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Residual dynamics resolves recurrent 
contributions to neural computation

Aniruddh R. Galgali    1,2,4  , Maneesh Sahani    3 & Valerio Mante    1,2 

Relating neural activity to behavior requires an understanding of how 
neural computations arise from the coordinated dynamics of distributed, 
recurrently connected neural populations. However, inferring the nature 
of recurrent dynamics from partial recordings of a neural circuit presents 
considerable challenges. Here we show that some of these challenges can be 
overcome by a fine-grained analysis of the dynamics of neural residuals—that 
is, trial-by-trial variability around the mean neural population trajectory for a 
given task condition. Residual dynamics in macaque prefrontal cortex (PFC) in 
a saccade-based perceptual decision-making task reveals recurrent dynamics 
that is time dependent, but consistently stable, and suggests that pronounced 
rotational structure in PFC trajectories during saccades is driven by inputs 
from upstream areas. The properties of residual dynamics restrict the 
possible contributions of PFC to decision-making and saccade generation and 
suggest a path toward fully characterizing distributed neural computations 
with large-scale neural recordings and targeted causal perturbations.

Perception, decisions and the resulting actions reflect neural computa-
tions implemented by large, interacting neuronal populations acting in 
concert1,2. Inferring the nature of these interactions from recordings of 
neural activity is a key step toward uncovering the neural computations 
underlying behavior3–9. One promising approach assumes that neural 
computations are instantiated by a dynamical system10,11, reflecting the 
combined effects of feedforward inputs into a neural population and 
dynamics implemented through its recurrent connectivity11–16. The util-
ity of this ‘computation-through-dynamics’ framework hinges on the 
ability to disentangle how inputs and recurrent dynamics contribute 
to the activity of a neural population7,17,18.

Here we show that the properties of inputs and recurrent dynam-
ics can sometimes be revealed by analyzing the dynamical structure 
of neural population residuals—that is, the trial-to-trial variability in 
neural population responses19–25. Our approach is based on the intui-
tive idea that the effect of recurrent computations can be revealed 
by observing how a perturbation of the state of the neural popula-
tion evolves over time26–29. Unlike experiments employing external, 
causal perturbations, we directly analyze response residuals, which we 
interpret as naturally occurring perturbations within the repertoire of 

activity patterns produced by a recurrent neural network30,31. We refer 
to the dynamics of response residuals as ‘residual dynamics’ and show 
that it provides insights into the combined effects of the recurrent 
dynamics implemented locally in the recorded area and in upstream 
areas providing inputs to it. Obtaining a complete and quantitative 
description of residual dynamics is difficult, because the structured 
component of neural population residuals is typically dwarfed by 
unstructured noise that may reflect variability in single-neuron spik-
ing19–21. We obtain reliable, unbiased estimates of residual dynamics 
with novel statistical methods based on subspace identification32,33 
and instrumental variable regression34.

Our findings are organized in three sections. First, we illustrate 
the challenges in disentangling inputs and recurrent dynamics 
based on the simulations of simple dynamical system models (Figs. 
1 and 2). These models implement dynamics previously proposed to 
explain neural population responses during sensory evidence inte-
gration12,35 and movement generation13,36,37. We use the simulations 
to establish what insights into recurrent dynamics can be obtained 
from different components of the neural responses, in particular 
condition-averaged responses and response residuals. Second, we 
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combine additively, as is approximately the case in many RNN 
models12–15.

Mapping these factors directly onto individual brain areas  
(Fig. 1a, anatomical view) is typically not possible when using neural 
recordings from only one or few areas within a larger network18,39,40. 
Rather, here, zt represents a low-dimensional dynamical state that is 
reflected in the collective activity of all recorded neurons31, whereby 
each factor contributing to it can be distributed across many areas41 
(Fig. 1a, functional view). Nonetheless, the various factors in Eq. (1) can 
be distinguished at a functional level, through their distinct contribu-
tions to variability in neural responses—F(zt) captures the functional 
consequences of distributed recurrent connectivity and induces vari-
ability over slow time scales (that is, long temporal autocorrelation); 
ϵt captures fast variability (no autocorrelation); and ut can capture fast 
or slow variability, depending on the complexity of processing in areas 
upstream of the recorded one (Fig. 1b).

We illustrate the relation between the anatomical and functional 
interpretations by considering two simulated scenarios differing in the 
complexity of the inputs. Inputs are either ‘simple’, reflecting purely 
feedforward computations (Fig. 1b, top, and Figs. 1c,d and 2), or ‘com-
plex’, resulting from recurrent processing occurring upstream of the 

study neural population recordings from prefrontal cortex (PFC) of 
macaque monkeys during decision-making and saccadic choices  
(Figs. 3–5). Although condition-averaged responses in PFC are consist-
ent with a number of previously proposed models of evidence integra-
tion and movement generation, we rule out several candidate models 
based on the properties of the inferred residual dynamics. Third, we 
study simulations of multi-area, recurrent neural network (RNN) mod-
els of decision-making38 to illustrate how inferred residual dynamics 
could be used to deduce circuit-level implementations of distributed 
recurrent computations (Figs. 6–8).

Results
In the framework of computation through dynamics, the temporal 
evolution of the state of a neural population (zt, t indicates time) can 
be described through a differential equation:

żt = F (zt) + ut + ϵt (1)
The momentary change in the population state (żt) on each trial 

reflects the combined effect of four distinct factors: the recurrent 
dynamics F(zt), the inputs ut, the latent noise ϵt and the initial condi-
tions z0 (state at time zero). The first three factors are assumed to 
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Fig. 1 | Disentangling contributions of inputs and recurrent dynamics to 
neural responses. a, Computation through dynamics. Anatomical view (left): 
recurrent dynamics and inputs respectively capture how the recorded neural 
responses are shaped by recurrent connectivity within the recorded area 
(orange) and by responses in additional areas (green). Functional view (right): 
recurrent dynamics and inputs reflect processes distributed across several areas 
(color gradient) and are defined based on their functional contributions to neural 
responses (graphical model, bottom). b, Relation of functional and anatomical 
viewpoints in two example scenarios (top and bottom row: simple versus 
complex inputs). c,d, Models of decision-making (c) and movement generation 
(d) based on simple inputs as in b (top). Each panel shows simulated single 
trials (dark-gray trajectories) and condition-averaged trajectories (blue and red 
trajectories) for two task conditions (choice 1 and choice 2). Black arrows show 
the effect of recurrent dynamics on the response at any state-space location. 
The effect of an input drive is constant across state-space but can change over 

time and across task conditions (middle panel in c, example input directions at 
bottom). c, Models of decision-making. The three models implement unstable 
(left), perfect (middle) and leaky (right) integration of an appropriately chosen 
input. d, Models of movement generation. Left: purely rotational dynamics. 
Perturbations along both state-space dimensions are persistent; middle: 
dynamic attractor. Perturbations along the radial dimension decay but persist 
along the circular ‘channel’. Right: point attractor. Responses are driven by strong 
inputs. IC: approximate extent of the initial conditions, shown for the dynamic 
attractor model. e, Input drive (see b) for the models in c and d. Curves indicate 
the components of the input drive along the two state-space dimensions (solid 
versus dashed) over time (horizontal axis) and conditions (red versus blue). Input 
drives are chosen to produce identical condition-averaged trajectories across 
models in c and in d. Boxes in c and d (left subpanels): regions of state-space 
analyzed in Fig. 2. ED, Extended Data.
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recorded area (Fig. 1b, bottom, and Figs. 6 and 7). These simulations 
illustrate the challenges in distinguishing the functional contributions 
of recurrent dynamics and inputs but also that response residuals are 
well suited for this challenge.

Neural trajectories poorly constrain recurrent computations
We simulated responses of several hand-designed models that approx-
imate neural population dynamics previously proposed to underly the 
accumulation of sensory evidence toward a choice12,35 (Fig. 1c) or the 

generation of complex motor sequences13,37 (Fig. 1d). As in more com-
plex RNN models12,13,35,37, here the input consists of two components 
(Fig. 1b, functional view): a deterministic input drive ūt (repeatable 
across trials of the same condition) and latent input noise ϵ̃t (Fig. 1b, 
simple inputs).

We simulated single-trial responses for two task conditions and 
visualized them as trajectories in a two-dimensional (2D) neural 
state-space (Fig. 1c,d, choice 1 and choice 2; dark-gray curves). The 
recurrent dynamics F(zt) describes the noiseless evolution of the 
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Fig. 2 | Residual dynamics reveals population-level computations. a, Different 
factors contributing to the dynamics of the saddle point model, shown in the 
state-space region marked in Fig. 1c for an early time in choice 1 trials (box). Same 
conventions as in Fig. 1c. Recurrent dynamics and input drive sum to generate 
the effective dynamics, determining the evolution of the response in the absence 
of noise. The residual dynamics is the component of the effective dynamics 
that explains the evolution of perturbations away from the condition-averaged 
trajectory (blue line; blue dot: reference time). b, Effective and residual dynamics 
estimated directly from simulated single-trial residuals match the ground truth 
in a. c, Ground truth residual dynamics for the models of decisions, same state-
space region and reference time as in a. The residual dynamics reflects the key 
properties of the recurrent dynamics at the corresponding state-space region 
in Fig. 1c. The arrows in each flow field were scaled by a fixed factor that differed 
across models and with a (numbers close to arrows at the bottom). d, Analogous 

to c but for the models of movement at an early time in choice 1 trials (box in  
Fig. 1d). e–g, Properties of the estimated residual dynamics for the models in 
Fig. 1c,d. Only residual dynamics for choice 1 is shown. The residual dynamics 
is described by a time-dependent and condition-dependent, autonomous, 
linear dynamical system. The corresponding time-varying dynamics matrices 
describe the residual dynamics at particular locations along one of the condition-
averaged trajectories (Extended Data Fig. 1). e, Magnitude of the EVs (y axis) 
of the 2D dynamics matrix as a function of time (x axis). f, SVs of the dynamics 
matrix as a function of time for the models of decisions. The difference between 
EVs and SVs in the line attractor model is a consequence of non-normal dynamics. 
g, Angular phase associated with complex valued EVs for models of movement. 
Larger angular phase implies faster rotational dynamics. EVs, SVs and angular 
phase together distinguish between the different models.
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instantaneous state (zt) from a given state-space location in the 
absence of inputs (Fig. 1c,d, black arrows and light-gray curves). The 
input drive (ūt) injects a particular pattern of activity into the neural 
population, thus pushing the state along a state-space direction that 
could vary across time and task conditions (Fig. 1c, red and blue arrows, 
and Fig. 1e).

