding/

6
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Figure 4: (A) Dissimilarity matrices with varying α (top) and corresponding 2D embeddings (bot-
tom) for 1800 VAEs trained on dSprites. Six different VAE objectives (color hue) were used, each
with six possible regularization strengths (tint) repeated over 50 random seeds. (B) Untrained net-
works were farther apart in mean-insensitive distance (α = 0) while trained networks were largely
separated by covariance-insensitive distance (α = 2). (C) kNN prediction of a network’s random
seed. (D) Predicting reconstruction loss using kNN regression. (E) kNN prediction accuracy of
VAE objective and regularization strength (hi vs lo) for metrics with different α (color scale). (F)
Regression performance predicting factor disentanglement scores (see Supp. B.3 for details).

Interestingly, the ratio of these two distances was reversed across the two stimulus sets—differences
in covariance geometry across animals were larger relative to differences in average for oriented
gratings, while the opposite was true for natural scenes (Fig. 3C-E). Later we will show an intrigu-
ingly similar trend when comparing representations between trained and untrained deep networks.

3.3 VARIATIONAL AUTOENCODERS AND LATENT FACTOR DISENTANGLEMENT

Variational autoencoders (VAEs; Kingma & Welling, 2019) are a well-known class of deep gener-
ative models that map inputs, z ∈ Z (e.g. images), onto conditional latent distributions, F (· | z),
which are typically parameterized as Gaussian. Thus, for each high-dimensional input zi, the en-
coder network produces a distributionN (µi,Σi) in a relatively low-dimensional latent space (“bot-
tleneck layer”). Because of this, VAEs are a popular tool for unsupervised, nonlinear dimensionality
reduction (Higgins et al., 2021; Seninge et al., 2021; Goffinet et al., 2021; Batty et al., 2019). How-
ever, the vast majority of papers only visualize and analyze the means, {µ1, . . . ,µM}, and ignore
the covariances, {Σ1, . . . ,ΣM}, generated by these models. Stochastic shape metrics enable us to
compare both the mean and covariance structure learned by different VAEs. Such comparisons can
help us understand how modeling choices impact learned representations (Locatello et al., 2019) and
how reproducible or identifiable learned representations are in practice (Khemakhem et al., 2020).

We studied a collection of 1800 trained networks spanning six variants of the VAE framework at six
regularization strengths and 50 random seeds (Locatello et al., 2019). Networks were trained on a
synthetic image dataset called dSprites (Matthey et al., 2017), which is a well-established bench-
mark within the VAE disentanglement literature. Each image has a set of ground truth latent factors
which Locatello et al. (2019) used to compute various disentanglement scores for all networks.

We computed stochastic shape distances between over 1.6 million network pairs, demonstrating the
scalability of our framework. We computed rotation-invariant distances (G = O) for the generalized
Wasserstein ground metric (α = 0, 0.5, 1, 1.5, 2 in equation 7; Fig. 4A) and for energy distance (q =
1 in equation 4; Supp. Fig. 7A, Supp. B.3.3). In all cases, different VAE variants visibly clustered
together in different regions of the stochastic shape space (Fig. 4B, Supp. Fig. 7B). Interestingly, the
covariance-insensitive (α = 2) shape distance tended to be larger than the mean-insensitive (α = 0)
shape distance (Fig. 4B), in agreement with the biological data on natural images (Fig. 3C, bottom).
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Figure 5: (A) Left, Patch-Gaussian augmented images for different patch width, W , and train-time
noise level, σ. Right, MDS embedded activation vectors from Patch-Gaussian trained networks. Col-
ors correspond to a different images, points correspond to independent samples, τ = 0.1. (B) Dis-
tance matrices (left) and low-dimensional MDS embedding (right) of networks for different shape
distances parameterized by α, and different levels of Gaussian corruption at test time, τ .

Even more interestingly, this relationship was reversed in untrained VAEs (Fig. 4B), similar to the
biological data on artificial gratings (Fig. 3B, top). We trained several hundred VAEs on MNIST and
CIFAR-10 to confirm these results persisted across more complex datasets (Supp. Fig. 9; Supp. B.3).
Overall, this suggests that the ratio of α = 0 and α = 2 shape distances may be a useful summary
statistic of representational complexity. We leave a detailed investigation of this to future work.

Since stochastic shape distances define proper metric spaces without triangle inequality violations,
we can identify the k-nearest neighbors (kNN) of each network within this space, and use these
neighborhoods to perform nonparametric classification and regression (Cover & Hart, 1967). This
simple approach was sufficient to predict most characteristics of a network, including its random
seed (Fig. 4C), average training reconstruction loss (Fig. 4D), its variant of the VAE objective in-
cluding regularization strength (Fig. 4E), and various disentanglement scores (Fig. 4F). Detailed pro-
cedures for these analyses are provided in Appendix B.3. Notably, many of these predictions about
network identity (Fig. 4E) were more accurate for the novel stochastic shape metrics (0 ≤ α < 2),
compared to existing shape metrics (α = 2, deterministic metric on the mean responses; Williams
et al. 2021). Similarly, many disentanglement score predictions (Fig. 4F) improved when consider-
ing both covariance and means together (0 < α < 2).

The fact that we can often infer a network’s random seed from its position in stochastic shape
space suggests that VAE features may have limited interpretability on this dataset. These limitations
appear to apply both to the mean (α = 2) and the covariance (α = 0) representational geometries,
as well as to intermediate interpolations. Future work that aims to assess the identifiability of VAE
representations may find it useful to use stochastic shape metrics to perform similar analyses.

3.4 EFFECTS OF PATCH-GAUSSIAN DATA AUGMENTATION ON ARTIFICIAL DEEP NETWORKS

Despite the success of artificial neural networks on vision tasks, they are still susceptible to small
input perturbations (Hendrycks & Dietterich, 2019). A simple and popular approach to induce
robustness in deep networks is Patch-Gaussian augmentation (Lopes et al., 2019), which adds Gaus-
sian noise drawn from N (0, σ2) to random image patches of width W during training (Fig. 5A,
left column). At test time, network robustness is assessed with images with spatially uniform noise
drawn from N (0, τ2). Importantly, the magnitude of noise at test time, τ , may be distinct from
noise magnitude during training, σ. From Fig. 5A (right column), we see that using Patch-Gaussian
augmentation (second-fourth rows) qualitatively leads to more robust hidden layer representations
on noisy data compared to networks trained without it (first row). While Patch-Gaussian augmenta-
tion is empirically successful (for quantitative details, see Lopes et al., 2019), how W and σ change
hidden layer representations to confer robustness remains poorly understood.

To investigate, we trained a collection of 339 ResNet-18 networks (He et al., 2016) on CIFAR-
10 (Krizhevsky, 2009), sweeping over 16 values of W , 7 values of σ, and 3 random seeds (see
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appendix B.4 for details). While the architecture is deterministic, we can consider it to be a stochastic
mapping by absorbing the random Gaussian perturbation—parameterized by τ—into the first layer
of the network and allowing the stochasticity to percolate through the network. Representations
from a fully connected layer following the final average pooling layer were used for this analysis.
We computed stochastic shape distances across all 57,291 pairs of networks across six values of τ
and three shape metrics parameterized by α ∈ {0, 1, 2} defining the ground metric in equation (7).

Sweeping across α and τ revealed a rich set of relationships across these networks (Fig. 5B and
Supp. Fig. 11). While a complete investigation is beyond the scope of this paper, several points
are worthy of mention. First, the mean-insensitive (α = 0, top row) and covariance-insensitive
(α = 2, bottom row) metrics produce clearly distinct MDS embeddings. Thus, the new notions
of stochastic representational geometry developed in this paper (corresponding to α = 0) provide
new information to existing distance measures (corresponding to α = 2). Second, the arrangement
of networks in stochastic shape space reflects both W and σ, sometimes in a 2D grid layout that
maps nicely onto the hyperparameter sweep (e.g. α = 0 and τ = 0.01). Networks with the same
hyperparameters but different random seeds tend to be close together in shape space. Third, the
test-time noise, τ , also intricately impacts the structure revealed by all metrics. Finally, embeddings
based on 2-Wasserstein metric (α = 1) qualitatively resemble embeddings based on the covariance-
insensitive metric (α = 2) rather than the mean-insensitive metric (α = 0).

