
The emergence of a collective sensory response threshold in
ant colonies
Asaf Gala,1 and Daniel J. C. Kronauera,b,1

Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India; received December 21, 2021; accepted April 12, 2022

The sensory response threshold is a fundamental biophysical property of biological sys-
tems that underlies many physiological and computational functions, and its systematic
study has played a pivotal role in uncovering the principles of biological computation.
Here, we show that ant colonies, which perform computational tasks at the group level,
have emergent collective sensory response thresholds. Colonies respond collectively to
step changes in temperature and evacuate the nest during severe perturbations. This
response is characterized by a group-size–dependent threshold, and the underlying
dynamics are dominated by social feedback between the ants. Using a binary network
model, we demonstrate that a balance between short-range excitatory and long-range
inhibitory interactions can explain the emergence of the collective response threshold
and its size dependency. Our findings illustrate how simple social dynamics allow insect
colonies to integrate information about the external environment and their internal
state to produce adaptive collective responses.

collective behavior j distributed computing j social insects j Ooceraea biroi j decision making

Sensory thresholding is one of the most fundamental and well-studied computational
primitives performed by organisms, where a perceived level of sensory input is com-
pared with an internal variable to generate a binary neural, physiological, or behavioral
response. Organisms rely on sensory thresholds to perform critical functions such as
responding to threats, detecting prey, and making decisions (1, 2). Sensory thresholds
also play important roles as components of more complex tasks such as foraging, navi-
gation, recognition, and communication (3–5). The methodical study of sensory
thresholds is a cornerstone of modern neuroscience and has played a key role in con-
necting cognitive, behavioral, and computational phenomena to neural and biophysical
mechanisms (6, 7). At the computational level, thresholds are understood as decisions
that optimize costs and benefits associated with responding or not responding in a spe-
cific context and are analyzed using signal detection theory (8). Mechanistically, thresh-
olds in biological systems almost always emerge from a balance between two opposing
forces: exciting and restoring electrical currents in excitable membranes (9), excitatory
and inhibitory neurons in neural networks (10), or interregion connections at the level
of the entire brain (11). Similar dynamical phenomena are also abundant in nonneural
systems such as the immune system, cellular and microorganismal behavior, or intracel-
lular signaling networks (12–15).
Sensory response thresholds play an important part in the organization of social

insect colonies, which process information and perform cognitive-like functions at the
group level (16–19). The distribution of individual response thresholds in a colony
gives rise to behavioral differentiation and division of labor (20–23), a hallmark of
insect societies. Moreover, studies have demonstrated that, in turn, the sensory thresh-
old of colony members can be modulated by their social environment (24, 25), suggest-
ing that threshold dynamics could underlie the adaptation and reconfiguration of
collective behavior. However, it is unclear whether sensory thresholding is by itself a
computational primitive at the level of the colony and, if so, how it emerges out of the
complex interaction network between the individuals in a colony. Colonies of ants and
bees collectively perceive and assess their sensory environment and act upon these
assessments in a coordinated manner in choice contexts (26–29). Therefore, it is rea-
sonable to hypothesize that ants can coordinate their behavior in response to a sensory
input to create a colony-level thresholded response. Mechanistically, the concept of an
ant colony as an excitable system governed by exciting and inhibiting interactions
between the ants has been proposed to explain activity waves and temporal oscillations,
in direct analogy with neural network dynamics (30–33). In principle, similar interac-
tions could also give rise to collective behavioral thresholds.
The analogies and parallels between single-animal and group-level computations

have inspired a long line of experimental and theoretical work (29, 31, 34, 35). Yet,
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our formal understanding of how collective information proc-
essing emerges from group dynamics still lags behind our
understanding of neural computation. This is mostly due to
the lack of convenient experimental paradigms for relating sim-
ple, controlled sensory environments to precise measurements
of individual and collective responses. Establishing an experi-
mental paradigm for a systematic study of group-level sensory
thresholds can therefore contribute to a formal description of
emergent collective computation. Such a paradigm should
allow one to robustly relate features of controlled sensory envi-
ronments to the behavioral response of the colony and its mem-
bers. Here, we study the emergence of a sensory response
threshold in colonies of the clonal raider ant Ooceraea biroi.
The clonal raider ant is an attractive model organism for these
kinds of experiments (21, 36–38). It provides unparalleled
experimental control over the size and composition of colonies,
as well as over the genotype and age of each individual ant in
the colony, thus allowing standardization of colony features
between experimental replicates. We use a custom setup for con-
trolling the thermal environment of the ants and to measure the
behavioral responses of colonies to temperature changes, demon-
strating that the collective response is indeed characterized by an
emergent sensory response threshold. We then combine experi-
mental manipulations of colony size with mathematical model-
ing of colony dynamics to investigate the relationship between
the collective threshold and the underlying interactions between
the individual ants.