Very different combinations of recurrent dynamics and 
inputs resulted in very similar trajectories. The three models of 
decision-making instantiate different behavioral ‘strategies’ for 
perceptual decision-making42, from unstable, impulsive decisions  
(Fig. 1c, saddle point) to optimal accumulation of evidence (Fig. 1c, line 
attractor) and leaky, forgetful accumulation (Fig. 1c, point attractor). 
However, for the chosen input drive, which can be constant (Fig. 1e, 
saddle point) or transient (Fig. 1e, line and point attractor), all three 
models produce similar single-trial trajectories (Fig. 1c, gray curves) 
and indistinguishable condition-averaged trajectories (Fig. 1c, blue 
and red curves). Analogous observations hold for the models of move-
ment generation (Fig. 1d). The condition averages do not distinguish 
between two models in which responses were driven solely by recurrent 
dynamics (Fig. 1e)— a model implementing rotational dynamics13,36, 
in which variability in the initial condition is reflected throughout 
the entire trajectory (Fig. 1d, rotations; gray curves), and a ‘dynamic 
attractor’37 model, in which activity is pushed toward and through a 
narrow channel in state space (Fig. 1d, dynamic attractor). The resulting 

condition averages are also identical to those from a model that imple-
ments point attractor recurrent dynamics and is strongly input driven18  
(Fig. 1d, point attractor).

Condition-averaged trajectories, which are often used to compare 
simulated neural responses to measured population activity12,13,43, thus 
cannot disentangle the functional effects of recurrent dynamics and 
inputs in these simple models.

Residual dynamics can resolve recurrent contributions
Neural residuals are defined as the difference between a single-trial 
trajectory and the corresponding condition-averaged trajectory20,44 
(Extended Data Fig. 1). We interpret residuals as perturbations away 
from the condition-averaged trajectory and capture how these per-
turbations evolve over time through the ‘residual dynamics’ (Extended 
Data Fig. 1).

For the simulated models, the dynamics of residuals can be derived 
analytically, in two steps (Fig. 2a and Extended Data Fig. 1). We define 
the ‘effective dynamics’ by summing the contribution of recurrent 
dynamics and input drive, thus capturing the noiseless evolution of 
the population response from any given state-space location. We 
then obtain the ‘residual dynamics’ by subtracting, from the effective 
dynamics, a component corresponding to the instantaneous direction 
of change along the condition-averaged trajectory (Fig. 2a, see labels 
over each panel).
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Fig. 3 | Average dynamics in PFC during perceptual decisions and saccades.  
a, Behavioral task. Monkeys fixating at the center of a screen (fixation point, 
black cross) viewed a random dot stimulus for 800 ms. After a delay period of 
random duration, they reported the perceived direction of motion with a  
saccade to one of two targets (red and blue circles; blue: choice 1; red: choice 2).  
After the saccade, the monkeys had to fixate on the chosen target during a hold 
period of random duration. b, Position of the 10 × 10 electrode array in pre-
arcuate cortex of the two monkeys. Black circles indicate the cortical locations  
of the 96 electrodes used for recordings. c,d, Neural trajectories in monkey  

T, averaged over trials of the same choice. Trajectories are obtained after aligning 
neural responses (Extended Data Fig. 6) from experimental sessions with a 
similar configuration of saccade targets (config 3; Extended Data Fig. 6). Aligned 
responses are projected into four activity subspaces: the choice, time, jPC12 and 
jPC34 planes, capturing variance due to choice, time and rotations, respectively 
(R2: fraction of variance explained; f: rotation frequency associated with the 
jPC plane). c, Trajectories in the decision epoch (−0.2 seconds to 1 second 
relative to stimulus onset, filled circle). d, Trajectories in the movement epoch 
(−0.7 seconds to 0.5 seconds relative to saccade onset, filled circle).
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The residual dynamics describes how a perturbation of a neural 
state along the condition-averaged trajectory evolves over the course of 
one time step (Fig. 2c,d, blue dot: unperturbed ‘reference’ neural state; 
arrows: evolution from the perturbed states). For the saddle point model 
(Fig. 2c, saddle point), perturbations along the horizontal direction 
expand over time (arrows point away from the reference state), whereas 
perturbations along the vertical direction decay back to the trajectory 
(arrows point toward the reference state). These dynamics correctly 
reflect the influence of a saddle point in the vicinity of the reference 
state (Fig. 1c, box). Likewise, the residual dynamics correctly reveals line 
attractor and point attractor dynamics in the other two models of deci-
sions (Fig. 2c) and key properties of the recurrent dynamics in the models 
of movement—that is, rotational dynamics, decay toward the dynamic 
attractor and point attractor dynamics (Fig. 2d). These differences in 
the underlying recurrent dynamics are less apparent in the effective 
dynamics, particularly for strong input drives (Extended Data Fig. 1).

For measured neural responses, we approximate residual dynam-
ics with a condition-dependent and time-dependent, locally linear 
system, whereby time parameterizes location in state-space along 
the condition-averaged trajectory (Extended Data Fig. 1). Such linear 
dynamics is well suited to describe residuals because, by definition, 
residual dynamics always has a fixed point at the location of the refer-
ence neural state (Fig. 2c,d, blue dot). We estimate the linear approxi-
mations by combining methods from subspace identification32,33 and 
instrumental variable regression34 (Extended Data Fig. 2). These meth-
ods, unlike simpler linear regression approaches, can produce robust 
and unbiased estimates of residual dynamics in biologically realistic 
settings (Extended Data Fig. 3).

We summarize the residual dynamics through three properties of 
the linear approximations, specifically the magnitude of the eigenval-
ues (EVs), the singular values (SVs) and the rotation frequency associ-
ated with the EVs (Fig. 2e–g). Together, these properties distinguish the 
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to randomly resampled trials (n = 1,000). b, EVs of the dynamics (left axis) and 
associated time constants of decay (right axis) as a function of time (x axis).  

c, SVs of the dynamics. The eigenvectors and singular vectors associated with the 
shown EVs and SVs can vary over time. d, Angular phase of the EV (left axis; angular 
phase = 0: real-valued EV) and associated rotation frequencies (right axis). Line 
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singular vector at the preceding time. e–h, Properties of the residual dynamics 
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Fig. 6). Black curves: averages across all choices and configurations. e, Magnitude 
of the largest EV (left axis) and the associated decay time constants (right axis).  
f, Largest SV. g, Largest angular phase of the EV and the corresponding frequency 
of rotation. h, Time course of the index of non-normality.
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models in Fig. 1c,d. For locations close to the saddle point in the model 
of decision-making, one EV is larger than 1, implying that perturbations 
along the associated eigenvector (the horizontal direction in Fig. 1c, 
left) expand over time; the other EV is smaller than 1, corresponding 
to decay along the vertical direction (Fig. 1c, left; center of flow field; 
Fig. 2e, left-most panel; early times). For the line attractor, the largest 
EV is 1 (Fig. 2e, second from left) as horizontal perturbations are persis-
tent—that is, neither expand nor decay. For a point attractor, all EVs are 
smaller than 1 (Fig. 2e, third from left; all directions decay). Rotational 
dynamics results in complex-valued EVs associated with a non-zero 
rotation frequency (Fig. 2g). Differences between the magnitude of 
SVs and EVs reflect non-normal dynamics, a feature of many models of 
neural computation45–47. The SV larger than 1 in the line attractor model 
implies that small perturbations along the corresponding right singular 
vector transiently expand, even though they are persistent (EV = 1) or 
decay (EV < 1) over longer time scales (Fig. 2e,f).

Residuals dynamics reflects local and upstream recurrence
The above simulations illustrate one setting in which residual dynam-
ics, unlike the condition-averaged trajectories, can reveal the proper-
ties of the recurrent dynamics—when input variability is temporally 
uncorrelated, any slow correlations in the residuals are entirely due to 
(and can be used to infer) the recurrent dynamics (Fig. 1b, top; simple 
inputs). This constraint, however, is likely violated for single areas in 
biological networks, where the input into an area could result from 
recurrent processing in upstream areas38,41. In Eq. 1, the input (ut)  
would then include a component of variability with slow temporal 

correlations, reflecting the upstream recurrent dynamics (ξt in Fig. 1b, 
bottom; complex input).

In such settings, residual dynamics reflects not just the ‘local’ 
recurrent dynamics (Flocal; Fig. 1b) but, rather, the combined effects 
of the recurrent dynamics in the recorded area and in any upstream 
areas contributing an input to the recorded area44 (Fupstream; Fig. 1b). For 
example, residual dynamics with large EVs or large rotation frequen-
cies need not imply that the recurrent dynamics in the recorded area 
is unstable or rotational, as such dynamics may be implemented also, 
or exclusively, in areas upstream of the recorded one (Extended Data 
Figs. 4 and 5).

Notably, direct or indirect connections from unrecorded to 
recorded neurons within the local, recurrently connected population 
need not result in a functional ‘input’ in the sense of Eq. (1). If neural 
activity evolves within a low-dimensional manifold, recordings from 
a large enough subset of neurons within a network can be sufficient to 
estimate the population state zt of the entire network30,31. The effect of 
unrecorded neurons in the local network is then fully captured by the 
recurrent dynamics F (ref. 48) (Fig. 1b; F ≈ Flocal).