4 DISCUSSION AND RELATION TO PRIOR WORK

We have proposed stochastic shape metrics as a novel framework to quantify representational dis-
similarity across networks that respond probabilistically to fixed inputs. Very few prior works have
investigated this issue. To our knowledge, methods within the deep learning literature like CKA (Ko-
rnblith et al., 2019) have been exclusively applied to deterministic networks. Of course, the broader
concept of measuring distances between probability distributions appears frequently. For example,
to quantify distance between two distributions over natural images, Fréchet inception distance (FID;
Heusel et al., 2017) computes the 2-Wasserstein distance within a hidden layer representation space.
While FID utilizes similar concepts to our work, it addresses a very different problem—i.e., how to
compare two stimulus sets within the deterministic feature space of a single neural network, rather
than how to compare the feature spaces of two stochastic networks over a single stimulus set.

A select number of reports in neuroscience, particularly within the fMRI literature, have addressed
how measurement noise impacts RSA (an approach very similar to CKA). Diedrichsen et al. (2020)
discuss how measurement noise induces positive bias in RSA distances, and propose approaches to
correct for this bias. Similarly, Cai et al. (2016) propose a Bayesian approach to RSA that performs
well in low signal-to-noise regimes. These papers essentially aim to develop methods that are robust
to noise, while we were motivated to directly quantify differences in noise scale and geometric
structure across networks. It is also common to use Mahalanobis distances weighted by inverse noise
covariance to compute intra-network representation distances (Walther et al., 2016). This procedure
does not appear to quantify differences in noise structure between networks, which we verified on
a simple “toy dataset” (compare Fig. 2C to Supp. Fig. 3). Furthermore, the Mahalanobis variant
of RSA typically only accounts for a single, stimulus-independent noise covariance. In contrast,
stochastic shape metrics account for noise statistics that change across stimuli.

Overall, our work meaningfully broadens the toolbox of representational geometry to quantify
stochastic neural responses. The strengths and limitations of our work are similar to other ap-
proaches within this toolbox. A limitation in neurobiological recordings is that we only observe a
subset of the total neurons in each network. Shi et al. (2019) document the effect of subsampling
neurons on representational geometry. Intuitively, when the number of recorded neurons is large
relative to the representational complexity, geometric features are not badly distorted (Kriegeskorte
& Diedrichsen, 2016; Trautmann et al., 2019). We show that our results are not qualitatively affected
by subsampling neurons in Supp. Fig. 6. Another limitation is that representational geometry does
not directly shed light on the algorithmic principles of neural computation (Maheswaranathan et al.,
2019). Despite these challenges, representational dissimilarity measures are one of the few quanti-
tative tools available to compare activations across large collections of complex, black-box models,
and will be a mainstay of artificial and biological network analysis for the foreseeable future.
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Gábor J. Székely and Maria L. Rizzo. The energy of data. Annual Review of Statistics and Its
Application, 4(1):447–479, 2017. doi: 10.1146/annurev-statistics-060116-054026.

Jun Tong, Rui Hu, Jiangtao Xi, Zhitao Xiao, Qinghua Guo, and Yanguang Yu. Linear shrinkage
estimation of covariance matrices using low-complexity cross-validation. Signal Processing, 148:
223–233, 2018.

Eric M. Trautmann, Sergey D. Stavisky, Subhaneil Lahiri, Katherine C. Ames, Matthew T. Kauf-
man, Daniel J. O’Shea, Saurabh Vyas, Xulu Sun, Stephen I. Ryu, Surya Ganguli, and Kr-
ishna V. Shenoy. Accurate estimation of neural population dynamics without spike sorting. Neu-
ron, 103(2):292–308.e4, 2022/11/15 2019. doi: 10.1016/j.neuron.2019.05.003. URL https:
//doi.org/10.1016/j.neuron.2019.05.003.

Jos Uffink. Can the maximum entropy principle be explained as a consistency require-
ment? Studies in History and Philosophy of Science Part B: Studies in History and Phi-
losophy of Modern Physics, 26(3):223–261, 1995. ISSN 1355-2198. doi: https://doi.org/
10.1016/1355-2198(95)00015-1. URL https://www.sciencedirect.com/science/article/
pii/1355219895000151.

Cédric Villani. Optimal Transport. Springer Berlin Heidelberg, 2009.

Alexander Walther, Hamed Nili, Naveed Ejaz, Arjen Alink, Nikolaus Kriegeskorte, and Jörn
Diedrichsen. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage,
137:188–200, August 2016.

Alex H. Williams, Erin Kunz, Simon Kornblith, and Scott W. Linderman. Generalized shape metrics
on neural representations. In Advances in Neural Information Processing Systems, volume 34,
2021.

Andrew Gordon Wilson. The case for bayesian deep learning, 2020.

13

https://www.sciencedirect.com/science/article/pii/S1053811921005474
https://www.sciencedirect.com/science/article/pii/S1053811921005474
https://www.sciencedirect.com/science/article/pii/0893608091900332
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1016/j.neuron.2019.05.003
https://doi.org/10.1016/j.neuron.2019.05.003
https://www.sciencedirect.com/science/article/pii/1355219895000151
https://www.sciencedirect.com/science/article/pii/1355219895000151


Published as a conference paper at ICLR 2023

Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E. Turner, Jose Miguel Hernandez-Lobato,
and Alexander L. Gaunt. Deterministic variational inference for robust bayesian neural networks.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=B1l08oAct7.

14

https://openreview.net/forum?id=B1l08oAct7
https://openreview.net/forum?id=B1l08oAct7


Published as a conference paper at ICLR 2023

APPENDICES

A SUPPLEMENTARY FIGURES

Supplementary Figure 1: Proposed method intuition using distances based on either W2 or E
ground metrics. (A) and (B) Two example stochastic network representations to five stimuli (colors).
(C) The optimal alignment of the representations over nuisance transformations (e.g. rotations,
G = O). (D) Intuitively, the 2-Wasserstein distance (W2) is the minimum cost of turning one
density (pile of dirt) to another (Villani, 2009; Peyré & Cuturi, 2019). Here we highlight the distance
between the two green densities to reduce clutter. (E) Energy distance is based on the maximum-
entropy transport map between the two distributions (Feydy et al., 2019).
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Supplementary Figure 2: Simulated example showing how varying the α parameter inWα

2 induces
different rotational alignments between neural representations (G = O). (A) Two stimulated stochas-
tic representations for three stimulus inputs. Colors represent different input conditions (M = 3),
hollow points represent sampled representations from the first network and filled points represent
sampled representations from the second network. The example is constructed so that no rotation
can simultaneously align both the means and covariances. (B) If the stochastic metric only takes
means into account (α = 2), after rotating one of the representations by 90◦, two sets of represen-
tational means completely overlap, and the distance becomes 0. If the stochastic metric only takes
covariances into account (α = 0), the optimal alignment between the two sets of covariances is
either 0◦ or 180◦, and after this rotation, distance between representations again is 0. (C) When both
α = 0 and α = 2, distance between the two representations is 0, so the lower bound for the distance
for α in the range between 0 and 2 is also 0. We computed the stochastic metric within this range of
α, and the final distance is generally above the lower bound. (D) Optimal rotation between the two
representations at different values of α.

RSA
(Euclidean, Spearman)

RSA
(Euclidean, Pearson)

RSA
(Mahalanobis, Spearman)

RSA
(Mahalanobis, Pearson)

CKA
(Linear Kernel)

Supplementary Figure 3: Associated with Figure 2 from the main text. Embeddings of “toy
dataset” networks (see Fig. 2A-B) visualized by multi-dimensional scaling of existing dissimilarity
measures. Each point represents a network, the color scheme is the same as in Fig. 2C. All methods
fail to recover a reasonable embedding which captures representational differences (compare with
stochastic shape metric embeddings in Fig. 2C and Supp. Fig. 4C). Starting from the left, the first
two plots use representational similarity analysis (RSA; Kriegeskorte et al. 2008a) with two forms
of correlation distance (Spearman and Pearson) applied to Euclidean representational similarity ma-
trices. The next two plots use Mahalanobis distance re-weighted by the noise covariance (Walther
et al., 2016) rather than Euclidean distance. The final plot shows an embedding by centered kernel
alignment with a linear filter (Kornblith et al., 2019).
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Supplementary Figure 4: Associated with Figure 2 from the main text. Stochastic shape metrics
with energy distance also recover the “ground truth” structure of synthetic “toy data”. (A) Matrix of
estimated pairwise distances computed with E1 ground metric on the synthetic data shown in Fig. 2A.
(B) Matrix of pairwise distances after quadratic metric repair (see appendix F.3) was performed to
correct for minor triangle inequality violations. (C) Multidimensional scaling embedding of the
distance matrix in panel B into 2D Euclidean space. Compare with Fig. 2C. (D) Linear correlation
between stochastic shape distances with energy distance ground metric (i.e. off-diagonal entries of
panel B) and 2-Wasserstein ground metric (i.e. off-diagonal entries of Fig. 2B). Red dashed line
denotes the best linear model according to a least-squares criterion.