Results and Discussion

Ants Respond to Increasing Temperature by Evacuating the
Nest. Controlling the sensory environment of a group of freely
behaving animals is challenging. We decided to use thermosen-
sation as the sensory modality, because temperature is a scalar
property of the environment, and its sensation is minimally
dependent on the position and specific behavior of the individ-
ual. To study how ants respond to a temperature increase, we
developed a behavioral arena in which the ground temperature
is controlled by an array of thermoelectric components (SI
Appendix, Fig. S1 and Materials and Methods). A thin layer of
plaster of Paris constitutes the surface of the arena. This setup
allows us to rapidly change the arena’s ground temperature (SI
Appendix, Fig. S2), while maintaining ground moisture level
constant (SI Appendix, Fig. S3). In all of the following experi-
ments, we placed O. biroi colonies of variable sizes in the arena.
Unlike most other ants, O. biroi is queenless, and all experi-
mental colonies were composed of workers and larvae in a 2:1
ratio. Adult ants were ∼1 mo old, and larvae were 6 to 7 d old.
O. biroi reproduces asexually and clonally, providing precise
experimental control over an individual’s genotype. We stan-
dardized genotypes by sourcing all individuals from the same
clonal line and stock colony (Materials and Methods). At base-
line, the set value of the ground temperature controller was
26 °C. When ants are placed in the arena, they quickly create a
nest by settling around a brood pile (Fig. 1 A, Inset and SI
Appendix, Fig. S4). Typically, a few scouts explore the arena,
while most ants remain inside the nest (Fig. 1 A and B). After a
settling period of about 48 h, we studied how colonies respond
to temperature changes by subjecting them to a sequence of
perturbation events. In each perturbation, the set temperature
was abruptly increased to a higher set value for a period of
15 min. Perturbations were spaced by intervals of 2 h to allow
the ants to resettle (SI Appendix, Fig. S5). When the perturba-
tion temperature was relatively high, the colonies typically

responded with a stereotypical coordinated evacuation of their
nesting site. Fig. 1 B–E and Movie S1 show a representative exam-
ple of a colony of 36 workers and 18 larvae responding to a 40 °C
perturbation. Following the temperature increase, the ants gradu-
ally get excited and increase their activity levels (Fig. 1C). After
some delay, the colony initiates an ordered evacuation in which all
ants leave the nest in a column (Fig. 1 D and E and Movie S1).
Because temperature is increased evenly across the entire arena,
the ants remain in a high-activity “explorative” state following the
initial response. Depending on the perturbation temperature, this
state can be highly organized (for relatively low temperatures, Fig.
1F) or manifest as a more chaotic and disorganized collective pat-
tern (for high temperatures, Fig. 1G). Once the temperature
returns to baseline, the ants slowly relax and reform the nest clus-
ter (Fig. 1 H and I).

The Colony Response to Temperature Perturbations Is
Collective. Escape, or place-change behavior in response to
changes in temperature or other environmental parameters, is a
ubiquitous behavior that is often studied in the context of sen-
sory decision making (1, 39–41). Solitary animals make such
decisions independently, and the correlations between individu-
als are generally low, both in the decision itself (whether to
leave or not) and in the timing and direction of leaving. In con-
trast, the response of clonal raider ants to the temperature
increase seemed highly coordinated, both in time and in space.
To quantify the collectivity in this response, we performed an
experiment to measure the coordination and correlation
between the responses of individual ants. We perturbed three
colonies of 36 ants and 18 larvae with a sequence of 24 temper-
ature perturbations of 15 min duration, each with an amplitude
of 33 °C, which does not produce a robust evacuation response.
Ants in these colonies were marked with unique combinations
of color tags and were individually tracked using a custom soft-
ware (42). From the tracking results, the nest location before
each perturbation was determined (Materials and Methods). To
identify evacuating ants, we defined a circle with a 15-mm
radius around the nest (around twice the typical radius of the
nest blob, Fig. 2A). The binary response bki of the i th ant to
the k th perturbation was defined as 1 if she exited the nest cir-
cle at some point during the time of the perturbation and
remained outside for a duration of at least 30 s and as 0 in the
case that she did not. Ants that were outside the nest circle at
the beginning of the perturbation were treated as missing val-
ues. For each of the three colonies, we found that the distribu-
tion of average responses across ants for each perturbation is
bimodal (Fig. 2B), suggesting the decisions to leave the nest are
correlated between ants. To test this, we calculated the correla-
tion between the response of each pair of ants in the colony
and compared the distribution of these values to a null distribu-
tion, constructed by randomly shuffling the individual
responses of the ants between perturbation events. These two
distributions differ significantly (average pairwise correlation
value of 0.424, P < 10�5; Materials and Methods and Fig. 2C),
showing that the decisions of ants in the colony are indeed
highly correlated.

To assess whether the ants are also correlated in the timing
and direction of their response, we repeated the experiment
with three additional colonies of the same size and composi-
tion, using the same protocol. However, this time we subjected
the colonies to stronger perturbations of 40 °C, which generally
produce a robust collective nest evacuation. We defined the
individual response as before and also measured the response
delay τki as the time elapsed between the onset of the k th
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perturbation and the time the i th ant crossed the circle and the
response direction αki as the angle between the point of crossing
and the line connecting the nest center and the center of the
arena (Fig. 2A). Plotting the distributions of individual response
latencies across perturbation events, we found that the variability
between individual response latencies in the same event is lower
than the variability between events (Fig. 2D), suggesting that
ants are coordinated in the timing of their response. We showed
this formally by comparing the distribution of pairwise latency
correlations to a null distribution in the same way as before
(average pairwise correlation value of 0.558, P < 10�5; Materials
and Methods and Fig. 2E). We then repeated the same analysis
for the response direction, showing that ants coordinate their
response also spatially (average pairwise correlation value
of 0.628, P < 10�5; Materials and Methods and Fig. 2 F and G).