Neural trajectories of decisions and movements in PFC
We developed an analysis pipeline to estimate residual dynamics from 
recorded neural responses (Extended Data Fig. 2) and applied it to 
recordings from PFC (area 8Ar) in two macaque monkeys perform-
ing a saccade-based perceptual decision-making task49 (Fig. 3a,b). 
We increased the statistical power of our analyses by ‘aligning’ and 
combining neural activity from different experiments with a similar 
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task configuration (Extended Data Fig. 2, step 1; 14–61 experiments 
per configuration and 150–200 units per experiment). The alignment 
yielded a 20-dimensional (20D) activity subspace explaining >90% of 
task-related variance in the average neural responses31 (Extended Data 
Fig. 6). We performed subsequent analyses within this aligned sub-
space, although the main results can be reproduced from sufficiently 
long single experiments (Extended Data Fig. 7).

We visualized the aligned population trajectories through projec-
tions onto several 2D activity subspaces: a ‘choice’ plane, emphasiz-
ing choice-related activity; a ‘time’ plane, emphasizing time-varying 
activity common to all conditions; and two ‘jPC’ planes36, emphasizing 
rotational dynamics (Fig. 3c,d, left to right). Only the two jPC planes 
were orthogonalized with respect to each other, meaning that some 
planes captured shared components of the activity (for example,  
Fig. 3c, time and jPC12 planes). We estimated the planes separately 
during a decision epoch (Fig. 3c, random dots presentation) and a 
movement epoch (Fig. 3d, saccade execution).

The PFC trajectories shared several features with the model tra-
jectories in Fig. 1c,d. As in the decision models (Fig. 1c), PFC responses 
started in an undifferentiated state before stimulus onset (Fig. 3c, 
choice plane; filled dots mark stimulus onset) and gradually diverged 
based on the upcoming choice (Fig. 3c, red versus blue). Before saccade 
onset, PFC responses fell into largely stationary, choice-dependent 
states and then transitioned into rotational dynamics after the pres-
entation of the ‘go’ cue (Fig. 3d, jPC planes), similarly to the movement 
models (Fig. 1d).

Several features of the PFC trajectories were not reproduced by the 
models, including strong condition-independent components26,28,43,50 
(for example, Fig. 3c,d, time plane), choice-related activity along 

multiple state-space directions (Fig. 3c, choice plane), rotational 
dynamics within multiple subspaces (Fig. 3c,d; jPC planes) and rota-
tional dynamics during the decision epoch (Fig. 3c, jPC planes). These 
shortcomings, however, are common to all models and do not provide 
a basis to favor one model as an explanation of PFC responses.

Residual dynamics in PFC
To better resolve the contributions of recurrent dynamics to the 
recorded responses, we characterized residual dynamics in PFC. We 
first estimated a ‘dynamics subspace’, contained within the previously 
defined aligned subspace (Fig. 4a and Extended Data Figs. 2 and 6–8). 
The dimensions of the dynamics subspace were chosen for their ability 
to predict ‘future’ residual states from ‘past’ ones but are well aligned 
with dimensions explaining task-related variance (Fig. 4a, largest dot 
products at small values along the y axis, and Extended Data Figs. 6 
and 7). We estimated residual dynamics within the 8-dimensional (8D) 
dynamics subspace with the same approach as for the simulated models 
(Fig. 2e–g and Extended Data Figs. 2, 8 and 9). Dimensions orthogonal 
to the dynamics subspace were associated with an EV of 0—perturba-
tions along these directions are predicted to completely decay within 
one time step.

EV magnitudes were strongly time dependent (Fig. 4b, all EVs) but 
consistently smaller than 1 (Fig. 4e, largest EV; monkey T: P < 0.005 for 
all timepoints; monkey V: P < 0.01 for 43 of 44 timepoints; and P < 0.005 
for 41 of 44 timepoints; one-sample, single-tailed t-test, n = 8, 2 choices 
× 4 configurations), implying stable, decaying dynamics. The largest 
EVs were associated with decay time constants in the range 187–745 ms 
during the decision period (0 seconds to +0.8 seconds after stimu-
lus onset) and 110–913 ms during the delay period (−0.5 seconds to 
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recurrence. PPC is driven by an external input, and feedback connections from 
PFC to PPC are either absent (a–c) or present (d–f). a, Connectivity (top) and 
average trajectories (bottom) for an example network with weak feedforward 
connectivity between areas (top, thin arrow) and strong local recurrence (thick 
arrows). Condition-averaged trajectories are shown separately for each area 
for two choices (blue: choice 1, red: choice 2). Trajectories are visualized in a 
subspace spanned by the choice mode, explaining variance due to choice, and 
a time mode, explaining condition-independent variance. b, Time-varying EV 

magnitude of the local residual dynamics estimated from residuals in PPC (left) 
or PFC (right) for choice 1, in the example network in a. The external input is 
turned on 400 ms after the start of the trial (gray dashed line). EV magnitudes in 
PFC are strongly reduced upon shuffling the feedforward output of PPC across 
trials (blue dashed curves). c, Maximum EV magnitude (circle) measured across 
time for residuals projected onto the choice modes in PPC (left) or PFC (right), 
as a function of the strengths of local recurrence (black to gray: small to large 
recurrence) and between-area connections (x axis). Error bars indicate 95% 
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(n = 1,000). The dashed circle marks the example network shown in a and b.  
d–f, Same conventions as in a–c but for networks with between-area feedback.
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+0.3 seconds relative to saccade onset) for monkey T (95% confidence 
intervals (CIs), medians = 352 ms and 293 ms, n = 144, 2 choices × 4 con-
figurations × 9 times; Fig. 4e, top) and 309–1,064 ms and 192–3,586 ms 
for monkey V (95% CI, medians = 489 ms and 491 ms, n = 144; Fig. 4e, 
bottom). Concurrently with the saccade onset, the largest EV consist-
ently underwent a strong contraction (Fig. 4e; P < 3 × 10−5 and P < 3 × 10−7 
in monkeys T and V; H0: largest EV equal at −275 ms versus −5 ms relative 
to saccade onset; two-sample, single-tailed t-test, n = 8). The largest 
measured time constants at saccade onset fell to median values of 
159 ms in monkey T and 310 ms in monkey V, implying that perturba-
tions away from the average trajectory fall back to the trajectory more 
rapidly during movement.

The residual dynamics had rotational components in both monkeys. 
In monkey T, the largest rotation frequencies in the residuals (Fig. 4g, 
top; ≈0.5–1 Hz) lay in the approximate range of frequencies for rotations 
in the condition averages (Fig. 3c,d, values for f). In monkey V, even the 
largest rotation frequencies in the residuals (Fig. 4g, bottom, ≈0.25–
0.5 Hz) were smaller than those in the condition averages (0.71–0.84 Hz, 
decision epoch; 1.16–1.34 Hz, movement epoch; range across all task 
configurations). The largest SV of the residual dynamics exceeded the 
magnitude of the largest EV in both monkeys (Fig. 4e,f; P < 0.05 for 43 of 
44 timepoints and 33 of 44 timepoints in monkeys T and V; two-sample, 
single-tailed t-test, n = 8), implying that dynamics was weakly non-normal 
(Fig. 4h). The largest SVs were mostly smaller than 1 in both monkeys  
(Fig. 4f; P < 0.05 for 41 of 44 timepoints in both monkeys T and V; 
one-sample, single-tailed t-test, n = 8). The non-normality is, thus, not 
sufficiently pronounced to amplify perturbations but, rather, only tran-
siently slows their decay (Fig. 4c, ‘transient persistence’).

These findings rule out several models of recurrent dynamics. In 
the decision epoch, the EVs are inconsistent with unstable dynamics 

(EV > 1; Figs. 1c and 2e, saddle point) and mostly smaller than expected 
for persistent dynamics (EV ≈ 1; Figs. 1c and 2e, line attractor). In the 
movement period, the small EVs around saccade onset are inconsist-
ent with purely rotational dynamics or a dynamic attractor, which 
would both result in directions with slower decay (EV ≈ 1; Figs. 1d and 
2e, rotations and dynamic attractor). Around saccade onset (−200 ms 
to +200 ms from onset), the largest EV magnitude (0.80 and 0.88 
in monkeys T and V; mean, n = 8) and the largest rotation frequency 
(0.74 Hz and 0.33 Hz in monkeys T and V; mean, n = 8) imply that per-
turbations decay by at least 50% within every 1/10th (monkey T) and 
1/12th (monkey V) of a rotational cycle. During the same time window, 
the condition-averaged trajectories undergo about 1/4th of a rota-
tional cycle without obvious decay. The quickly decaying residual 
dynamics, and the mismatch between its properties and those of the 
condition-averaged trajectories, are consistent with a strong input 
drive (Figs. 1d and 2e, point attractor).

Alignment of residual dynamics and neural trajectories
Additional insights into how recurrent dynamics and inputs contribute 
to the observed activity can be gained by analyzing the inferred eigen-
vectors of the residual dynamics. When inputs are weak, the trajectories 
mostly reflect the properties of the recurrent dynamics, which, in turn, 
results in distinct relations between trajectories and eigenvectors.