Supplementary Figure 5: Associated with Figure 3 from the main text. Drifted gratings (4 drifting
directions, 75 repeats each) were presented in a different set of experimental sessions. Like (artifi-
cial) static gratings, representational distances across sessions for drifted gratings are dominated by
covariance differences.
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Supplementary Figure 6: We use a simulation to explore how the size of the neural population
recording affects our conclusions about representational distances. In particular, does the ratio of
mean-insensitive to covariance-insensitive across-animal distances (α = 0 vs. α = 2) change when
we sub-sample neurons? For this simulation, we chose two mice that have 102 and 110 neurons
recorded from their respective VISps. We randomly sample a subset of n neurons among these
recorded neurons (n = 10, 30, 50, 70, 90, 100), and computed representational distance (α = 0, 1, 2)
using only the subset. For panel A and B, we sampled the neurons without replacement, and for
panel C and D, we sample with replacement (bootstrapping). We observe that for all tested α,
representational distance increases with the number of neurons within the subset. This is expected
because distances will generically increase with the dimension (e.g. the Euclidean distance between
two random vectors in a high dimensions will tend to be large, relative to low dimensions). However,
the ratio of α = 0 and α = 2 shape distances is preserved when subsampling neurons (all lines are
trending upward as a function of α). Error bars capture how the computed distances vary across 15
random draws of n neurons from the recorded population.
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Supplementary Figure 7: Associated with VAE analyses (Figure 4) in the main text. (A) Dissimi-
larity matrices measured for 1800 dSprites-trained VAEs from Locatello et al. (2019) using gener-
alized interpolated 2-Wasserstein (Equation 7) with varying α (first five columns), and using energy
distance (Equation 4) with 64 samples for each unique input (right-most column). Row/column
ordering of each matrix is the same as in Figure 4. (B) 2D embeddings corresponding to distance
matrices in (A). Colors are the same as in Figure 4. We aligned to the left-most panel using Pro-
crustes analysis, allowing for scaling and rotations/reflections. (C) Re-scaling Wα

2 distances and
energy distances such that they lie between [0, 1] reveals that the distribution of energy distances
agrees best withWα=1.0

2 (middle column). (D) Predicting objective and regularization strength us-
ing distance matrices in (A). (E) Predicting disentanglement scores using distance matrices in (A).
See Supp. B.3 for more details.

Supplementary Figure 8: Associated with VAE analyses (Figure 4) in the main text. Distortion
induced by multidimensional scaling of 1800×1800 dissimilarity matrices with varying embedding
dimensionality. Different shading represents (10th-90th) and (25th-75th) percentiles. See Supp. B.3
for details.
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Supplementary Figure 9: Associated with VAE analyses (Figure 4) in the main text. We initialized
350 β-VAEs and trained them on MNIST (left) and CIFAR-10 (right) with different values of β in
the loss function. Training led to inter-network distances being dominated by covariance-insensitive
(α = 2) dissimilarity, in agreement with Figure 4B of the main text. See Supp. B.3 for training
details.
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Supplementary Figure 10: Distance matrices for different values of α and τ .

Supplementary Figure 11: Two dimensional embedding of the distance matrices in Fig. 10 for
different values of α (row) and τ (column).
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B SUPPLEMENTAL METHODS

B.1 CODE AND REPRODUCIBILITY

We have attached a zip file containing a self-contained Python script with our implementation of the
interpolated generalized Wasserstein distance (equation 7) and energy distance (equation 4) in a file
named metric.py. Additional analysis and source code will be located at github.com/ahwillia/
netrep.

B.2 ALLEN BRAIN OBSERVATORY DATA

B.2.1 DATA PRE-PROCESSING.

In each recording session, gratings (6 orientations) and natural scenes (119 images) were presented
to one mouse, and between 19 to 110 neurons in VISp were recorded by extracellular microelectrode
arrays (Neuropixels Visual Coding dataset). Each neuron’s response to an image was measured as
the sum of action potentials (spikes) emitted within a 250 millisecond time window (the duration
of the stimulus presentation in this dataset). To compare how similar a single set of stimuli were
represented across sessions, we Gaussian-approximated the data recorded for each stimulus. Then
for each stimulus class (gratings and scenes), we compared between two sets of Gaussians (one per
stimulus).

Our metrics compared between sets of Gaussians that have the same dimensionality, so we per-
formed PCA to equalize dimensionality across all sessions. We concatenated data recorded for
different images within a single stimulus class, and extracted the first 19 principal components in
replacement of the total number of recorded neurons for further analysis. On average, the extracted
19 principal components explained 83% of the data variance in response to gratings, and 76% of the
variance to natural scenes.

B.2.2 ESTIMATING RESPONSE MEAN AND COVARIANCE.

To compare between two neural representations, our stochastic metrics take two sets of Gaussian
means and covariances as inputs, where each of which is estimated from the principal components
(PCs) extracted from the data.

In each session, a stimulus (either a grating or a scene) was presented over 50 repeats. The number of
repeats is large compared to conventional neuroscience experiments, but it is still small compared to
the total number of recorded neurons (e.g. 110 neurons in one session), or the total number of PCs,
which introduces challenges to covariance estimation. For the mean of each stimulus representation,
we used the sample mean from the PCs. When number of samples is relatively small, sample
covariance has one known bias: it tends to over-estimate large eigenvalues, and under-estimate
small eigenvalues of the population covariance. One standard and effective fix in the literature is to
use a shrinkage estimator (S∗) – a linear interpolation between an identity matrix (I) and the sample
covariance (S) (e.g. Ledoit & Wolf (2004); Tong et al. (2018)):

S∗ = γI + (1− γ)S. (8)

This interpolation reduces the eigenvalue bias by balancing between eigenvalues of the sample co-
variance (overly skewed eigenvalue spectrum), and that of the identity matrix (flat eigenvalue spec-
trum). γ of the shrinkage covariance estimator was chosen using cross-validation. To obtain the
cross-validation training set, we randomly sample half of the epochs from each data trial, and for
test set, we used the remaining half.

B.3 VARIATIONAL AUTOENCODERS AND LATENT FACTOR DISENTANGLEMENT
(SUPPLEMENT TO SEC. 3.3)

B.3.1 VAE OBJECTIVES AND ARCHITECTURES USED IN THIS STUDY

Because conventional VAE encoders output a latent Gaussian conditional mean and covariance, this
makes them an ideal framework with which to apply stochastic shape metrics. In particular, the
interpolated Wasserstein distance (equation 7) is exact in this case. We used a set of 1800 VAEs
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trained on dSprites from the extensive study by Locatello et al. (2019). These include six variants
of the VAE objective (β, Factor, β-TC, DIP-I, DIP-II, Annealed), each with six different levels of
regularization strength and 50 repetitions at different random seeds. The dimensionality of the latent
representation, from which we obtained activations used in this study, was 10D. We refer the reader
to their supplemental document for more details about each architecture and training scheme. The
authors provided metadata associated with each network such as training hyperparameters as well
as factor disentanglement scores (see below).

In addition to the VAEs trained on dSprites, we trained 350 β VAEs on MNIST and CIFAR-10.
To remain consistent with the study by Locatello et al. (2019), we trained β-VAEs at 6-8 different
levels of regularization strength (1 ≤ β ≤ 16) and 50 random initialization seeds. We used the
standard VAE symmetric encoder-decoder architecture with L layers (L = 3 for MNIST and L = 4
for CIFAR-10), each with 64 4× 4 convolutional filters with stride 2, followed by a fully-connected
layer with 256 hidden units and ReLU activations. The latent representations of these networks
were diagonal Gaussians, and were 10D (MNIST) or 50D (CIFAR-10). The final 2D convolution-
transpose layer of the decoder used a sigmoid nolinearity to ensure outputs were between [0, 1].

We zero-padded the height and width of MNIST images from 28× 28 → 32× 32. Model training
used batch sizes of 64 images, and up to 1000 training epochs. We used the Adam optimizer with
1E-4 learning rate and model checkpoints at each epoch. Models used in this study were from
checkpoints corresponding to the lowest validation loss during training. Latent activations used for
shape metric analysis in this study were obtained using a held-out test set of 3500 images.