The Collective Response Is Characterized by a Size-Dependent
Threshold. To better understand how the collective response
depends on the amplitude of the perturbation, we performed
an experiment with 10 colonies of 36 workers and 18 larvae
each and subjected each colony to a sequence of perturbations
of variable amplitude, ranging from 28 to 45 °C. We defined
the collective state of the colony as the fraction of ants outside
of the nest in any given frame (Fig. 3A). We defined the binary
collective response as 1 if a quorum of at least 90% of the col-
ony was outside the nest for at least 30 consecutive seconds at
some point during the time of the perturbation and 0 other-
wise. For each perturbation temperature, we computed the
probability of a collective response across all colonies, resulting
in a sigmoidal psychometric-like response curve typical for sys-
tems with a noisy threshold response (Fig. 3B). Using a logistic
regression model (Materials and Methods), we estimated the
threshold θ to be 34.12 °C for the colonies in this experiment,
with a 95% CI of 33.3 to 34.8 °C.
To further investigate this collective threshold, we conducted an

experiment with different colony sizes, ranging from 10 to 200 ants.
The age, clonal line, and workers to larvae ratio were identical to the

experiments described above (Materials and Methods). Each colony
was subject to the same experimental protocol with varying tempera-
ture perturbations. The collective threshold was estimated for each
colony size as above (Fig. 3C). Plotting the threshold as a function
of colony size (Fig. 3D and SI Appendix, Fig. S6), we found that
larger colonies have a significantly higher collective threshold than
smaller ones. This effect is robust to variation in the parameters
defining the binary collective response (the quorum threshold and
duration; SI Appendix, Fig. S7).

Such a dependency of an emergent property on group size in
a system characterized by many intricate interactions is not sur-
prising from a complex systems science point of view, and an
increase in social cohesion as a function of group size has
indeed been observed experimentally (43). Nevertheless, it is
unexpected in light of previously established paradigms for the
study of collective sensing in social insects. These can roughly
be divided into two classes that lead to two different predictions
regarding group size effects. The first one is “wisdom of the
crowd,” in which noisy independent individual estimates of an
external signal are pooled to produce a more accurate collective
estimate. Under this scenario, the variability in the response is a
result of noisy estimation of the external environment by
individual ants, and the threshold temperature is an objective
quantity that is independent of the group. Accordingly, the
prediction would be that larger groups should have higher accu-
racy (i.e., less variance) in estimating temperature, but the
threshold temperature should not change with group size
(44–46). A dependency of the threshold on group size would
imply that group dynamics integrate information suboptimally
and in a biased way (47–49). According to the second para-
digm, collective sensing is used to increase the resolution, or
sensitivity, to external events such as predator attacks (50, 51).
Perturbations of any strength should ideally elicit a response,
and the existence of a response threshold is the result of a lim-
ited detection capacity. In this case, however, larger groups are
predicted to have lower thresholds, because the probability of
detecting a weak perturbation increases with the number of

Fig. 1. The response of an ant colony to a step temperature perturbation. (A) A snapshot from a raw experimental video, showing a colony of 36 ants on a
temperature-controlled plaster of Paris arena (Materials and Methods and SI Appendix, Figs. S1 and S2). Each of the ants is marked with a unique combination of
color tags to allow for individual behavioral tracking. The arena is confined by a black metal frame heated to 50 °C (SI Appendix, Fig. S2). The ants form a nest
(red square at the bottom and Inset at top right), with a few scout ants exploring the arena (top red square and Inset at top left). The light brown objects in the
arena are food items. (B–I) Snapshots depicting the typical dynamics of the response of a colony to a strong temperature perturbation. Images are processed
by removing the background for visual clarity. (B) Baseline state. Before the onset of the perturbation, most ants reside in the nest, with few scout ants explor-
ing the arena. (C) Excitement. Following the onset of the perturbation, the ants first respond by increasing their activity level around the nest. (D) Evacuation
onset. After a delay that lasts up to a few minutes, the ants suddenly begin to leave the nest in a well-defined direction. (E) Full evacuation. The colony forms a
well-organized evacuation column. (F) Stable evacuation. (G) Disordered perturbed state. In some cases, especially under high-temperature perturbations, the
organized evacuation column breaks, and the colony enters into a high-activity, swarm-like state, where the movements of the ants are only weakly correlated.
(H) Relaxation. Following the return of the temperature to baseline, the ants slowly relax and begin to reform the nest, possibly in a different location. The
relaxation process can take up to 1 h to complete. (I) New baseline. The colony has fully returned to its baseline relaxed state.
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individuals in the group. In contrast to these previously docu-
mented dynamics, our finding that the collective temperature
threshold increases as a function of group size suggests that the
response threshold is not an objective quantity to be estimated,
but rather a result of a decision-making process that integrates
information about the environment with information about the
internal state of the colony. It is in fact possible that the opti-
mal collective response threshold differs for colonies of different
sizes. For example, if nest evacuation is associated with a rela-
tively higher cost in larger colonies, a threshold that increases
with group size might be adaptive.