We illustrate such relations in two models, obtained by augment-
ing the line attractor and rotation models (Fig. 1c,d) with two new 
dimensions, along which recurrent dynamics was quickly decaying 
and input drive was strong and condition independent. We defined 
activity subspaces as in Fig. 3 (Fig. 5a,c) and analyzed how they align 
with the eigenvectors of the residual dynamics. For the augmented 
line attractor model, the choice plane is preferentially aligned (angle 
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close to 0) with eigenvectors associated with large EV magnitudes 
(Fig. 5b, top), as slow dynamics along these eigenvectors underlies 
the observed choice-related activity. For the augmented rotations 
model, the jPC34 plane is preferentially aligned with the eigenvectors 
associated with large rotational frequencies (Fig. 5d, top), as these 
eigenvectors underlie the rotational activity in the jPC34 plane. Criti-
cally, the augmented subspaces are not preferentially aligned with the 
slow or rotational eigenvectors, as activity within them is mostly input 
driven. We summarize these relations with a linear regression analysis, 
whereby negative regression coefficients identify planes where slow or 
rotational recurrent dynamics may contribute to the observed trajec-
tories (Fig. 5b,d, bottom; regression with EV magnitude or rotational 
frequency). The augmented, input-driven subspaces in the models are, 
instead, aligned with fast or weakly rotational eigenvectors, resulting 
in positive regression coefficients (Fig. 5b,d, bottom). Such positive 

coefficients are a trivial consequence of the low dimensionality of 
these models (for example, mis-alignment with the choice plane nec-
essarily implies alignment with the time plane) and need not occur in 
PFC dynamics.

We applied this analysis to PFC responses and found significant, 
negative coefficients primarily in the decision epoch, whereby planes 
containing choice-related activity were aligned with slow residual 
dynamics in monkeys T and V (Fig. 5f, choice and jPC34 planes; Fig. 5e, 
top), and rotational residual dynamics was aligned with planes contain-
ing condition-independent activity in monkey T (Fig. 5f, top, time and 
jPC12 planes; Fig. 5e, bottom). Coefficients in the movement epoch were 
mostly very small or not significant (Fig. 5f). These relations suggest 
that recurrent dynamics contributes to observed choice-related activ-
ity (in both monkeys) and condition-independent activity (in monkey T) 
but only during the decision period. Activity at the time of the saccade 
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appears more consistent with the influence of a strong input drive18, 
as we also concluded based on the quickly decaying residual dynamics 
in this epoch (Fig. 4e).

Resolving local and long-range recurrence
Residual dynamics within an area can reveal key functional properties 
of the recurrent dynamics contributing to measured population activ-
ity but cannot distinguish local and upstream recurrent contributions 
(Fig. 1b and Extended Data Fig. 4). Below, we show in simulations how 
such contributions could be distinguished with ‘global’ recordings 
from multiple areas or by combining local recordings and causal per-
turbations (Fig. 7).

We simulated activity in RNNs composed of two areas (posterior 
parietal cortex (PPC) and PFC; Fig. 6), characterized by local recurrence 
within areas and long-range connections between areas38. In the RNNs, 
PPC is upstream of PFC, as it alone receives an input with temporally 
uncorrelated variability (Fig. 1b, simple input) that directly encodes 
the external stimulus. Local recurrence is equally strong in both areas. 
When present, feedback connections from PFC to PPC have equal 
strength as the feedforward connections.

Simulated model responses in a perceptual decision-making task 
have choice-dependent and condition-independent components in 
both areas (Fig. 6a,d, choice and time modes). The EVs of the residual 
dynamics, estimated locally in PPC or PFC, are typically time depend-
ent (Fig. 6b,e), as the RNNs are non-linear. In particular, dynamics can 
change from stable (EV < 1) to unstable (EV > 1) after onset of the exter-
nal input to PPC. We summarize the residual dynamics in each area with 
the peak magnitude of the EV along the corresponding choice modes 
(Fig. 6c,f). The choice modes define the ‘communication subspace’ 
between PPC and PFC in these networks38,44.

The simulations show that very different combinations of local 
and long-range connectivity can result in responses that are virtually 
indistinguishable based on condition averages (Fig. 6a,d) and residual 
dynamics (Fig. 6b,e) computed locally. In networks with a weak feedfor-
ward connection from PPC to PFC, and no feedback from PFC, the local 
residual dynamics depends only (PPC) or mostly (PFC) on the strength 
of the local recurrence, whereby the largest EV gradually increases with 
stronger local recurrent connectivity (Fig. 6c). In networks with strong 
feedback from PFC, the local residual dynamics in both areas instead 
reflects the combined effects of local recurrence and long-range con-
nectivity (Fig. 6f).

The simulations also reiterate the finding that residual dynamics 
can reflect recurrent computations occurring in an upstream area  
(Fig. 1b). In the example network with feedforward connectivity, we 
simulated PFC responses after ‘shuffling’ the output of PPC to remove 
any temporal correlations (ξt = 0 in Fig. 1b) while retaining its 
time-varying mean. In this setting, the EVs estimated in PFC fall below 
1 (Fig. 6b, PFC, dashed), indicating that local recurrent dynamics in PFC 
(Flocal; Fig. 1b) is actually decaying in these networks. We refer to this 
effect as an ‘inflation’ of the EV in PFC, due to the correlated input from 
PPC (Extended Data Figs. 4 and 5).

Local and long-range recurrent contributions can, however, be 
resolved by the global residual dynamics, estimated from the concur-
rent, pooled responses from PPC and PFC. We compared global residual 
dynamics for the two example networks in Fig. 6a,d at the level of the 
inferred EV (Fig. 7a) and the corresponding eigenvectors (Fig. 7b). The 
EV magnitudes cannot distinguish between the two networks, with 
one EV unstable (EV > 1), one persistent (EV ≈ 1) and the others decay-
ing (EV < 1) (Fig. 7a) in both networks. The number of global EVs does 
not robustly distinguish between networks, as it reflects a somewhat 
arbitrary cutoff in the dimensions to include in the dynamics subspace 
(excluded dimensions effectively have EV = 0). The eigenvectors of the 
global residual dynamics, instead, distinguish the two networks. Eigen-
vectors can be qualitatively categorized as being ‘shared’ across areas 
or ‘private’ to an area, depending on whether they have substantial 

projections (that is, angle <90°) onto choice and time modes (Fig. 7b) 
in both areas (shared) or only a single area (private). Both networks 
result in two eigenvectors that are at least partially shared with the 
choice modes in the two areas, but the relative projections onto each 
area vary across networks—the two eigenvectors are only ‘weakly’ 
shared across areas in the feedforward network, whereas they are more 
‘strongly’ shared in the feedback network (Fig. 7b, top versus bottom). 
Notably, these differences are not reflected in the eigenvectors of the 
local residual dynamics (Fig. 7c, top versus bottom).

Validating residual dynamics with causal perturbations
Estimates of residual dynamics, which describe the evolution of ‘natu-
ral’ perturbations (Extended Data Fig. 1a), provide predictions of the 
consequences of ‘causal’ perturbations of the recorded neural popula-
tion18,26–29. We illustrate such predictions for local perturbations applied 
to PPC or PFC in the example two-area networks (Fig. 8). We simulated 
perturbations by ‘injecting’ an activity pattern corresponding to the 
choice mode or the time mode in one area. We applied a brief perturba-
tion at one of six different times after stimulus onset and let the activity 
evolve under the influence of the recurrent dynamics and the input. The 
effect of a given perturbation is summarized as the time-varying norm 
of the population activity in PPC and PFC for a brief time window after 
the onset of the perturbation, averaged over many trials (Fig. 8b,c,e,f; 
a group of three connected points). We compared these simulated 
perturbations (Fig. 8, dots) to predictions based on the inferred global 
and local residual dynamics (Fig. 8, black and gray curves).

The effects of perturbations depend on the area where they are 
applied (Fig. 8, top versus bottom row in each panel), the perturbed 
mode (Fig. 8, green: choice; purple: time) and the time within the 
trial (Fig. 8b,c,e,f, x axis) and vary across the two example networks  
(Fig. 8a–c versus Fig. 8d–f). Depending on these factors, activity after 
a perturbation can be expanding, decaying or showing a brief dip  
(Fig. 8, see labeled examples). This simulated activity is mostly cap-
tured, at least qualitatively, by the global predictions (Fig. 8, dots 
versus black curves). Qualitative mistakes in the global predictions 
occur primarily for components of the activity that are very small, like 
activity in PPC in the feedforward network after a PFC perturbation 
(Fig. 8b, bottom). Overall, the local predictions fare worse (Fig. 8b,c,e,f, 
global: black, R2 = 0.97; local: gray, R2 = 0.93). For example, the decay 
after perturbations of the PFC choice mode in the feedforward network 
are captured by the global prediction but not the local prediction  
(Fig. 8c, bottom left). The erroneous local prediction is expanding 
at late trial times, a reflection of the inflation of local EV in PFC in this 
network (Fig. 6b, PFC, dots versus dashed). In the feedback network, 
PPC and PFC perturbations along the choice mode lead to a dip in activ-
ity in the perturbed area (Fig. 8e, top left, and Fig. 8f, bottom left) and 
to expanding activity in the non-perturbed area (Fig. 8f, top left, and  
Fig. 8e, bottom left). These dependencies are qualitatively captured by 
the global predictions but not the local predictions. The observed dips 
reflect the existence of a global, shared unstable direction, which local 
residual dynamics cannot adequately capture (Extended Data Fig. 10).

Discussion
The properties of residual responses provide insights into the nature of 
recurrent computations underlying neural population dynamics. Our 
analysis of residual dynamics extends previous work that leveraged 
trial-by-trial variability to understand neural computations20,21,23,24,44, by 
providing a full, quantitative description of the time-varying dynamics 
of population-level, trial-by-trial variability. Our approach can cap-
ture dynamics that are globally non-linear9 through a series of local 
approximations capable of resolving differences in dynamics across 
state-space locations and time.