B.3.2 Wα=0

2 VS. Wα=2

2 BEFORE AND AFTER TRAINING

Fig. 4B of the main text shows that, prior to training, VAEs are primarily separated by mean-
insensitive distance (Wα

2 , α = 0, equation 7), whereas after training they are separated by
covariance-insensitive distance (α = 2). We sought to confirm whether this effect persisted across
different datasets using VAEs trained on MNIST and CIFAR-10 (described above). SuppFig. 9
shows that pairwise network Wα

2 distances before and after training indeed exhibit this effect on
these more complex datasets. We reproduced these effects using both default PyTorch weight ini-
tialization and Kaiming weight initialization.

B.3.3 COMPUTING ENERGY DISTANCE BETWEEN TRAINED VAES

In addition to measuring interpolated Wasserstein distances (equation 7), we also repeated our anal-
yses using energy distance (equation 4). Rather than requiring computing means and covariances,
this method operates directly on samples. Since VAE latents are parameterized as Gaussian, we
generated data by randomly sampling from the Gaussian defined by the model’s conditional mean
and covariance for a given input. We sampled 64 samples for 2048 images and computed pair-
wise energy distances between all 1800 networks in the (Locatello et al., 2019) dSprites dataset
(SuppFig. 7). Interestingly, the energy dissimilarity matrix was qualitatively different than all of the
Wα

2 dissimilarity matrices (SuppFig. 7A). The geometry of the embedded points was accordingly
different than embeddings derived fromWα

2 distances (SuppFig. 7B).

The energy dissimilarity matrix seemed to correlate with those derived fromWα

2 distances (Supp-
Fig. 7C). We noted, however, that after re-scaling the dissimilarity matrices such that they lie be-
tween [0, 1], the distribution of pairwise energy distances was most in line with interpolated Wasser-
stein distances when α = 1 (SuppFig. 7C middle panel).

We repeated the classification and disentanglement kNN analyses done in the main text using neigh-
borhoods defined by energy distance (SuppFig. 7D,E). In most cases, using energy distance per-
formed as well as, but sometimes worse thanWα=2

2 , the covariance-insensitive Wasserstein metric.
It is possible that computing energy distance using a higher number of samples per image than
64 would improve estimates and downstream regression/classification performance. In general it
would be interesting to examine the effects of sample size and empirical energy distance estimate
convergence. We leave a deeper investigation into this for future work.
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B.3.4 LOW-DIMENSIONAL PROJECTIONS

To determine a reasonable embedding dimensionality for K networks, we performed the following
analysis. Given a symmetric K ×K distance matrix D, with elements d(i, j), we used multidimen-
sional scaling to embed K networks into a low M-dimensional space. Networks in this embedded
space can be encoded by a new, Euclidean distance matrix D̃ with elements d̃(i, j). For each element
on the upper-triangle of these matrices, we computed a distortion ratio,

∆(i, j) = d(i, j)/d̃(i, j) (9)
Distortion(i, j) = max(∆(i, j), 1/∆(i, j)). (10)

By sweeping embedding dimensionality M from 1-20, we determined that using an MDS embedding
dimensionality of M=15 produced reasonably minimal distortions (SuppFig. 8) for all the distance
matrices. After embedding the networks into 15D, we then performed principal components analysis
to obtain the scatterplots in Fig. 4A and SuppFig. 7. In the main text, we used orthogonal Procrustes
to align the principal components of each subpanel to the left-most panel. For SuppFig. 7B, we again
aligned all panels to the left-most panel using Procrustes analysis, but allowed for re-scaling in order
to compensate for energy distances being on an arbitrary scale compared withWα

2 distances.

B.3.5 VAE DISENTANGLEMENT METRICS

For each of the 1800 VAEs trained on dSprites, Locatello et al. (2019) computed a large array
of factor disentanglement scores proposed by previous studies. The scores abbreviated in Fig. 4F
are listed in the below table. We list the different disentangement scores using the same naming
convention as in the work of Locatello et al. (2019). We refer the reader to their supplement for
more details on each of these scores.

Disentanglement score
A β-VAE eval accuracy
B Disentanglement, Informativeness, Completeness (DCI) disentanglement
C DCI completeness
D DCI informativeness
E Factor VAE eval accuracy
F Logistic regression mean test accuracy
G Boosted trees mean test accuracy
H Discrete mutual information gap (MIG)
I Modularity score
J Explicitness test score
K Separated Attribute Predictability (SAP) score
L Gaussian total correlation
M Gaussian Wasserstein correlation
N Gaussian Wasserstein normalized correlation
O Mutual information score

B.3.6 k-NEAREST NEIGHBORS ANALYSES

Because the stochastic metrics used in this study satisfy the triangle inequality, this permitted
non-parametric analyses using k-nearest neighbors (kNN) to determine whether network similar-
ity carried information about model hyper-parameters and task performance. We used scikit-learn’s
KNeighborsClassifier and KNeighborsRegressor for classification and regression analyses, re-
spectively. We withheld a test set and performed 6-fold cross-validation on the remaining data to
determine k, the number of neighbors to use for classification/regression. We reported final perfor-
mance using the average score on the held-out test set.

For classification analyses, we trained models to decode random initial seed (1/50 chance, Fig. 4C),
and model objective along with regularization strength (6 objective × 6 regularization strengths in
the Locatello study, i.e. 1/36 chance, Fig. 4E). In terms of regression analyses, we trained models to
predict training reconstruction loss Fig. 4D and disentanglement scores Fig. 4F and reported average
R2 on the held-out test set.
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B.4 ADDITIONAL DETAILS FOR PATCH-GAUSSIAN AUGMENTATION EXPERIMENTS

B.4.1 TRAINING AND ARCHITECTURE DETAILS

We use the ResNet-18 architecture (He et al., 2016) where an intermediate fully-connected layer of
dimension 100 is added after the final average pooling layer, followed by a linear readout layer. All
analyses were done on the representations produced of this intermediate fully-connected layer.

Following standard practice, images were randomly cropped, followed by a random horizontal flip.
A modified version of the Patch-Gaussian augmentation was applied, where the entire noisy patch
is constrained to reside in the image. Lastly, we subtract off the per-channel mean and divide by
the per-channel standard deviation. For the Patch-Gaussian augmentation, we swept over 16 values
of patch width, W ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32} and 7 different values
of noise scale, σ ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1.}, leading to 17 × 6 = 112 possible (W,σ)
combinations. For each (W,σ) pair, we trained 3 networks, each with a different random seed,
leading to 16 × 7 × 3 = 336 networks. As a baseline, we also trained networks with no Patch-
Gaussian augmentation over three random seeds, giving us 339 total networks.

We used stochastic gradient descent with a momentum of 0.9, batch size of 128 and weight decay
of 1E-4. Networks were trained for 200 epochs where the learning rate was initially set to 0.1 and
halved every 60 epochs.

B.5 VISUALIZATION OF HIDDEN LAYER REPRESENTATIONS

To visualize the effect of Patch-Gaussian hyper-parameters on hidden layer representations as shown
in Fig. 5A, we randomly selected one image from each of the 10 classes, e.g. z1, . . . , z10. For each
image i—and a given value of τ—we drew 100 samples from N (zi, τ) and collected the hidden
layer representations, leading to 1,000 points total. Mutli-dimensional scaling was then applied to
embed the representations into two dimensions.

B.5.1 STOCHASTIC SHAPE METRIC COMPUTATION

2,000 images were used for computing the stochastic shape metric. To estimate the conditional mean
and covariance for each image, 1,000 samples were first drawn from N (zi, τ). The conditional
mean was estimated via a Monte Carlo estimator. The conditional covariance was computed by
first computing the Monte Carlo estimator and then adding 0.0001 to the diagonal to ensure the
covariance is well-conditioned.

To visualize the metric shape induced by the stochastic shape metric, multi-dimensional scaling was
used to embed the networks into 20 dimensions. Principal component analysis was then done to
linearly project the MDS embeddings onto the top 2 principal components.

We used three different values for the interpolated Wasserstein distance, α ∈ {0, 1, 2} and 6 values
for the magnitude of the input perturbation, τ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. All distance matrices
are shown in Fig. 10. The corresponding two-dimensional embedding are shown in Fig. 11.

C PROOF OF PROPOSITION 1

We first prove two lemmas, from which the main proposition immediately follows.

Lemma 1. If G is a group of isometries on a metric space (d1, S) then

d(x, y) = min
T∈G

d1(x,T (y)) (11)

is a pseudometric which can be used to define a metric over equivalence classes [x] = {y | y ∼ x}
where the equivalence relation is defined as:

x ∼ y ⇐⇒ ∃ T ∈ G such that x = T (y) (12)

Proof. This proof is more or less reproduced from Williams et al. (2021), and similar arguments can
be found elsewhere within the statistical shape analysis literature.