The Response Dynamics Are Characterized by Distinct
Timescales and Social Feedback. The strong correlation
between the responses of individual ants and the existence of a
collective response threshold implies that the collective response
is coordinated using interactions between the ants, resulting in
positive feedback dynamics. To visualize the dynamics underly-
ing the emergence of the collective response, we plotted the
average time course of the collective state (the number of active
ants outside the nest; Materials and Methods) over the perturba-
tion events in the variable-amplitude experiment with colonies
of 36 tagged ants (Fig. 4A). We divided the perturbation events
into three groups, according to the perturbation amplitude:
weak perturbations, for temperatures in which the response
probability is lower than 0.1; strong perturbations with a

response probability greater than 0.9; and intermediate pertur-
bations between those cutoffs. For intermediate perturbations,
we separately plotted events in which the colony collective
binary response was 1 and 0, respectively (Movies S1 and S2).
The time-course plot is indicative of two dominant processes
with distinct timescales. The first one is a fast response, with a
timescale of 1 to 3 min, in which some ants become excited.
This fast response is slower than the timescale of the physical
temperature increase (SI Appendix, Fig. S2E), and the delay
might correspond to the internal physiological and neural proc-
essing time, as well as the behavioral delay until an ant is
considered to have “responded” by our definition. At this time-
scale, the number of ants responding to midrange temperature
perturbations is widely distributed around half of the number of
ants in the colony (Fig. 4B, green). This is what we would expect
if the ants respond independently to perturbations around the
typical individual threshold. It is therefore plausible that the col-
ony response during this timescale is dominated by the ants’
intrinsic responses and less by interactions between the ants,
which leads to a continuous distribution of the colony state vari-
able (Fig. 4B). Following this first stage of the response, a few
minutes into the perturbation, a second dynamical process with
a characteristic timescale of 5 to 10 min seems to kick in, in
which the colony state converges on either a low or a high value
(Fig. 4B, pink). This convergence indicates the dominance of
interaction-driven social feedback during this stage.

Fig. 2. Ants respond collectively to temperature perturbations. (A) Measures of individual responses. We define a circle of radius R = 15 mm around the
location of the nest. A schematic drawing of the trajectories of two ants is depicted in green and pink. For each ant, we record the binary response (b), the
response direction (α), and the response latency (τ) as its first crossing of that circle for a duration longer than 30 s, as explained in the text and Materials
and Methods. (B) Histograms of the average binary response across ants. Each histogram is constructed from one colony subjected to a sequence of 24 per-
turbations of 33 °C. (C) Pairwise correlations between the binary responses of ants in B, compared to correlations in shuffled responses. Shuffled responses
are generated by shuffling the binary responses of each ant to all the perturbations independently of other ants in its colony, therefore eliminating any cor-
relation. The real distribution is composed of 1,890 correlation values, produced from the responses of 108 ants from three colonies. The null distribution is
composed of 189,000 correlation values, produced from 100 independent shuffles of the responses. (D) Scatter plot depicting the distributions of individual
response latencies, from three colonies subjected to a sequence of 24 perturbations of 40 °C. Each column represents the responses of ants from a single
colony to one perturbation. The events are sorted first by colony and then by the average individual response latency in each event. (E) Pairwise correlations
between the response latencies of ants in D compared to a null distribution generated in the same way as in C. (F and G) Plots as in D and E, but for the indi-
vidual response directions. Note that the response direction measure is cyclic, but because the per-event distribution (one column in F) is narrowly distrib-
uted around the average colony direction, this does not have a significant effect on the analysis.
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A Binary Network Model Recapitulates the Emergence of a
Collective Threshold. To better understand the interactions
that might underlie a colony’s collective response, we imple-
mented a simple spin-like binary network model. This type of
model is commonly used for complex and collective systems

(52–55). We represent each ant by a binary variable σi , in
which σi ¼ 1 represents the “perturbed” behavioral state and
σi ¼�1 the “relaxed” behavioral state (Fig. 5A). The behav-
ioral state of each ant is decided by a logistic activation func-
tion (Fig. 5B):

Fig. 4. The response dynamics are characterized by distinct timescales and social feedback. (A) The evolution in time of the colony state variable (the frac-
tion of active ants) following a temperature change. Single-trial response curves from all experiments with 36 ants were averaged according to temperature
and collective response condition. The dark brown curve represents the average response for high-temperature perturbations, for which the response prob-
ability was larger than 0.9. Events without a full response (b = 0) were excluded. The light brown curve represents the average response for intermediate-
temperature perturbations (response probability between 0.1 and 0.9) in which the colony responded (b = 1). Responses in the same temperature range,
but in which the colony did not respond (b = 0), are depicted by the light blue curve. Finally, the dark blue curve represents the average response for low-
temperature perturbations [response probability smaller than 0.1; events with positive response (b = 1) were excluded]. (B) Histograms showing distribu-
tions of single-trial colony activity states for the intermediate-temperature range where the response probability is between 0.1 and 0.9, at two time points
along the response curve. The green histogram shows the distribution for the interval between 3 and 4 min following perturbation onset, roughly corre-
sponding to a time window in which the effect of the faster process has been exhausted, while the effect of the slower process is not yet apparent. Each
datapoint in the histogram is the median value of a single perturbation event in that segment. The pink histogram shows the distribution for the interval
between 14 and 15 min, when both transient dynamics of the response have run their course.

Fig. 3. The collective threshold depends on group size. (A) A trace from a 24-h-long perturbation protocol using a colony of 36 tagged ants. Perturbations
are 15 min long and separated by intervals of 2 h. The set temperature is shown in black. The dispersion of the colony (defined as the fraction of ants out-
side the nest circle) is shown in brown. The interval allows the colony to relax back to baseline before the next perturbation. (B) The probability of a “full
response” (defined as at least 90% of the ants being outside the nest at the same time for at least 30 s at some point during the perturbation; solid line) as
a function of the perturbation temperature. The shaded band represents the 95% CI of probability (computed using asymptotic normal approximation for
binary coefficient estimation). The dashed line represents a logistic regression fit of the response curve. Experimental colonies consisted of 36 tagged ants.
(C) Fitted logistic regression curves as in B for different colony sizes, showing an upward shift in the response curve. (D) The collective threshold parameter
θc , estimated by logistic regression, as a function of colony size. The shaded band represents the 95% CI, estimated using the bootstrap method with 1,000
sample repetitions (Materials and Methods).
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P σi ¼ 1ð Þ ¼ 1
1þ e�βhi