Response residuals are computed by discounting the compo-
nent of neural responses that is repeatable across trials of a given 
task condition and can, therefore, be explained with more easily 
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interpretable models than previous descriptions of the full single-trial 
neural response5–7. Discounting this component does not necessarily 
remove all sources of external inputs into the recorded area (Fig. 1a), 
implying that residual dynamics in a single area may not reflect only 
the local recurrence in the recorded area. Instead, residual dynamics 
reflects the combined effects of local recurrence and recurrent dynam-
ics unfolding within the output space of upstream areas that provide 
an input to the recorded area (Figs. 1b and 6 and Extended Data Fig. 4).

The contributions from local and long-range recurrence to neural 
responses can be distinguished by inferring the global residual dynam-
ics, based on recordings from the entire network of interconnected 
areas (Fig. 7). The resulting description of dynamics in terms of modes 
(that is, eigenvectors) that are shared across areas41, or private to a 
single area, relates to previously identified communication subspaces 
and null subspaces between areas25,44,51,52. Global residual dynamics goes 
beyond a static description of such subspaces, as it captures also the 
dynamics of responses resulting from unidirectional or bidirectional 
communication between areas. In particular, global residual dynamics 
leads to fine-grained predictions of the consequences of small causal 
perturbations that probe the intrinsic manifold explored by the neural 
variability29,30 (Fig. 8).

Our local estimates of PFC residual dynamics provide constraints 
on the properties of recurrent dynamics implemented by the recorded 
PFC population and its contributions to decision-making and move-
ment generation. The largest estimated time constants provide an 
upper bound on the time constants of the local recurrent dynamics in 
PFC (Fig. 4e; 322 ms and 503 ms in monkeys T and V; medians, n = 352:  
2 choices × 4 configurations × 44 times in trial), as any upstream con-
tribution to PFC responses would typically inflate these estimates  
(Fig. 6b and Extended Data Figs. 4 and 5). Recurrent dynamics in PFC 
is, thus, slow53,54 but stable throughout the decision and movement 
epochs. This finding does not rule out that the decision process leading 
to the monkeys’ choices involves unstable or line attractor dynamics 
(Fig. 1c), but those dynamics would have to unfold in areas upstream 
of PFC55 and at least partly outside their communication subspace 
with PFC.

The estimated time constants would reflect the dynamics of the 
decision process if that process unfolded either in PFC alone or within 
its communication subspace with other areas (as for all networks in  
Fig. 6). In such scenarios, our estimates imply leaky evidence accumu-
lation (Fig. 1c, point attractor), whereby late evidence affects choice 
more strongly than early evidence. In practice, though, monkeys often 
terminate evidence accumulation early in the trial, when a decision 
threshold is reached56, which would reduce the behavioral effects of 
leaks in the accumulation. Notably, a recent study hypothesized that 
the termination of evidence accumulation coincides with the onset 
of rotational dynamics in PFC57. In our study, condition-independent, 
rotational dynamics during the decision epoch also stands out, as in 
monkey T it is the component of the recorded activity that can be best 
explained as resulting from recurrent computations (Fig. 5). Irrespec-
tive of the possible contributions of PFC to the process underlying the 
monkeys’ choices, this finding may be indicative of a broader role for 
PFC in governing transitions between cognitive states57,58—for example, 
the transition from an uncommitted to a committed state.

Around the time of the saccade, PFC residual dynamics is quickly 
decaying, largely non-rotational and only weakly non-normal, imply-
ing that PFC does not implement rotational dynamics13,36, dynamic 
attractors37 or strongly non-normal59 recurrent dynamics of the kind 
previously proposed to explain movement activity in motor cortex. 
Rotational dynamics and dynamic attractors are also unlikely to be 
implemented in an upstream area driving PFC movement responses 
through a communication subspace, because the signatures of those 
dynamics would then also appear in PFC residuals (Fig. 6 and Extended 
Data Fig. 4). Strong non-normal dynamics in an upstream area, how-
ever, could possibly explain the observed PFC responses. Non-normal 

systems can generate large activity transients that project only weakly 
onto the activity subspace containing the slowest dynamics. If the 
output from such an upstream area was partially aligned with the activ-
ity transients, but orthogonal to the slow dynamics, it could possibly 
drive strong ‘input-driven’ movement-related activity in PFC without 
revealing the signatures of the strongly non-normal dynamics that 
created it. Alternatively, the mismatch between average trajectories 
and residuals in the movement epoch could reflect a failure in our 
estimation procedure. For one, estimates of residual dynamics become 
biased when trial-by-trial variability is too small, which, however, does 
not seem to be the case in our data (Extended Data Fig. 9). For another, 
dynamics during movement may be strongly non-linear and, thus, 
not well approximated by our local linear description (Extended Data  
Fig. 1). In both scenarios, our estimated dynamics would not provide a 
good description of the true dynamics.

Finally, residual dynamics may provide insights into more general 
biological constraints at play in the underlying neural circuits. The 
inferred EVs are smaller than but close to 1 during the decision epoch, 
consistent with circuits operating near a critical regime, resulting in 
large variability and sensitivity to inputs40,60–62. Single-neuron vari-
ability is transiently reduced at the time of stimulus and movement 
onset (Extended Data Fig. 7), potentially reflecting the widespread 
quenching of variability in response to task events21,63. Near-critical 
dynamics, non-normality and variability quenching emerge naturally 
in balanced excitation–inhibition (E–I) networks64,65. A disruption of 
E–I balance by the onset of an input could lead to contracting dynam-
ics and reduced variability. In our PFC recordings, reduced variability 
coincides with contracting dynamics at movement onset but not at 
stimulus onset (Extended Data Fig. 7). This finding suggests that 
current models of E–I networks64,65 may have to be adapted to fully 
capture the interactions of internal dynamics, inputs and variability 
that we observed in PFC.
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Methods
Experimental procedures
All surgical, behavioral and animal care procedures complied with 
National Institutes of Health guidelines and were approved by the 
Stanford University Institutional Animal Care and Use Committee.

Behavioral task
Two adult male rhesus macaque monkeys (monkey T: 14 kg, monkey V: 
11 kg) discriminated the direction of motion of a random dot motion 
kinetogram and reported their choice by saccades to one of two choice 
targets66 (Fig. 3a). Visual stimuli were presented on a cathode ray tube 
monitor (viewing distance = 57 cm, frame rate = 120 Hz) controlled by 
a VSG graphics card (Cambridge Graphics). Each trial began with the 
appearance of a small spot requiring fixation for a duration of 500 ms 
(±1.5° visual angle, fixation window). Eye position was measured with a 
scleral search coil (CNC Engineering). The fixation period was followed 
by the appearance of two saccade targets (eccentricity 6–18°; angular 
locations varied across recording sessions). After a 400-ms delay, the 
random dot stimulus was presented centered on the fixation point 
(circular aperture diameter: 7°/6°, monkey T/V) for a fixed duration 
of 800 ms (decision epoch). The percentage of dots moving coher-
ently in the same direction (motion coherency) controlled the task 
difficulty and was chosen randomly on each trial from a fixed set of 
values. The decision epoch was followed by a delay period (no random 
dots; only fixation point and saccade targets visible) of variable dura-
tion (300–1,100 ms, mean = 700 ms). Saccades were initiated after a 
‘go’ cue (disappearance of fixation point at end of the delay), followed 
by a ‘hold’ period (500–1,200 ms, mean 900 ms) requiring fixation on 
the target (±2–4° fixation window, depending on eccentricity). At the 
end of the hold period, both targets disappeared, and a liquid reward 
was dispensed for correct trials (0% motion coherence trials rewarded 
at random).

Neural recordings
Single and multi-unit neural activity was recorded in the left cer-
ebral hemisphere of both monkeys using surgically implanted67, 
multi-channel electrode arrays (Blackrock Microsystems) (96 elec-
trodes; length = 1.5 mm; spacing = 0.4 mm) in the pre-arcuate gyrus 
(Brodmann’s area 8Ar) between the posterior end of the principal 
sulcus and the anterior bank of the arcuate sulcus (Fig. 3b). Array signals 
were amplified with respect to a common subdural ground, filtered 
and digitized before spike sorting. For each electrode, spikes from the 
entire duration of a recording session were sorted and clustered offline 
(Plexon) based on a principal component analysis of voltage wave-
forms. Candidate action potential classifications for each electrode 
were subject to additional quality controls, including considerations 
of waveform shape, waveform reproducibility, inter-spike interval sta-
tistics and the overall firing rate. Spike sorting yielded approximately 
100–200 single and multi-unit clusters distributed across the array 
in each recording session. The term ‘units’ collectively refers to both 
isolated single units and putative multi-units.

Data pre-processing
We consider neural data in two non-overlapping time epochs of the 
trial: −200 ms to +1,000 ms relative to random dots onset or −700 ms to 
+500 ms relative to movement (saccade) onset. In each recording ses-
sion, we removed ‘silent’ units that had an average firing rate (computed 
across all trials and timepoints) of <1 Hz. For unknown reasons, in most 
sessions the neural data exhibited abrupt synchronous changes in the 
overall firing rate of many units locked to specific trial indices in the 
session. We automatically identified these putative ‘change points’ and 
used them to split each recording session into shorter ‘experiments’ 
(total number of experiments = 164/80 from 81/76 separate recording 
sessions, resulting in 58,187/34,451 trials in monkey T/V), within which 
the overall firing rate was stationary. Experiments with fewer than 200 

trials were excluded from further analysis. We also removed units that 
exhibited strong discontinuities in their temporally averaged firing 
rate across trials, within every experiment. Square-root-transformed 
binned spike counts4 were computed for each unit in non-overlapping 
time bins (45 ms long; Extended Data Fig. 9).

Data from each experiment were assigned to one of four different 
‘task configurations’ based on the coarse angular positions of the two 
choice targets (Extended Data Fig. 6a). Each trial was categorized either 
as a choice 1 or a choice 2 trial depending on the selected target. In three 
out of four task configurations, choice 1 corresponds to saccades to 
the contralateral visual hemifield (blue targets; Extended Data Fig. 6a). 
For each experiment, we computed the percentage of responses to the 
choice 1 target as a function of signed motion coherence and fitted a 
logistic sigmoidal curve to all the resulting data points that came from 
the same task configuration (Extended Data Fig. 6b).