25



Published as a conference paper at ICLR 2023

The equivalence relation in equation (12) is self-evident. This simply states that d(x, y) = 0 if
and only if x = T (y) for some alignment transformation T ∈ G. Then we define our equivalence
relation as: x ∼ y if and only if d(x, y) = 0. In other words, although d technically only defines a
pseudometric on S, it is easily associated to a proper metric on a set of equivalence classes, i.e. the
quotient space (S/ ∼). See Howes (1995) for more background details (page 27, in particular).

Now we prove that d is symmetric. Let Txy denote the optimal transformation from Y toX . That is,
Txy = argminT∈G d1(x,T (y)) and Tyx = argminT∈G d1(y,T (x)). Then, using the fact that d1 is
symmetric and that G defines a group of isometries, we have

d(x, y) = d1(x,Txy(y)) = d1(Txy(y), x) = d1(y,T−1xy (x))) ≤ d1(y,Tyx(x))) = d(y, x)

but also

d(y, x) = d1(y,Tyx(x)) = d1(Tyx(x), y) = d1(x,T−1yx (y))) ≤ d1(x,Txy(y))) = d(x, y).

The only way for both inequalities to hold is for d(x, y) = d(y, x). Also, we see that Txy = T−1yx ,
which we will exploit below.

It remains to prove the triangle inequality. This is done as follows:

d(x, y) = d1(x,Txy(y)) (13)
≤ d1(x,Txz(Tzy(y))) (14)
≤ d1(x,Txz(z)) + d1(Txz(z),Txz(Tzy(y))) (15)
= d1(x,Txz(z)) + d1(Z,Tzy(y)) (16)
= d(x, z) + d(z, y) (17)

The first inequality follows from replacing the optimal alignment, Txy , with a sub-optimal align-
ment, given by function composition Txz ◦ Tzy . (Recall that G is a group and so is closed under
function compositions.) The second inequality follows from the triangle inequality on d1, after
choosing Txz(z) as the midpoint. The penultimate step follows from T−1xz being an isometry on d1
and since Txz ∈ G, we have T−1xz ∈ G by the group properties of G.

Lemma 2. Let (d2, S2) be a metric space, let f(·) and g(·) be functions mapping Z 7→ S2, and let
Q be a probability distribution supported on Z . Then,

d1(f, g) =
(

E
z∼Q

d22(f(z), g(z))
)1/2

(18)

is a metric over the set of functions mapping Z 7→ S2.

Proof. Since d2 is a metric, we have d2(x, y) > 0 if x 6= y. Recall our assumption that the support
of Q equals Z . Thus, if there exists a z ∈ Z for which f(z) 6= g(z), the expectation will evaluate
to a positive number and we have d1(f, g) > 0. So we conclude d1(f, g) = 0 if and only if f and g
define the exact same mapping from Z 7→ S2.

It is also obvious that d1(f, g) = d1(g, f), due to the symmetry of d2. Thus, it only remains to prove
the triangle inequality.

Fix any function h : Z 7→ S. Due to the triangle inequality on d2, we have:

d1(f, g) =
(

E
z∼Q

d22(f(z), g(z))
)1/2

≤
(

E
z∼Q

(
d2(f(z), h(z)) + d2(h(z), g(z))

)2 )1/2
(19)

Now let X = d2(f(z), h(z)) and Y = d2(h(z), g(z)). Note that z is a random variable (sam-
pled from Q), and so X and Y are also random variables. We now recall two elementary facts:
‖X‖2= (E[X2])1/2 defines a norm over random variables, and ‖X + Y ‖2 ≤ ‖X‖2 + ‖Y ‖2 for
any two random variables (Minkowski’s inequality). Our definitions of X and Y imply that the
right hand side of equation (19) can be re-written as ‖X + Y ‖2. And we can therefore conclude the
proof since:

d1(f, g) ≤ ‖X + Y ‖2 ≤ ‖X‖2 + ‖Y ‖2 = d1(f, h) + d1(h, g) . (20)

26



Published as a conference paper at ICLR 2023

Main proof. Let us restate and then prove proposition 1. We want to show that the following:

d(Fi, Fj) = min
T∈G

(
E
z∼Q

[
D2
(
Fφi

i (· | z), F
φj

j (· | z) ◦ T−1
)])1/2

(21)

is a pseudometric over stochastic networks—i.e, a pseudometric over functions F that map inputs
z ∈ Z onto probability distributions. Recall that Fφ(· | z) is a shorthand notation for F (φ−1(·) | z)
where φ−1 is the pre-image of φ.

Our key assumptions are that D(·, ·) is a metric over probability distributions and that G is a group
of isometry transformations with respect to this metric—i.e., for any pair of probability distributions
F and G, we have that:

D(F,G) = D(F ◦ T−1, G ◦ T−1) (22)

for any T ∈ G. It is well-known that the Wasserstein distance (Villani, 2009) and energy dis-
tance (Sejdinovic et al., 2013; Székely & Rizzo, 2017) are probability metrics. Further, it is easy to
show that orthogonal pushforward transformations are isometries for both metrics. For example, we
have for the 2-Wasserstein distance that:

W2
2 (P,Q) = inf E ‖X − Y ‖2 = inf E ‖TX − TY ‖2 =W2

2 (P ◦ T−1, Q ◦ T−1) (23)

for any orthogonal transformation T . Thus, for our purposes we can think of G as being any sub-
group of the orthogonal group.

Now that we have reminded ourselves of the main proposition, let us turn to the proof.

Proof. Let us define:

d1(Fφi , F
φ
j ) =

(
E
z∼Q

[
D2
(
Fφi (· | z), Fφj (· | z)

)])1/2

. (24)

Plugging this into equation (21), we have:

d(Fi, Fj) = min
T∈G

d1(Fφi , F
φ
j ◦ T

−1). (25)

Lemma 2 tells us that d1 is a metric. Thus, lemma 1 applies to equation (25). This permits us to
conclude that d is a pseudometric and defines a metric over sets of equivalent neural representations,
as claimed.

D PRACTICAL ESTIMATION OF STOCHASTIC SHAPE METRICS

In both biological and artificial networks, we do not have parametric forms for the conditional
distributions over neural population responses. Instead, we can only draw samples from these
distributions—e.g., by feeding an input into an artificial network and performing a stochastic for-
ward pass, or by recording evoked spike counts to a sensory stimulus in biological data. We consider
a simple experimental setup: we are given K stochastic neural networks {F1, . . . , FK}, M network
inputs or conditions {z1, . . . ,zM}, and L repeated observations or measurements of the neural re-
sponses to each input. For example, in an artificial network that ingests image data,M would denote
the number of images in a test set and L denotes the number of samples per image. Let x(km)

` ∈ Rn
to denote sample `, from network k, to condition m. That is,

x
(km)
` ∼ Fφk (x | zm) i.i.d. for (`,m, k) ∈ {1, . . . , L} × {1, . . . ,M} × {1, . . . ,K}. (26)

D.1 METRICS BASED ON 2-WASSERSTEIN DISTANCE AND GAUSSIAN ASSUMPTION

Our main assumption in this section is that distributions over neural activations are multi-
variate Gaussians. That is, for each stochastic network and every input z ∈ Z , we have
Fφi (z) = N (µi(z),Σi(z)), where µi : Z 7→ Rn and Σi : Z 7→ Sn×n. If T : Rn 7→ Rn is
a linear pushforward map, then the pushforward measure is still Gaussian and is defined by
Fφj (z) ◦ T−1 = N (Tµj(z),TΣj(z)T>).
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The 2-Wasserstein distance between two multivariate Gaussian distributions has a well-known
closed form expression (Peyré & Cuturi, 2019, Remark 2.31):

W2

(
N (µi,Σi),N (µj ,Σj)

)
=
(
‖µi − µj‖2 + B(Σi,Σj)

2
)1/2

(27)

where B(·, ·) is the Bures metric between positive definite matrices. Typically one sees the Bures
metric defined as:

B(Σi,Σj) =
(

Tr[Σi] + Tr[Σj ]− 2 Tr[Σ
1/2
i ΣjΣ

1/2
i ]1/2

)1/2
. (28)

If we use this expression, minimizing B(Σi,TΣjT
>) over nuisance transformations T ∈ G is not

straightforward.2 However, an equivalent formulation of the Bures metric is:

B(Σi,Σj) = min
U
‖Σ1/2

i −Σ
1/2
j U‖F (29)

where the minimization is over U ∈ O(n). The equivalence between equations (28) and (29) is
already established in the literature (see Theorem 1 of Bhatia et al. 2019). For the sake of complete-
ness we have included a proof in appendix F.4.