: [1]

Here, P represents the steady-state probability of the ant to
be in the perturbed state, hi is the integrated input of ant i,
and β is a thermal noise-like parameter that measures the
determinism of the individual response (with high values
leading to a deterministic threshold-like response according
to the value of hi ). In the general case, this integrated input
is a combination of the external temperature perceived by
the individual ant and the contribution of the social interac-
tions. For simplicity, we take advantage of the apparent sep-
aration between the timescales of these two components and
assume the dynamics to take place in separate stages (Fig.
5A). In the first stage, the ants respond individually and
independently to the external temperature, according to the
equation:

hi ¼ T � θi : [2]

Here, T is the perturbation temperature and θi is the individ-
ual threshold of ant i, randomly drawn from a normal distribu-
tion with mean θm and SD θSD (Fig. 5C). By the end of this
stage, some of the ants will be in the relaxed state and some in
the perturbed state (Fig. 5 A, Center). The state of the colony is
characterized by the order parameter m, defined as the fraction
of perturbed ants in a colony with N ants:

m ¼ 1
2N

∑
i

σi þ 1ð Þ: [3]

In the second stage, the states of the ants change over time
according to the social dynamics:

hiðtÞ ¼ ∑
j
Jij tð ÞσjðtÞ: [4]

Here, JijðtÞ is the interaction strength between ant i and ant j
at time t : In the most general case, the interaction between a
pair of ants will depend on their relative position and on their
behavioral states. We further simplify our model by ignoring
space and assuming that all ants interact with all other ants all
the time. This can be justified by the observation that the col-
lective response dynamics of the ants are much slower than
their movement speed in the nest during the “excitement”
period that precedes the response (Movies S1 and S2). Under
this assumption, we can characterize the interaction by two
parameters, representing the exciting effect of perturbed ants
and the inhibiting effect of relaxed ants. The input to all the
ants is then the same and can be written as:

h tð Þ ¼ J pN p tð Þ � J rN r tð Þ ¼ NJ pm tð Þ �NJ r 1�mðtÞð Þ,
[5]

where J p and J r are the interaction parameters, and N p tð Þ and
N r tð Þ are the numbers of perturbed and relaxed ants at time t ,
respectively.

Fig. 5. The emergence of the collective threshold can be modeled with two opposing forces. (A) An illustration of the model’s two-stage dynamics. In the
first stage, the ants respond independently according to their individual response thresholds. As a result, a subset of ants becomes active. In the second
stage, the interactions between the ants result in the colony being either fully active or fully inactive. (B) The logistic activation function of the individual
ant. The ant is either active or inactive in a probabilistic manner depending on an integrated input parameter hi: The β parameter controls the width of
the ambiguous response region. (C) The individual response thresholds θi are sampled from a normal distribution of mean θm and width θSD: The collec-
tive threshold θc is the temperature for which the cumulative probability equals mc: (D) Simulation of the collective threshold, showing the response prob-
ability as a function of temperature, averaged over 100 simulation runs. For each run, a new set of individual thresholds is sampled. See Materials and
Methods for full details on the simulation parameters. (E) The collective threshold as a function of group size for the basic model (gray circles) and the
asymmetric model (purple circles). The interaction parameters Jp and Jr were chosen to have the same collective threshold at N¼ 50 and to approximately
replicate the range of thresholds observed in the experiment. (F) An illustration of possible ant interaction mechanisms. (Top) Global, pheromone-based
interaction, in which ants in a given state contribute (black arrows) to the total concentration of pheromone in the environment (blue circle), which is
then perceived by all ants (blue arrows). (Bottom) Local, contact-based interaction, in which ants in a given state affect only the behavior of nearby ants
(red arrows).
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To reproduce the experimental results within the model, we
assume β to be high enough for the model to be characterized
by two stable fixed points at m ¼ 0 and m ¼ 1, representing
the collective relaxed and perturbed states (SI Appendix, Fig. S8
A–D), with a separatrix at:

mc ¼ J r

J p þ J r
: [6]

This implies that, on average, the value of m at time 0 will
decide the final collective state of the colony. This m0 is a result
of the individual responses of the ants to the temperature
increase during the first stage of the dynamics. Therefore, the
threshold perturbation temperature θc is the temperature at
which the average fraction of perturbed ants will equal mc :
In the case where the thermal noise is small compared to
the individual threshold variability, this threshold satisfies the
condition:

P θi < θcð Þ ¼ mc : [7]

The exact value of this threshold will depend on the distribu-
tion of the individual thermal thresholds in the ant population,
as well as the ratio between the excitatory and inhibitory inter-
action strengths (Fig. 5C and SI Appendix, Fig. S8).