Overview of the analysis
Assuming simple inputs (see main text and Fig. 1b), an analysis of 
response residuals can reveal the properties of recurrent dynamics 
F (.), even when input ut is unknown (Eq. 1). Henceforth, for simple 
inputs, we assume (without loss of generality) that the input equals the 
input drive (ut ≡ ūt,ūt defined as input drive in the main text; Fig. 1b and 
Supplementary Methods), whereby the uncorrelated input latent noise 
is implicitly included within the latent noise (ϵt) in Eq. (1). The instan-
taneous change in the single-trial state on trial k at time t is given by:

żkt = F (zkt ) + ut + ϵt (2)

Likewise, we assume that the instantaneous change in the average 
state across trials (denoted by ⟨.⟩) can be written as:

⟨żt⟩ = F (⟨zt⟩) + ut (3)

The equality in the above equation follows from Eq. 2 (as ϵt is 
zero-mean), in particular if F is locally linear. The average state and the 
kth single-trial state are approximated by the following discretized 
updates:

⟨zt+1⟩ = ⟨zt⟩ + Δt ⋅ (F (⟨zt⟩) + ut) (4)

zkt+1 = zkt + Δt ⋅ (F (zkt ) + ut + ϵt) (5)

The dynamics of the residual vector z̃ on the kth trial is obtained 
as:

zkt+1 − ⟨zt+1⟩⏟⎵⎵⏟⎵⎵⏟
=z̃kt+1

= zkt − ⟨zt⟩⏟⎵⏟⎵⏟
=z̃kt

+Δt ⋅ (F (zkt ) − F (⟨zt⟩) + ϵt) (6)

Therefore, the temporal evolution of the residuals is itself gov-
erned by a differential equation, expressed in terms of the single-trial 
dynamics as:

∼̇
zt⏟

residual flow
= (F(zkt ) + ut)⏟⎵⎵⏟⎵⎵⏟

′′effective′′ flow at zkt

− (F(⟨zt⟩) + ut)⏟⎵⎵⎵⏟⎵⎵⎵⏟
′′effective′′ flow at ⟨zt⟩

+ϵt (7)

Grouping and rearranging terms of Eq. 6, we obtain:

F (zkt ) − F (⟨zt⟩) + ϵt = F (⟨zt⟩ + z̃kt ) − F (⟨zt⟩) + ϵt (8)

A first-order Taylor expansion of the first term on the right-hand 
side of Eq. 8 results in:

F (⟨zt⟩ + z̃kt ) = F (⟨zt⟩) + ∇F|⟨zt⟩⏟⎵⏟⎵⏟
=Jt

⋅z̃kt + higher order terms (9)
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Ignoring second and higher order terms, and re-expressing Eq. 6 
using Eqs. 8 and 9, yields a discrete-time, time-varying, linear dynamical 
system at the level of the residuals:

z̃t+1 = z̃t + Δt. (Jtz̃t + ϵt)

= (I + Δt.Jt⏟⎵⏟⎵⏟
=At

) z̃t + Δt.ϵt
(10)

The time-varying ‘dynamics matrix’ (At) maps residuals from time 
t to t + 1 and is directly related to the Jacobian (Jt) of the underlying 
dynamical system, computed at each state along the average trajectory. 
Critically, ut does not appear in Eq. (10), meaning that, for simple inputs 
(Fig. 1b) and instantaneous noise ϵt, the residual dynamics At reflects 
only the recurrent dynamics. The corresponding analytical derivations 
for the complex input regime (Fig. 1b) are considered in Supplementary 
Math Note B.

Residuals obtained from neural population spike counts are mod-
eled using a latent-variable, autonomous, linear, time-varying dynami-
cal system as described below:

xt+1 = Atxt + ϵt

z̃t = Cxt + ηt
(11)

where xt is a low-dimensional, latent residual state with dynamics 
determined by At (Eqs. (10) and (11)) and is mapped linearly through an 
‘observation matrix’ (C), resulting in observed residuals z̃t. ϵt and ηt are 
‘latent’ and ‘observation’ Gaussian noise processes. The subspace 
spanned by the columns of C, termed the ‘dynamics subspace’ (later 
denoted by Udyn; Extended Data Fig. 2), contains the dynamically rele-
vant portion of response variability (trial-by-trial variability along any 
dimension within it covaries with variability along the same or other 
dimensions at later times). The observations z̃t could, in principle, 
directly correspond to the neural spike count residuals (Extended Data 
Fig. 7). However, in most of our analyses, they correspond to a 
low-dimensional projection of neural spike count residuals, obtained 
by aligning neural data across multiple experiments (Extended Data 
Fig. 2).

Linear, time-varying latent dynamics (Eq. (11)) make exact 
probabilistic inference intractable, requiring approximate inference 
techniques5,6,8. We estimate parameters C and At using an alterna-
tive approach, combining subspace system identification (SSID) the-
ory32,33,68 (Supplementary Math Note A) and instrumental variable (IV) 
regression34,69. For PFC responses, the amount of variance explained 
by the inferred dynamics appear to be limited primarily by the large 
contribution of (unpredictable) observation noise (see below, ‘Qualita-
tive estimates of goodness of fit’).

Neural data analysis pipeline
We developed a data analysis pipeline (Extended Data Fig. 2) to estimate 
the dynamics subspace (Udyn) and the residual dynamics (At) in four 
steps: (1) aligning neural responses across different experiments (ses-
sion alignment); (2) using aligned residuals pooled across experiments 
to estimate the dynamics subspace (dynamics subspace estimation); 
(3) using aligned residuals and the dynamics subspace to estimate the 
latent residual state xt (residual latent state estimation); and (4) com-
bining the outputs of the previous three steps to estimate the residual 
dynamics At (time-varying dynamics estimation). We used SSID in step 
(2) and two-stage least squares (2SLS) based on instrumental variables 
for steps (3) and (4).

Session alignment. We aligned condition-averaged neural activity 
from different experiments (Extended Data Fig. 2, step 1) to improve the 
statistical power of our analyses, assuming that neural population activ-
ity in different experiments corresponds to different high-dimensional 

readouts of a fixed set of low-dimensional activity patterns31. A full 
example of the results of the alignment procedure applied to neu-
ral data from a single task configuration in one monkey is shown in 
Extended Data Fig. 6c–g.

We constructed (separately for each task configuration) a block 
condition average matrix ( Ȳjoint) by concatenating, row-wise, the 
trial-averaged, neural-population-binned spike counts (Ȳi) of each 
experiment:

Ȳjoint =

⎛
⎜
⎜
⎜
⎜
⎝

Ȳ1

Ȳ2

⋮

ȲP

⎞
⎟
⎟
⎟
⎟
⎠

= U.S.V′ (12)

where Ȳi is a Ni × (Tall × C) data matrix (mean centered; μi = subtracted 
row means, Ni = number of units for experiment i; Tall = total number of 
time bins in the decision and movement epochs; C = total number of 
conditions; P = total number of experiments to be aligned) computed 
by averaging single-trial trajectories, sorted into two choice conditions 
(C = 2, choice 1 or choice 2).

The singular value decomposition (SVD) of Ȳjoint resulted in a 
matrix of left singular vectors (U in Eq. 12), block-structured, of size 
∑P
i=1 Ni × (Tall × C), represented as:

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u1
1 u2

1 … uT.C
1

u1
2 u2

2 … uT.C
2

⋮ ⋱ ⋮

u1
P u2

P … uT.C
P

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(13)

where uji is the left singular ‘sub-vector’ (size Ni×1) corresponding to 
mode j in experiment i. The aligned coordinate basis, defined as matrix 
U⊥
i,M (size Ni×M) for experiment i, corresponds to the first M orthogonal-

ized columns (QR decomposition) of the ith block row of U.
The M-dimensional, aligned single-trial response zit(k), at time t on 

trial k in experiment i, is obtained as:

zit (k) = U⊥
i,M′. (y

i
t (k) − μi) (14)

where yit (k) is the corresponding neural spike count population vector 
(size Ni×1). This procedure resulted in P aligned single-trial data matri-
ces Zi (i = 1, 2, …, P), each of size M×Tall×Ki, where Ki is the number of 
trials in experiment i.

We inspected the cumulative amount of variance explained in the 
condition-averaged data matrix Ȳi as a function of M, by progressively 
retaining a larger number of columns for constructing U⊥

i,M. The fraction 
of variance explained by M aligned modes in experiment i is given by:

(1−
var (Ȳi−U⊥

i,M .U
⊥
i,M

′
.Ȳi)

var(Ȳi)
) (15)

For all subsequent analyses, we chose M = 20 (Extended Data  
Fig. 6c). We visualized each of the 20 aligned activity modes, obtained 
for experiment i by projecting Ȳi into U⊥

i,20, either individually for each 
experiment (Extended Data Fig. 6e) or by averaging across experiments 
(Extended Data Fig. 6d).

To evaluate the efficacy of alignment, we computed a correlation 
coefficient Corr (< zi(a) >, < zj(b) >) for any given pair of aligned modes 
(indexed by a,b, where a,b ∈ {1,2,..,20}) across all possible pairs of 
experiments (indexed by i and j), where < zi(a) > (size 1×(Tall×C)) is the 
trial-averaged activity time course (for both choices) of the ath aligned 
mode in experiment i. We then computed the median correlation coef-
ficient across all pairs of dissimilar experiments (i ≠ j) for each pair of 
modes and visualized the resulting correlation matrix. The median 
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correlation coefficient matrix (Extended Data Fig. 6g) displayed large 
values along the diagonal and almost zero values along the 
off-diagonals, indicating that the aligned time courses were much more 
similar across sessions than across modes.