Recall that we are given sampled neural responses {x(km)
` }K,M,L

k,m,` as specified in equation (26).
Using these, we can estimate the mean and covariance of each distribution:

µ̂k(zm) =
1

L

∑
`

x
(km)
` and Σ̂k(zm) =

1

L

∑
`

x
(km)
` x

(km)>
` − µ̂k(zm)µ̂k(zm)>. (30)

Here, we’ve used the typical maximum likelihood estimators. However, any consistent estimator
will suffice.

The proposition below summarizes the main result of this section. Using this proposition, we pro-
duce an estimate of the distance between two stochastic networks by alternating minimization (i.e.
block coordinate descent) over T ,U1, . . . ,UM . Each parameter update can often be solved exactly.
For example, we typically consider the case of orthogonal nuisance transformations, i.e. G = O(n),
in which case all parameter updates correspond to solving an orthogonal Procrustes problem (Gower
& Dijksterhuis, 2004). Further, the minimizations over {U1, . . . ,UM} can be done in parallel.

Proposition 2. If Fφi (z) and Fφj (z) are both Gaussian for all z ∈ Z , then:

d̂(Fi, Fj) = min
T ,U1,...,UM

(
1
M

M∑
m=1

‖µ̂i(zm)−T µ̂j(zm)‖2+‖Σ̂i(zm)1/2−T Σ̂j(zm)1/2Um‖2F
)1/2

is a consistent estimator of a stochastic shape distance (eq. 5) with the 2-Wasserstein distance used
as the “ground metric.” The minimization in the above equation is performed over T ∈ G and
Um ∈ O(n) for all m ∈ {1, . . . ,M}.

Proof. Plugging equations (27) and (29) into our definition of stochastic distance (eq. 5 from propo-
sition 1), we have:

d(Fi, Fj) = min
T

(
E
z∼Q
‖µi(z)− Tµj(z)‖2 + min

U
‖Σi(z)1/2 − TΣj(z)1/2T>U‖2F

)1/2
. (31)

Given M i.i.d. samples zm ∼ Q for m ∈ {1, . . . ,M}, we can estimate the expectation with an
empirical average:

min
T

(
1
M

M∑
m=1

‖µi(zm)− Tµj(zm)‖2 + min
Ũm

‖Σi(zm)1/2 − TΣj(zm)1/2T>Ũm‖2F
)1/2

(32)

2Although there are certain tricks one can exploit to compute the gradient (Newton-Schulz iterations), the
constraint that T ∈ G is non-trivial. When G is a continuous manifold (e.g. the orthogonal or special orthogonal
group), one can resort to manifold optimization algorithms. These algorithms are somewhat cumbersome but
nonetheless a plausible approach. However, even this would not cover the case where G is a discrete set (e.g.,
the permutation group).
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Next, we pull out the minimization over each Ũm ∈ O(n) outside the sum. Additionally, since G
is a group of isometries on Rn, we know that G is a subgroup of the orthogonal group. Thus, every
T ∈ G is an orthogonal matrix, so T>Ũm is also an orthogonal matrix. Thus we introduce a change
of variablesUm = T>Ũm and minimize overUm ∈ O(n), as this attains the same minimum value.
In summary, we have:

min
T ,U1,...,UM

(
1
M

M∑
m=1

‖µi(zm)− Tµj(zm)‖2 + ‖Σi(zm)1/2 − TΣj(zm)1/2Um‖2F
)1/2

. (33)

The only remaining step is to replace every µ(z) and Σ(z) with some consistent estimator, such
as the empirical mean and covariance (see eq. 30). In the limit as M → ∞ and L → ∞, we have
convergence to the true distance due to the law of large numbers.

D.1.1 ALGORITHMIC COMPLEXITY AND COMPUTATIONAL CONSIDERATIONS

To compute distances using the 2-Wasserstein ground metric between two Gaussian-distributed
stochastic network representations (Eq. 6), we used closed form updates of the orthogonal pro-
crustes problem (Gower & Dijksterhuis, 2004) for T ∈ O and {Um}Mm=1 in alternation, using S
iterations. Importantly, T and each Um can be solved exactly at each alternation (described above).
For K stochastic networks, we must consider O(K2) total pairwise comparisons.

Computing the optimal T at each step involves aligning two stochastic representations, each com-
prising a stacked matrix of M n-dimensional means and M n × n covariances using Procrustes
alignment (Gower & Dijksterhuis, 2004). This involves a matrix multiplication and singular value
decomposition withO(Mn3) combined complexity, assuming n < M . Similarly, at each step, com-
puting the Bures metric requires solving for M n × n orthogonal matrices, {Um}Mm=1, with total
complexity O(Mn3). Thus, the total algorithmic worst-case time complexity is O(K2SMn3).

Notably, this computation is highly parallelizable over the K2 pairwise comparisons. For the VAE
and patch-Gaussian results in the main text (Figures 4 and 5), we distributed the distance matrix cal-
culation by distributing pairwise comparisons over single CPU cores, with each comparison taking
a few seconds to complete.

D.2 METRICS BASED ON ENERGY DISTANCE

This section outlines an alternative measure of stochastic representational distance that does not
require any parametric assumption (e.g. Gaussian) on stochastic neural responses. We use energy
distance, Eq defined in equation (4), as the ground metric appearing in proposition 1. As explained in
the main text, this distance has favorable estimation properties in high dimensional spaces relative
to the Wasserstein distances. It remains an open problem to develop estimation procedures for
Wasserstein-based stochastic shape distances without the assumption of Gaussianity.

To compute the stochastic shape distance, we need to solve the following optimization problem:

argmin
T∈G

E
z∼Q

[
E2q
(
Fφi (z), Fφj (z) ◦ T−1

)]
(34)

Note that we have squared the expression occurring in the main proposition—i.e., we have dropped
the (·)1/2 operation—as this does not effect the optimal alignment transformation.

First, let’s focus on the innermost term inside the expectation of equation (34). Let
Xi, X

′
i ∼ F

φ
i (· | z) and Xj , X

′
j ∼ F

φ
j (· | z), independently and treating the input z as fixed for

now. Now, since G is a group of isometries with respect to the Euclidean norm, we have:

E2q (Fφi (· | z), Fφj (· | z) ◦ T−1) = E‖Xi − TXj‖q − 1
2E‖Xi −X ′i‖q − 1

2E‖TXj − TX ′j‖q

= E‖Xi − TXj‖q − 1
2E‖Xi −X ′i‖q − 1

2E‖Xj −X ′j‖q

The final two terms are constant with respect to T , so we can drop them from the objective function
without effecting the result. Thus, equation (34) can be simplified to:

argmin
T∈G

E
z∼Q

[
E‖Xi − TXj‖q

]
(35)
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Here, the outer expectation is over network inputs z and the inner expectation is over conditional
distributions, Xi ∼ Fφi (· | z) and Xj ∼ Fφj (· | z).

Recall again that we are given sampled responses {x(km)
` }K,M,L

k,m,` as specified in equation (26). To
construct a consistent estimator, we evoke the law of large numbers to replace the expectations with
empirical averages. Equation (35) becomes:

argmin
T∈G

1

ML2

M∑
m=1

L∑
`=1

L∑
p=1

‖x(im)
` − Tx(jm)

p ‖q (36)

When q = 2, the optimal T ∈ G can often be identified efficiently—e.g., by solving a Procrustes
problem when G = O (Gower & Dijksterhuis, 2004) or a linear assignment problem when G =
P (Burkard et al., 2012). However, when q = 2 the stochastic shape distance only depends on the
mean and is insensitive to higher-order moments of the neural response (see appendix F.1) In the
more interesting case where q 6= 2, we can use iteratively re-weighted least squares (Kuhn, 1973) to
identify the solution.3 Details of this well-known algorithm are provided in appendix F.2.

Now, let T ∗ ∈ G be the solution to equation (36). Using this it is straightforward to estimate the
desired stochastic shape distance. Our estimate of d(Fi, Fj) is:

1
m

∑
m

(
1
L2

∑
`,p

‖x(im)
` −T ∗x(jm)

p ‖q− 1
L(L−1)

∑
`>p

‖x(im)
` −x(im)

p ‖q− 1
L(L−1)

∑
`>p

‖x(jm)
` −x(jm)

p ‖q
)

where the sums over ` > p are over all L(L − 1)/2 pairwise combinations between L sampled
activations. Each of the three terms in the expression above is a consistent (though not unbiased)
estimator of its corresponding term in definition of energy distance (eq. 4). However, if the final
two terms above are over-estimated in magnitude and the first term is under-estimated, the overall
estimate of d(Fi, Fj) may be negative. This violates perhaps the most important property of a metric
space that distances should be nonnegative. Triangle inequality violations are also possible.