Group Size Dependency of the Collective Threshold Entails
Asymmetric Interactions. While the model, as defined above,
captures the emergence of the collective threshold from the
interactions between the ants (Fig. 5D), it does not include any
group size dependency that can reproduce the experimental
observations in Fig. 3 (SI Appendix, Fig. S8L and gray curve in
Fig. 5E). Because ants in the experiments had a narrow age
range, belonged to the same clonal line, and were sampled ran-
domly from the same stock colony in each experiment (Materials
and Methods), we can assume that their individual thermal
thresholds were also sampled from the same distribution, regard-
less of colony size. This implies that, under the assumptions of
the model, group size dependency can arise only if the excit-
atory and inhibitory components scale differently with group
size N : For example, we can set the inhibitory interaction to
scale linearly with N , but let the excitatory interaction be inde-
pendent of N :

h tð Þ ¼ J pm tð Þ �NJ r 1�mðtÞð Þ [8]

mc ¼ NJ r

J p þNJ r
: [9]

Using these definitions, the threshold value will sublinearly
increase with the size of the colony (purple curve in Fig. 5E).
This choice is not arbitrary, because different types of inter-

actions should produce different scaling with N : Clonal raider
ants are blind and mostly communicate via pheromones and
tactile interactions. For a volatile pheromone, the concentration
in the air surrounding ants aggregated in close proximity in the
nest should scale with the number of ants that emit the phero-
mone, which equals the fraction of pheromone-emitting ants
multiplied by N : This pheromone concentration is then per-
ceived by all ants in the colony (Fig. 5 F, Top). The exact form
of the scaling will depend on the chemical properties of the
pheromone, the physical properties of the environment, and
the concentration/response curve of the ants themselves. On
the other hand, physical interactions between pairs of ants will
depend on the rate of encounters. Physical interaction is a com-
mon excitatory mechanism in ants, particularly in scenarios of
recruitment (56, 57). When the colony is dense, the encounter

rate per ant saturates, meaning an ant is always in contact with
other ants at the maximum capacity. This implies that the total
excitatory force an ant feels is dependent on the fraction of
active ants in the colony and does not scale with the size of the
colony (Fig. 5 F, Bottom). Of course, the distinction between
the two mechanisms does not have to be clear cut and can be
quantified with a scaling parameter α:

h tð Þ ¼ N αp J pm tð Þ �N αr J r 1�mðtÞð Þ: [10]

The value of α represents a gradual transition between local,
nearest-neighbor interactions and global, all-to-all interactions.
An increase of collective threshold with group size will then
emerge for any αr > αp (SI Appendix, Fig. S9).

So far, we have considered interactions that are state depen-
dent, that is, interactions in which ants signal their state to
other ants. However, some interactions within the colony can
be regarded as state independent or to vary slower than the typ-
ical timescale of the behavioral response. For example, weakly
volatile “aggregation” pheromones could mark the nest site.
The strength of this nest odor will then scale with the number
of ants in the nest but will not change because of ants leaving
the nest momentarily. The existence of such a pheromone is
supported by the tendency of the ants to settle back at their
original nest location following perturbations (SI Appendix, Fig.
S10). Such an aggregation signal would act as a constant pull-
ing force that balances the excitation within the colony. In our
model, we can account for such an interaction by removing the
state dependency from the inhibitory term and write Eq. 10 as:

h tð Þ ¼ N αp J pm tð Þ � N αr J r : [11]

Because the scaling of the inhibitory interaction strength is the
same as in the initial version of the model, we again get an
increase of the threshold with group size (SI Appendix, Fig. S9 D
and E). However, the shape of the increase and the predictions
of the model for larger group sizes differ (SI Appendix, Fig. S9F).

Conclusion

Our results provide a simple, tractable example of a collective
perception–action loop, where social dynamics are used to inte-
grate the sensory perception of individual ants and to produce a
coherent collective response. We show that under borderline
conditions, individual ants suppress their own assessment or per-
ception of sensory information about the external environment
in favor of a collective decision. Moreover, the social dynamics
enable the colony to integrate information not only about the
external environment, but also about the state of the colony itself
(its size in this case). The collective outcome is therefore more
than a mere average of the “opinions” of the individual ants.

Our modeling results also highlight the importance of het-
erogeneity in social groups. This group-level property is
thought to contribute to a group’s ability to adapt to changing
conditions in systems ranging from insect colonies to human
societies (58–60). For example, in honey bee and bumblebee
colonies, the variability of individual thresholds for fanning, a
behavior that helps circulate the air, is hypothesized to contrib-
ute to the overall performance of collective thermoregulation
(24, 61, 62). In our model, heterogeneity is expressed as the
distribution of individual response thresholds in a colony. The
collective threshold, which is an emergent property of the
group, can then vary within the range of that distribution
depending on the context, which in our case is the size of the
colony. In other words, the variability between individuals is
what enables the adaptation of the collective property.
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The collective sensory threshold seems to emerge from a bal-
ance between two opposing forces. As in other biological sys-
tems, these forces do not have to map to a single biological
mechanism, but could rather represent a combination of
various processes with a similar functional effect. For example, exci-
tation and inhibition in a neural network arise from many different
types of neurons and neurotransmitters whose effects differ in
aspects such as timescale, spatial distribution, and plasticity. Like-
wise, transmembrane currents are the product of many types of
ion channels, each modulating the membrane response in a differ-
ent way. This mechanistic complexity underlies both the robust-
ness of biological systems and their flexibility to adapt their
responses to various conditions on multiple timescales (63–68).
Similarly, the excitatory and inhibitory forces at play in an ant col-
ony are likely composed of various chemical, physical, and possibly
other types of interactions. The isolation of individual mechanisms
and the understanding of their precise functional role in the collec-
tive dynamics will require further experiments. However, meso-
scopic models such as the one employed here can provide a formal
understanding of the principles of emergent collective computation
even without detailed knowledge of the underlying mechanisms.