Dynamics subspace estimation. We estimated the dynamics sub-
space (Extended Data Fig. 2, step 2) using residuals computed in the 
20D space of aligned activity patterns. The dynamics subspace was 
estimated using SSID, which is based on the idea of finding ‘temporally 
predictive’ directions in state space68 (Supplementary Math Note A). 
We adapted existing SSID methods for linear time-invariant systems, 
to make them suitable for linear time-varying dynamics (Eq. 11).

To compute residuals, we redefined conditions separately for the 
two task epochs (decision/movement). For the decision epoch, we 
defined conditions based on choice and motion strength (2 choices × 
4–8 coherencies ≈ 8–16 conditions; number of distinct motion coher-
encies varied across different experiments). For the movement epoch, 
we defined conditions based on choice and the length of the delay 
period preceding the ‘go’ cue, by sorting trials in each experiment into 
five different groups based on the length of the delay period (bin 
boundaries = [0 0.4 0.6 0.8 1.0 1.5]s). To ensure minimal overlap 
between the decision and movement epochs, we excluded all trials 
with delay lengths <400 ms. For the movement epoch, we obtained a 
total of eight conditions in monkey T (2 choices × 4 delay length bins) 
and six conditions in monkey V (2 choices × 3 delay length bins; no trials 
in monkey V had delays >1 second) across all experiments. For each 
condition, we subtracted from the aligned single-trial trajectories (Zi) 
the corresponding condition-averaged trajectory, which ultimately 
resulted in P aligned residual data matrices Z̃i (i = 1, 2, …, P; each of size 
20×Tall×Ki) for each experiment i. We then sorted trials in each Z̃i based 
on choice (choice 1 or choice 2) and pooled them across the P experi-
ments, resulting in two, choice-dependent, ‘pooled’ residual data 
matrices, Z̃{choice=1} and Z̃{choice=2}. All subsequent procedures were car-
ried out separately on Z̃{choice=1} and Z̃{choice=2}. For sake of convenience, 
below we drop the subscripts unless otherwise indicated.

Based on SSID theory, we constructed a sequence of time-varying, 
future–past Hankel covariance matrices (Ht) using temporally win-
dowed chunks of Z̃ centered at time t (Supplementary Math Note A, 
Equation S14). Specifically, we assigned trials in Z̃ to two random halves 
(labeled ‘train’ and ‘test’) and constructed two distinct, corresponding 
Hankel matrices Htrain

t  and Htest
t , at each time t. The order of the Hankel 

matrix (given by q in Equation S14, Supplementary Math Note A), which 
determines the number of ‘future’ and ‘past’ lags of Z̃ to use for con-
structing Ht, is set to 5. Increasing q beyond 5 did not change the results 
of our analyses. We obtained the r-rank approximation of Htrain

t  
(Extended Data Fig. 2, step 2) by using a hard-thresholding of its singu-
lar values:

Htrain
t,(r) = Utraint,(r) .S

train
t,(r) .V

train′
t,(r) (16)

where Utraint,(r)  and Vtraint,(r)  are matrices whose columns are the first r left and 
right singular vectors of Htrain

t , respectively. Similarly, Straint,(r)  is a diagonal 
matrix, with diagonal entries corresponding to the first r singular 
values. We then computed a temporally averaged, Hankel matrix recon-
struction error with respect to the full rank Hankel matrix computed 
using the ‘test’ trials:

Ehankel =
1

T−2q+1

T−q+1
∑

t=q+1

‖
‖H

test
t −Htrain

t,(r)
‖
‖
2

F
(17)

where ‖.‖F is the matrix Frobenius norm, and T is the total number of 
time bins in Z̃ for a specific task epoch (either decision or movement). 
We computed Ehankel using 20 different random splits of Z̃ into ‘train’ 
and ‘test’ halves, for different values of the Hankel rank (r). The average 
reconstruction error (over 20 repeats) was plotted as a function of r 

(Extended Data Fig. 8a), and the optimal rank (ropt) was determined as 
the smallest value of r for which Ehankel was no larger than one standard 
error above the minimum Ehankel (1 standard error rule70). Thus, we 
obtained a single value of ropt for each task epoch and choice condition. 
Although a single ropt (determined across all times in an epoch) may 
overestimate/underestimate the optimal rank at a specific time t, we 
found that using an ropt deemed optimal at each time t also yielded 
similar results.

Next, we used the above estimate of ropt and the aligned residuals 
to define observability matrices, which were eventually used to esti-
mate the dynamics subspace. For the subsequent steps of the pipeline, 
we used a five-fold cross-validation approach. Time-varying Hankel 
matrices (Ht) were computed using Z̃train (composed of 4/5th of all trials 
in Z̃) and subjected to an SVD. The resulting, first ropt left singular vectors 
and SVs were used to define a time-dependent observability matrix 𝒪̂𝒪𝒪𝒪𝒪𝒪t 
(Equation S18, Supplementary Math Note A):

𝒪̂𝒪𝒪𝒪𝒪𝒪t = Ut,(ropt).(St,(ropt))
1
2 (18)

where 𝒪̂𝒪𝒪𝒪𝒪𝒪t is a block matrix of size (M × q) × ropt; q = 5 is the order of the 
Hankel matrix; and M = 20 is the dimensionality of the aligned space. 
As in SSID for time-invariant dynamical systems, the first block row of 
𝒪̂𝒪𝒪𝒪𝒪𝒪t specifies the momentary dynamics subspace at time t, given by the 
first M rows of 𝒪̂𝒪𝒪𝒪𝒪𝒪t:

Ĉt = 𝒪̂𝒪𝒪𝒪𝒪𝒪t (1 ∶ M, ∶) (19)

To define a single time-invariant dynamics subspace as in our 
model (Eq. 11), from the sequence Ĉt we constructed a matrix Ĉall by 
concatenating, column-wise, the momentary dynamics subspaces Ĉt 
for all t across both task epochs (decision and movement) and both 
choices (choice 1 or choice 2)

Ĉall = (Ĉde,1q+1 …… Ĉde,1Tde−q+1
Ĉmo,1q+1 …… Ĉmo,1Tmo−q+1

Ĉde,2q+1 …… Ĉde,2Tde−q+1
Ĉmo,2q+1 …… Ĉmo,2Tmo−q+1

)
(20)

where Ĉde,jt  and Ĉmo,jt  are the momentary dynamics subspaces for choice 
j (j = 1 or 2), at time t in the decision (de) and movement (mo) epochs. 
Tde and Tmo are the total number of time bins in the decision and move-
ment epochs. The left singular vectors of Ĉall, by definition, span the 
union of the column spaces of all Ĉt (across time, task epochs and choice 
conditions) and, therefore, specify a time-invariant dynamics subspace 
shared across time, task epochs and choices. We denote the left singular 
vectors of Ĉall by Udyn, which is an orthonormal matrix of size M×M. The 
M columns of Udyn are ordered in terms of their relative importance in 
capturing temporally correlated variability in the residuals resulting 
from the underlying dynamics (Fig. 4a and Extended Data Fig. 6f). In 
practice, only an ordered subset of the columns of Udyn is sufficient to 
capture residual dynamics across choices and task epochs (using more 
columns than necessary leads to over-fitting). Accordingly, the number 
of columns of Udyn that are retained corresponds to a hyper-parameter 
(denoted by d) that determines the dimensionality of the residual 
dynamics (At; Eq. 11). We determine the optimal value of d (denoted as 
dopt) using cross-validation in the next step of the pipeline (Extended 
Data Fig. 8). The first dopt columns of Udyn (Fig. 4a and Extended Data 
Fig. 6f), therefore, correspond to the estimate of the observation 
matrix of our model (C; Eq. 11).

Overview of 2SLS. Next, we estimate the latent residual state (xt, Eq. 11;  
Extended Data Fig. 2, step 3) and the time-varying residual dynamics 
(At, Eq. 11; Extended Data Fig. 2, step 4) using a 2SLS approach based 
on instrumental variable regression.

First, we obtained a d-dimensional, noisy estimate of the latent 
residual state at time t, for each trial k in the training fold, by projecting 
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the corresponding observed residual (z̃traint (k)) into a d-dimensional 
dynamics subspace:

x̃traint (k) = (Uddyn)
′z̃traint (k) (21)

where Uddyn are the first d columns of Udyn (estimated in step 2 using only 
‘train’ trials, Z̃train). Such a projection does not entirely eliminate the 
observation noise present in z̃traint ; specifically, observation noise lying 
within the column space of Uddyn corrupts x̃t. Therefore, if one were to 
directly estimate residual dynamics (At) using ordinary least squares 
(OLS) by regressing x̃t against x̃t+1 (as suggested by Eq. 11), the resulting 
estimates would be biased and inconsistent (Extended Data Fig. 3d). 
This is commonly referred to as the ‘error-in-variables’ problem71, in 
which components of observation noise corrupting x̃t act as a con-
founding variable, resulting in an attenuation bias in OLS estimates of 
At (Extended Data Fig. 3d). Such biases would complicate the interpre-
tation of the EV/SV spectrum of At, which are crucial for drawing con-
clusions about underlying computations.

Therefore, we instead use an instrumental variable regression 
approach, commonly used to help mitigate the deleterious effects of 
confounding variables for causal inference34, which relies on two sepa-
rate least-squares regressions performed in two stages (2SLS). Two key 
assumptions underly the validity of this approach: (1) dynamics is 
considered Markovian, and (2) observation noise is considered tem-
porally uncorrelated. In the first stage, we regress the noisy, latent 
residual state at time t (x̃t) against its past l lags, [x̃t−1, x̃t−2 … x̃t−l]. These 
lagged variables, known as ‘instruments’ (their validity subject to the 
above two assumptions), are, therefore, used to construct a denoised 
prediction of the latent residual state at time t (Extended Data Fig. 2, 
step 3). In the second stage, the noisy, latent residual state at time t+1 
(x̃t+1) is regressed against this denoised prediction to obtain estimates 
of At that are unbiased and consistent (Extended Data Fig. 2, step 4). 
2SLS estimates of At can be potentially biased when instruments are 
‘weak’72 (that is, when past lags have low predictive power in the 
first-stage regression), underscoring the need to choose optimal values 
for the hyper-parameters d and l (Extended Data Fig. 8b).