We propose a simple fix using basic ideas from the literature on metric repair (Brickell et al., 2008).
Given a collection ofK networks, we use the procedure above to compute an estimate of theK×K
distance matrix D̃ where D̃ij ≈ d(Fi, Fj). We then find the matrixD∗ that is closest to our estimate
D̃ according a quadratic loss, and which satisfies all the axioms of a metric space. This amounts to
solving a quadratic program, as detailed in appendix F.3.

E INTERPOLATED METRICS BETWEEN MEAN-SENSITIVE AND
COVARIANCE-SENSITIVE DISTANCES

E.1 PROOF THATWα

2 IS A METRIC

We start by proving a well-known and basic lemma, which states that the `p norm of a collection of
metrics also defines a metric.
Lemma 3. Let d1, . . . , dn be a collection of metrics on a set S. Then, for any p > 1,

d(x, y) =
p
√
d1(x, y)p + . . .+ dn(x, y)p (37)

is a metric on S.

Proof. It is obvious that d(x, y) = 0 if and only if d1(x, y) = . . . = dn(x, y) = 0 and that d(x, y) =
d(y, x). So it is only non-trivial to prove the triangle inequality.

Let d(x, y) denote the vector in Rn holding each distance. That is:

d(x, y) =

d1(x, y)
...

dn(x, y)

 (38)

3One could alternatively consider using manifold optimization methods when G is a continuous manifold.
However, these methods are somewhat cumbersome and aren’t easy to extend to the case where G is a discrete
set, such as the set of all permutations.
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The triangle inequality now follows from:

d(x, y) =
p
√
d1(x, y)p + . . .+ dn(x, y)p = ‖d(x, y)‖p (39)

≤ ‖d(x,m) + d(m, y)‖p (40)
≤ ‖d(x,m)‖p + ‖d(m, y)‖p (41)
= d(x,m) + d(m, y) (42)

for all x ∈ S, y ∈ S, and m ∈ S. The first inequality follows from the triangle inequality on each
d1, . . . , dn and then from ‖ ·‖p being a monotonically increasing function of each vector coordinate.
The second inequality follows from the sub-additivity property of all norms.

This lemma provides further perspective on the closed form expression we gave in appendix D.1 for
the 2-Wasserstein distance between Gaussian distributions. In particular, if Pi = N (µi,Σi) and
Pj = N (µj ,Σj), we saw in equation (27) that:

W2

(
Pi, Pj

)
=
(
d2µ(µi,µj) + d2Σ(Σi,Σj)

)1/2
(43)

where d2µ is the squared Euclidean distance between the means and d2Σ is the squared Bures metric
between the covariances. Thus, the 2-Wasserstein distance between Gaussians can be intuitively
thought of as the `2 norm of this pair of metrics.

It is trivial to verify that all the properties of a metric are preserved the distance is multiplied a scalar
α > 0. That is, if g is a metric, then d(x, y) = αg(x, y) is also a metric. Combining this with
lemma 3 it is obvious that,

Wα

2

(
Pi, Pj

)
=
(
α · d2µ(µi,µj) + (2− α) · d2Σ(Σi,Σj)

)1/2
(44)

which is simply a re-statement of equation (7), is a metric for any 0 < α < 2.

E.2 LOWER BOUND ON INTERPOLATED SHAPE DISTANCES

We now derive a simple lower bound on stochastic shape distances whenWα

2 is used as the ground
metric. Let d2α denote the squared shape distance of interest, for any chosen 0 ≤ α ≤ 2. We have:

d2α(Fi, Fj) = min
T∈G

Ez
[
(Wα

2 )2
(
Fφi (· | z), Fφj (· | z) ◦ T−1

)]
= min
T∈G

Ez
[
α · d2µ(µi(z),Tµj(z)) + (2− α) · d2Σ(Σi(z),TΣj(z)T>)

]
≥ α · min

Tµ∈G
Ez
[
d2µ(µi(z),Tµµj(z))

]
+ (2− α) · min

TΣ∈G
Ez
[
d2Σ(Σi(z),TΣΣj(z)T>Σ )

]
The inequality here follows from the linearity of expectation and then from separately minimizing
the two terms. The inequality is tight if the optimal value of Tµ equals the optimal value of TΣ.
Furthermore, the two minimized terms in the final expression are proportional to the squared shape
distance when α = 2 and α = 0, respectively:

min
T∈G

Ez
[
d2µ(µi(z),Tµj(z))

]
=

1

2
· d2α=2(Fi, Fj) (45)

min
T∈G

Ez
[
d2Σ(Σi(z),TΣΣj(z)T>Σ )

]
=

1

2
· d2α=0(Fi, Fj) (46)

Thus, in summary we have:

d2α(Fi, Fj) ≥
α

2
· d2α=2(Fi, Fj) +

2− α
2
· d2α=0(Fi, Fj) (47)

⇒ dα(Fi, Fj) ≥
√
α

2
· d2α=2(Fi, Fj) +

2− α
2
· d2α=0(Fi, Fj) (48)
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E.3 INTERPRETATION OFWα

2 WHEN GAUSSIAN ASSUMPTION IS VIOLATED

When neural responses are Gaussian-distributed, thenWα

2 can be interpreted as a natural extension
of 2-Wasserstein distance (see sec. 2.4). What if neural responses are not Gaussian-distributed?
Concretely, consider two distributions Pi and Pj , which are not necessarily Gaussian. We can still
define the first two moments (mean and covariance) of these distributions:

µi = Ex∼Pi
[x] and Σi = Ex∼Pi

[(x− µi)(x− µi)>] . (49)

Using these, we can still computeWα

2 (Pi, Pj) as before.

However, it is no longer the case that this calculation will coincide with the 2-Wasserstein
distance between Pi and Pj . That is, since the Gaussian assumption is unreliable,
Wα=1

2 (Pi, Pj) 6=W2(Pi, Pj). Because of this, we can no longer conceptualizeWα

2 as the amount
of energy taken to transport Pi onto Pj with the parameter α differentially weighting the cost of
transporting mass due to mismatches in the mean and covariance.

On the other hand,Wα

2 may still be a reasonable ground metric in many practical circumstances. In
particular, it is obvious thatWα

2 (Pi, Pj) = 0 if and only if the mean and covariance of these distribu-
tions match. Thus, it is a pseudometric over all probability distributions and a metric on equivalence
classes defined by the equivalence relation Pi ∼ Pj if and only if µi = µj and Σi = Σj . From this,
it is easy to show that the stochastic shape metric (eq. 5) based on this ground metric also satisfies
the metric space axioms, including the triangle inequality.

In high-dimensional datasets, it is often challenging to estimate and interpret the higher-order sta-
tistical moments of a distribution. In the setting of comparing stochastic neural representations,
one could argue that it is reasonable to settle for a ground metric that is insensitive to these higher-
order moments. From this perspective,Wα

2 belongs to a larger family of ground metrics that can be
expressed:

D(Pi, Pj) = (d2µ(µi,µj) + d2Σ(Σi,Σj))
1/2 (50)

for some chosen metric on the means, dµ, and another chosen metric on the covariances, dΣ. Again,
no assumption on whether Pi and Pj being Gaussian is strictly necessary. A more thorough explo-
ration of these alternative ground metrics is a potential direction of future research.

F MISCELLANEOUS THEORY AND BACKGROUND

F.1 ENERGY DISTANCE AS A TRIAL-AVERAGED SHAPE METRIC WHEN q = 2

Performing representational dissimilarity analysis on trial-average activity measurements is already
common practice in neuroscience. Here, we show that this approach arises as a special case of the
stochastic shape distances explored in this manuscript. When q = 2, the energy distance is given
by:

E2(P,Q) = (E‖X − Y ‖2 − 1
2E‖X −X

′‖2 − 1
2E‖Y − Y

′‖2)1/2 (51)
Since X and X ′ are independent and identically distributed random variables, we have:

1
2E‖X −X

′‖2 = 1
2E[X>X] + 1

2E[X ′>X ′]− E[X>X ′] (52)

= E[X>X]− E[X>X ′] (53)

= E[X>X]− E[X]>E[X] (54)

Likewise,
1
2E‖Y − Y

′‖2 = E[Y >Y ]− E[Y ]>E[Y ]. (55)
Plugging these expressions into equation (51) and simplifying we see that:

E2(P,Q) = (E‖X − Y ‖2 − E[X>X] + E[X]>E[X]− E[Y >Y ] + E[Y ]>E[Y ])1/2

= (����E[X>X] + ����E[Y >Y ] − 2E[X>Y ]−����E[X>X] + E[X]>E[X]−����E[Y >Y ] + E[Y ]>E[Y ])1/2

= (E[X]>E[X] + E[Y ]>E[Y ]− 2E[X>Y ])1/2

= (‖E[X]− E[Y ]‖2)1/2

= ‖E[X]− E[Y ]‖
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To summarize, we have shown that the q = 2 energy distance between a distribution P and Q is
equal to the Euclidean distance between the mean of P and the mean of Q. If we use this energy
distance as the ground metric, D, in proposition 1 to construct a stochastic shape distance, we are
essentially calculating a deterministic shape distance4 on the mean response patterns.