Materials and Methods

Experimental Setup. The 10 × 10-cm behavioral arena consists of a 3-mm-
thick plaster of Paris layer on top of a temperature-controlled metal platform.
The platform is divided into four zones. The temperature of each zone is mea-
sured by an embedded thermistor (Omega 44304) and controlled by a thermo-
electric cooling (TEC) device (CP60; CUI Inc.). The plaster arena is surrounded by
a metal frame heated to a high temperature (between 45 and 50 °C) to confine
the ants. The arena and the frame are installed inside a box in which the air tem-
perature and the relative humidity (RH) are continuously monitored. SI
Appendix, Fig. S1 gives full details and a schematic of the experimental setup.

Temperature Control. The temperature in each of the arena zones is regu-
lated by an Arduino-implemented proportional–integral–derivative (PID) control-
ler. An additional PID is used to control the temperature of the heated frame.
The spatial integrity of the surface temperature is verified by an infrared thermal
camera (FLIR Lepton 3.0). Details of implementation and verification are given in
SI Appendix, Fig. S2. All temperature values reported are the set temperature of
the PID, while actual ground temperatures can be inferred from the calibration
curve (SI Appendix, Fig. S2B).

Moisture Control. O. biroi ants are sensitive to moisture and humidity, and a
drop in these parameters will affect their behavior. Without additional measures,
heating the plaster floor during temperature perturbations would lead to desic-
cation. We therefore developed a method to maintain a stable moisture level of
the plaster during the experiments. We found that the color of the plaster is a
robust and reliable measure for moisture level (the plaster gets lighter/brighter
as it dries). We therefore defined the “moisture index” as the 90th percentile of
the pixel brightness value distribution in the arena (SI Appendix, Fig. S3 A and
B). This definition is robust to the presence of ants and accumulation of trash in
the arena during the experiment, because both contribute to the low-brightness
tail of the distribution. As the baseline color of the arena depends on batch
effects of the plaster, as well as on the exact tuning of the camera and illumina-
tion, the set point was manually determined before each experiment. At the start
of each experiment, we calculated the pixel brightness distribution and the mois-
ture index for the arena when dry and when completely saturated with water (SI
Appendix, Fig. S3B). We then defined the threshold moisture index Mc as:

Mc ¼ Ms þ 0:1 � Ms �Mdð Þ, [12]

whereMs andMd are the respective indexes under saturated and dry conditions.
During an experiment, the moisture index was calculated every second (SI
Appendix, Fig. S3C), and whenever it rose above threshold, the waterflow into
the embedded water delivery tubes (SI Appendix, Fig. S1) was opened for a short
(0.5 s) duration. SI Appendix, Fig. S3C depicts an example time course of the
moisture index when the control is enabled (left of the dashed line) and when it
is disabled, and the plaster is allowed to dry (right of the dashed line).

Experimental Design. Experimental colonies were composed of age-matched,
one-cycle-old workers and 6- to 7-d-old larvae in a 2:1 workers to larvae ratio. All
ants were derived from the same stock colony (STC6), which belongs to O. biroi
clonal line B (69). For the threshold experiment, two datasets were collected: one
with individually tagged ants in 10 colonies of 36 adults and 18 larvae each and
one with untagged ants and variable colony sizes of 10, 20, 50, 100, and 200
ants, as well as 5, 10, 25, 50, and 100 larvae, respectively. For the latter dataset,
each group size was represented by 3 replicate colonies (15 colonies total). Colo-
nies were assayed sequentially, one per week, between October 2018 and August
2019. The experiments did not have any specific order. For the collectivity mea-
surement experiment, four colonies of 36 tagged ants and 18 larvae were used.

Colony Preparation. Five-day-old workers were separated every other week
from an O. biroi stock colony and split into two experimental colonies. These
ants laid eggs ca. 10 d later. In the first colony, we waited for larvae to hatch and
began experiments when larvae were 6 to 7 d old. In the second colony, we
removed the first batch of eggs after 3 d. This resets the colony’s reproductive
cycle and creates a 1-wk developmental lag between the first and the second col-
ony, allowing us to run experiments continuously. Right before experiments
began, colonies were adjusted to the number of ants and larvae required for the
experiment of that week and transferred into the experimental setup.

Color Tagging. For experiments with individually tagged ants, 12-d-old ants
were marked with color dots on the thorax and gaster using oil-paint markers
(UniPaint markers PX-20 and PX-21) (21, 70). Colonies for these experiments
contained 36 ants, marked with all unique combinations of blue, green, orange,
pink, purple/red, and yellow.

Experimental Protocol. After experimental colonies had been transferred to
the experimental setup, they were allowed to settle for 48 h. During that time,
the set temperature of the arena was 26 °C and the ants were fed fire ant (Sole-
nopsis invicta) pupae. Approximately 6 h after the last feeding event we began
the perturbation protocol, and we did not feed the ants for the rest of the experi-
ment. Every 2 h, the set temperature of the arena was increased to the perturba-
tion value for 15 min and then lowered back to the baseline temperature. The
2-h intervals allowed colonies to resettle and return to baseline activity levels
and produce stationary response statistics throughout the duration of the experi-
ment (SI Appendix, Fig. S5). For threshold measurements, the sequence of per-
turbations was a random permutation of the values between 29 and 43 °C. The
sequence was presented in the same order for all colonies in the experiment.
For the collectivity experiment, colonies were subjected to a sequence of identi-
cal perturbations of either 40 or 33 °C.

Video Recording and Tracking. Videos were recorded at 10 frames per sec-
ond using a FLIR Flea3 camera (image size 2,500 × 2,500 pixels). The videos
were analyzed using anTraX, a software package for video tracking of color-
tagged ants (42). For experiments with tagged ants, the software outputs an esti-
mated location for each ant in the colony in each frame. For experiments with
untagged ants, the software outputs a list of segmented blobs containing ants,
together with their respective centroid coordinates and area.

Defining the Location and Size of the Nest. Most of the behavioral meas-
ures we use in our analysis depend on the location of the nest. Because we do
not use a physical nest structure, and because the nest location is dynamic and
changes during an experiment, we estimate the location and size of the nest
from the tracking data. Typically, 50 to 90% of the ants in the colony will reside
in the nest at any given time. Therefore, the median location of all the ants will
give an accurate estimate of the nest centroid. To be consistent between tagged
and untagged experiments, we do not use the individual location data for esti-
mating the nest location. Rather, we use the relative area of each blob as a proxy
for the number of ants in that blob, and the equation to determine the nest loca-
tion takes the following form:

xtnest ¼ wmed fati ,xtigKi¼1

� �
: [13]

In Eq. 13, ati , x
t
i are the area and the coordinates of the i th blob at time t, K is

the number of blobs in the frame, and wmed is the weighted median function.
We further use a median filter with duration k ¼ 10min to suppress fluctua-
tions in this measure:
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xtnest ¼ med fwmed fati ,xt
0
i gKi¼1

� �
gtt0¼t�k

� �
: [14]

We chose the nest to have an effective radius Rnest equal to the major semiaxis
of the nest blob. The nest blob, as segmented by the tracking algorithm, repre-
sents the tight aggregation of ants in the center of the nest. As in the case of the
nest location, we use median filtering to smooth fluctuations. For the analysis of
individual and collective responses to perturbations, we use the nest location
and radius at the onset time of the perturbation.

Individual Response Measures and Collectivity. We define an individual
ant as having responded to the perturbation when she has first exited a circle of
radius 15 mm around the nest for a duration of at least 30 consecutive seconds
(Fig. 2A). This radius was chosen so that ants that are excited or active near the
nest will be mostly inside the circle, while ants evacuating the nest will exit the
circle. We then characterize the response of each ant for a given perturbation
using three measures. The binary response bki is set to 1 if the i th ant leaves the
circle during the duration of the k th perturbation for a consecutive period of at
least 30 s. The response delay τki is defined as the delay between the onset of
the perturbation and the time the ant first crossed the circle for such a period,
and the response direction αki is defined as the angle of the point of crossing
from the line connecting the nest’s centroid to the center of the arena. We then
calculate the correlation between the measures for each pair of ants in the same
colony. In the case that an ant was outside the circle at the onset of the perturba-
tion, we treat its response to that particular perturbation event as a missing
value. Statistical significance (P value) was estimated nonparametrically by ran-
domly permuting the responses of each ant to all the perturbations in the exper-
iment and calculating the distribution of pairwise correlation coefficients for this
shuffled dataset. For each of the shuffled datasets we then calculated the mean
pairwise correlation as in the real dataset. We repeated this process n =
100,000 times and generated a null distribution, defining the P value as the
proportion of the null distribution that exceeds the experimental value. For none
of the three response measures did the null distribution yield any value that
exceeded the experimental value, entailing P < 10�5.

Measuring the Collective Threshold. We define the colony activity variable
f tout as the fraction of ants in the colony that are outside the nest at time t: As
before, to be consistent across experiments with tagged and untagged ants, we
do not use the individual location data, but rather an estimate based on blob
sizes:

f tout ¼
∑ijdi<Rnest a

t
i

∑ia
t
i

: [15]

Here, di is the distance of the i th blob from the nest, and Rnest is the effective
nest radius at the beginning of the perturbation, as defined above. Note that in
the context of the collective state, we use a smaller circle around the nest than in
the case of the individual response, to better capture the activity of ants around
the nest and not only ants evacuating the nest.

We define the colony as having responded if f tout > 0:9 for a period of at
least 30 consecutive seconds during a perturbation. To estimate the response
threshold, the responses of 10 colonies in the experiment with tagged ants were
pooled. Events in which the ants were not well settled at the beginning of the
perturbation were excluded from the analysis. For inclusion, we required the
average number of active ants in the 15 min preceding the onset of the pertur-
bation to be lower than twice the median value, calculated across all the events
in the experiment. This resulted in the exclusion of 8 of the 150 events. The
threshold was estimated by fitting a logistic regression model to the collective
binary response variable. CIs for the threshold were estimated using the case
resample bootstrap method with 1,000 replicates.

For the group size experiment, we repeated the analysis above, resulting in a
threshold parameter and CI for each group size (Fig. 3D). The effect of colony
size was estimated using a logistic regression model with group size and tem-
perature as the independent variables (SI Appendix, Fig. S7).

Simulation of the Mathematical Model. The binary network model was
simulated using the asynchronous update approach. In each simulation step a
randomly selected ant updates its state. In each simulation run, the ants were
initialized at the inactive state σi ¼�1: Each run lasted 20 full update cycles;
an update cycle is defined as N simulation steps, where N is the number of
ants in the simulated colony. The full simulation parameters are given in the
legends of SI Appendix, Figs. S8 and S9.

All parameter sweeps were performed on the Rockefeller University high-
performance computing cluster.

Data Availability. All behavioral data, simulation code, and data analysis scripts
used in this paper have been deposited in Zenodo, https://doi.org/10.5281/
zenodo.6569620 (71).
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