F.2 ITERATIVELY REWEIGHTED LEAST SQUARES

Fix q to be a value on the open interval (0, 2) and consider the following optimization problem:

min
T∈G

{
f(T ) =

N∑
i=1

‖yi − Txi‖q
}

(56)

It is easy to see that equation (36) is an instance of this problem for a particular choice of vectors
xi ∈ Rn and yi ∈ Rn.

Our key assumption will be that we can efficiently solve the following weighted least squares prob-
lem:

min
T∈G

N∑
i=1

wi‖yi − Txi‖2 (57)

for any choice of weightings, w1, . . . , wN . Again, this is possible when G is the orthogonal group
(Procrustes problem) or the permutation group (linear assignment).

Iteratively re-weighted least squares algorithms are a family of methods that are encompassed by
the even larger family of majorize-minimization algorithms (Lange, 2016). The specific method we
deploy can be viewed as an extension to Weiszfeld’s algorithm (Kuhn, 1973). Our starting point is
to recognize that the function s 7→ sq/2 is concave for 0 < q < 2 and s ≥ 0. Thus, we can derive an
upper bound using the first-order Taylor expansion:

(s+ δ)q/2 ≤ sq/2 + δ

(
d
ds
sq/2

)
= sq/2 +

q

2

(
δ

s(1−q/2)

)
, (58)

for any δ such that s+ δ ≥ 0.

We will now use this fact to derive an upper bound on the objective function in equation (56). Let
T (t) ∈ G represent our estimate of the optimal T ∈ G after t iterations of our algorithm, and let
T ∈ G denote any feasible transformation. Then, for i ∈ {1, . . . , N}, define:

s
(t)
i = ‖yi − T (t)xi‖2 (59)

δ
(t)
i = ‖yi − Txi‖2 − s(t)i (60)

Notice that these definitions imply s(t)i + δ
(t)
i ≥ 0. Now, plugging into equation (58), we have:

(
s
(t)
i + δ

(t)
i

)q/2
= ‖yi − Txi‖q ≤

(
s
(t)
i

)q/2
+
q

2

 δ
(t)
i(

s
(t)
i

)(1−q/2)
 (61)

This is an upper bound for each term in the sum of the original objective function. Therefore,
plugging in the definitions of s(t)i and δ(t)i , we have:

f(T ) =

N∑
i=1

‖yi − Txi‖q ≤
N∑
i=1

(
‖yi − T (t)xi‖2

)q/2
+
q

2

(
‖yi − Txi‖2 − s(t)i(
‖yi − T (t)xi‖2

)(1−q/2)
)

(62)

=

N∑
i=1

‖yi − T (t)xi‖q +
q

2

(
‖yi − Txi‖2 − ‖yi − T (t)xi‖2

‖yi − T (t)xi‖2−q

)
(63)

, Q(T | T (t)) (64)

4Specifically, see the distances covered under Proposition 1 in Williams et al. (2021).
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Here, we view Q(T | T (t)) as a function of T—i.e. T (t) is fixed. The calculations above show that
Q(T | T (t)) provides an upper bound on the objective function for any T ∈ G. Furthermore, it is
easy to check that f(T (t)) = Q(T (t) | T (t))—i.e., the upper bound is tight at T = T (t).

We now have all the necessary ingredients to derive an algorithm. We start by initializing T (1) ∈ G
by some method. Then we compute {T (2),T (3), . . .} iteratively according to:

T (t+1) = argmin
T∈G

Q(T | T (t)) = argmin
T∈G

N∑
i=1

‖yi − Txi‖2

‖yi − T (t)xi‖2−q
. (65)

The last equality here follows from dropping terms from equation (63) that are constant.5 Intuitively,
at each step we are minimizing a surrogate functionQ(T | T (t)) that upper bounds the true objective
function. This surrogate function is easy to optimize since the minimization is a special case of
equation (57) with weightings:

wi =
1

‖yi − T (t)xi‖2−q
(66)

Furthermore, because we showed that the upper bound is tight at T = T (t), we have:

f(T (t+1)) ≤ Q(T (t+1) | T (t)) = min
T∈G

Q(T | T (t)) ≤ Q(T (t) | T (t)) = f(T (t)) (67)

which shows that the the objective function never increases as the algorithm progresses.

F.3 QUADRATIC METRIC REPAIR

We are given a symmetric estimate of a distance matrix D̃ ∈ RK×K , which may contain nega-
tive entries and triangle inequality violations. Let d̃ ∈ RK(K−1)/2 be a vector holding the upper
triangular entries of D̃, excluding the diagonal. Then, consider the following optimization problem:

minimize
x

‖x− d̃‖2

subject to xi ≥ 0, ∀i ∈ {1, . . . ,K(K − 1)/2}
xi + xj − xk ≥ 0, ∀(i, j, k) ∈ TK

where TK is the set of 3
(
K
3

)
directed triples of indices corresponding to a triangle inequality con-

straint. This is a quadratic program—i.e., a convex optimization problem with a quadratic objective
and linear inequality constraints. To solve this problem, we use the open-source and highly opti-
mized OSQP solver (Stellato et al., 2020). The number of inequality constraints grows cubically as
K increases, so finding an exact solution may be computationally expensive for analyses of large
collections of stochastic neural networks.

F.4 REFORMULATING THE BURES METRIC

Here we will prove that equations (28) and (29) are equivalent. A similar statement is proved in
Theorem 1 of Bhatia et al. (2019). Our proof relies on the following lemma.

Lemma 4. Let X ∈ Rn×n be a matrix with singular value decomposition X = USV >. Then
V U> = (X>X)−1/2X>.

Proof. This follows from the construction of the singular value decomposition. First, recognize that
X can be written as the product of an orthogonalQ and symmetric positive semidefinite matrix, P ,
as follows:

X = X(X>X)−1/2︸ ︷︷ ︸
=Q

(X>X)1/2︸ ︷︷ ︸
=P

(68)

5It is important to understand that we are treating T (t) as a constant. Only terms that depend on T matter
for the minimization. We also further simplified by rescaling Q(T | T (t)) by a factor of 2/q, which doesn’t
affect the value at which the minimum is attained.
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It is easy to check that Q>Q = QQ> = I . Now, since P is positive semidefinite, we have P =
V SV > for some orthogonal matrix V and nonnegative diagonal matrix S. DefiningU = QV , we
arrive at the SVD ofX = QP = USV >. Now we can see that:

U = QV = X(X>X)−1/2V ⇒ UV > = X(X>X)−1/2 (69)

Taking the transpose of this we prove the lemma.

Now we proceed to prove the main result.
Proposition 3. LetA andB be two positive definite matrices. Then

min
Q∈O

‖A1/2 −QB1/2‖2F = Tr[A+B − 2(A1/2BA1/2)1/2] (70)

Proof. The minimization over Q is an instance of the well-known orthogonal procrustes problem
(Gower & Dijksterhuis, 2004). This has a closed form solution. Specifically, denoting the singular
value decomposition ofB1/2A1/2 as USV >, we have:

Q∗ = argmin
Q∈O

‖A1/2 −QB1/2‖2F = V U> (71)

Now, by Lemma 4 above, we have:

V U> = ((B1/2A1/2)>(B1/2A1/2))−1/2(B1/2A1/2)> = (A1/2BA1/2)−1/2A1/2B1/2 (72)

Plugging this into the original problem, we have:

‖A1/2 −Q∗B1/2‖2F = Tr[A+B − 2A1/2Q∗B1/2] (73)

= Tr[A+B − 2A1/2(A1/2BA1/2)−1/2A1/2B] (74)

Due to the cyclic trace property, this becomes:

Tr[A+B − 2(A1/2BA1/2)−1/2A1/2BA1/2] = Tr[A+B − 2(A1/2BA1/2)1/2] (75)

as claimed.
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