Residual latent state estimation. The first stage of 2SLS involved 
estimating, at each time t (separately in each task epoch, for trials from 
the two choice conditions), the regression coefficients βl−t  (using least 
squares) as follows:

β̂l−t = (X̃traint X̃train′t,l− )(X̃traint,l− X̃train′t,l− )−1 (22)

where X̃traint  is a matrix of size d×Ktrain, whose columns correspond to 
the noisy latent residual state (x̃traint , Eq. 21) for individual trials in the 
‘training’ set. Similarly, X̃traint,l−  is a matrix of size (d×I)×Ktrain, where each 
column corresponds to the past l lags (stacked vertically) relative to 
x̃traint , for the corresponding trial. Therefore, the kth column of X̃traint,l−  
(corresponding to trial index k) is a vector of size (d×I)×1 specified as:

x̃traint,l− (k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x̃traint−1 (k)

x̃traint−2 (k)

⋮

x̃traint−l (k)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(23)

We then predicted observed residuals in the test set (Z̃test, remain-
ing 1/5th of the data) using estimates of Uddyn and β̂l−t  (both estimated 
using Z̃train) by first obtaining a noisy latent residual state at each time 
t for each trial in the test set (denoted by x̃testt (k), analogous to Eq. 21). 
The denoised prediction of the corresponding latent residual state is 
obtained as:

ˆ̃x
test
t (k) = β̂l−t x̃testt,l− (k) (24)

The corresponding prediction of the observed residual is then 
obtained by projecting ˆ̃x

test
t (k) (Eq. 24) back into the 20D aligned space, 

through the columns of Uddyn:

̂z̃testt (k) = Uddynˆ̃x
test
t (k) (25)

These predictions were then used to compute a single 
mean-squared error value for both task epochs (that is, summation 
index t below spans both epochs) as follows:

Efs =
1

Tpred .Ktest
∑
k
∑
t

‖
‖ ̂z̃testt (k) − z̃testt (k)‖‖

2

2
(26)

where Tpred corresponds to the total number of time bins across both 
epochs (including only those time indices t that are greater than the 
maximum lag used for grid search cross-validation), and Ktest is the total 
number of trials in Z̃test.

Different values of hyper-parameters d (dimensionality) and l 
(number of past lags) were sampled on a 2D grid. The resulting values 
of Efs (averaged across folds) for different settings of d and l revealed a 
tendency to over-fit for large values (Extended Data Fig. 8b). The opti-
mal values of d and l (denoted, henceforth, as dopt and lopt) were deter-
mined as the combination that resulted in the smallest number of 
parameters for β̂l−t  (Eq. 22), with an average Efs value no larger than 1 
standard error above the minimum average Efs (1 standard error rule70).

Time-varying dynamics estimation. For the second stage of 2SLS, 
first, we used optimal values (dopt and lopt) of hyper-parameters d and l 
(determined in the previous step), to recompute the optimal dynamics 
subspace (Udoptdyn ; using all trials from both choices within a task configu-
ration) and the optimal, denoised predictions of the latent residual 
states (Eq. 24; using all trials of a specific choice and task configuration). 
To obtain residual dynamics (At), we then solved (in closed form) the 
following penalized least-squares objective:73

ℒ = ∑
t

‖
‖X̃t+1 − At ˆ̃Xt‖‖

2

F
+ α ‖At+1 − At‖

2
F (27)

where X̃t+1 is a matrix whose columns correspond to the noisy 
(dopt-dimensional), residual latent states at time t+1, for individual trials 
(obtained analogously as in Eq. 21). ˆ̃Xt is a matrix whose columns cor-
respond to denoised predictions of the latent residual states at time t 
for corresponding trials (kth column corresponds to ˆ̃xt (k), analogous 
to Eq. 24). The above objective is optimized separately for each task 
epoch (therefore, t in Eq. 27 indexes only time bins within an epoch). 
Critically, α is a regularization parameter (Extended Data Fig. 2, step 
4) that imparts smoothness (larger values implies more smoothness) 
to the sequence of dynamics matrices (At) across time and is tuned in 
a separate five-fold cross-validation step. As expected, very small/large 
values of α exhibit over-fitting/under-fitting (Extended Data Fig. 8c).

Choices of hyper-parameters. We found that values of dopt = 8 and 
lopt = 3 were optimal for all eight datasets (one dataset consists of trials 
for a specific choice and task configuration; Extended Data Fig. 8d) in 
each monkey. Despite small amounts of variability across different 
datasets, we used these fixed values for consistency and to facilitate 
easier comparison of residual dynamics across different datasets. The 
8D dynamics subspace Udoptdyn computed using only residuals explained 
68% (monkey T, median across 164 experiments; Extended Data Fig.7c) 
and 55% (monkey V, median across 80 experiments) of the variance in 
the trial-averaged trajectories in the high-dimensional neural space 
( Ȳi, computed before alignment of sessions), as compared to 87% 
(monkey T) and 73% (monkey V) explained by the 20D aligned subspace 
(U⊥

i,M and Extended Data Fig. 6c) that was optimized to capture 
trial-averaged variance across all experiments. We found considerable 
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variability in optimal values of α across monkeys and task epochs 
(Extended Data Fig. 8e; larger values for monkey V and movement 
epoch). Across all datasets in both monkeys, we chose αopt = 200 for 
fits in the decision epoch and αopt = 50 for fits in the movement epoch 
to simplify comparisons between monkeys.

Analysis of residual dynamics
The optimal hyper-parameters (dopt, lopt and αopt) were used, in one final 
step, to estimate the time-varying dynamics matrices At (Eq. 27) using 
all trials in Z̃, separately for each choice, task epoch and task configura-
tion. We analyzed the resulting EV and SV spectra of At at all times t in 
the trial. The EVs and the corresponding eigenvectors at the very first 
time step were sorted in descending order of their EV magnitudes. At 
subsequent times, we sorted EVs and their associated eigenvectors 
such that they were maximally consistent with those at the preceding 
time step, using a modified version of an open-source MATLAB script 
(eigenshuffle.m74). A similar procedure was used to sort the 
time-varying SVs and the associated right and left singular vectors.

We computed the time constant of the dynamics (Fig. 4b,e) directly 
from the EV magnitudes of At as follows:

τjt =
Δt

log(||λ
j
t
||)

(28)

where 𝜆𝜆jt is the EV at time t associated with the jth eigenmode, and Δt is 
the time step (=45 ms, length of time bin).

We analyzed the imaginary components of the complex-valued EVs 
of At to obtain evidence for rotational dynamics (Fig. 4d,g). The natural 
oscillation frequency associated with the jth eigenmode is given by:

fjt =
∠λjt
2πΔt

(29)

where ∠λjt is the angular phase of the jth EV.
We computed the largest EV magnitude (|λmaxt | and Extended Data 

Fig. 4e) and SV (|σmaxt | and Extended Data Fig. 4f) at time t as:

||λmaxt || = max
j

||λ
j
t
||

||σmaxt || = max
j

||σ
j
t
||

(30)

We quantified the magnitude of non-normality of the dynamics 
(Fig. 4h) based on a previously proposed measure75, which compared 
the SV and EV magnitudes as follows:

dF (At) = √∑j(σ
j
t)2−∑j(||λ

j
t
||)2

√∑j(||λ
j
t
||)2

(31)

where 𝜎𝜎j
t and 𝜆𝜆j

t are the jth SV and EV, respectively.

Task activity subspaces
Computing average task activity subspaces. We used the 20D, 
aligned, single-trial response patterns (Z, output of step 1 in Extended 
Data Fig. 2) to compute four distinct task activity subspaces. These 
four subspaces (denoted Ujtask, j ∈{choice, time, jPC12, jPC34}) captured 
variance in the aligned, trial-averaged trajectories due to choice (condi-
tion dependent), time (condition independent) and rotations36 (Fig. 
3c,d) and were computed separately for the decision (aligned to dots 
onset) and movement (aligned to movement onset) epochs and for 
each task configuration.

To compute ‘choice’ and ‘time’ subspaces, trials in Zi (i indexes 
experiments) were assigned to one of two choice conditions (choice 1 
or choice 2), pooled across all experiments (within a task configuration) 
and then averaged, resulting in two trial-averaged response matrices 
⟨Z⟩choice=1 and ⟨Z⟩choice=2 of dimensionality 20×Tepoch (Tepoch = number of 

time bins in a single task epoch). We then computed a normalized ‘dif-
ference response matrix’ (D) and a ‘sum response matrix’ (S) as 
follows:

DDD = 0.5 ∗ (⟨Z⟩choice=1 − ⟨Z⟩choice=2)

SSS = 0.5 ∗ (⟨Z⟩choice=1 + ⟨Z⟩choice=2)
(32)

The first two principal components of the difference response 
matrix (D) together defined the ‘choice’ subspace and captured most 
of the variance in response patterns due to differences between choices. 
Similarly, the first two principal components of the sum response matrix 
(S) together constituted the ‘time’ subspace, capturing maximal variance 
due to choice-independent components of aligned activity patterns.

To compute the jPC subspaces, we temporally smoothed single 
trials in Zi (box filter, width = 180 ms) before computing the 
trial-averaged response matrices ⟨Z⟩choice=1 and ⟨Z⟩choice=2 as described 
previously. The jPC vectors for the decision and movement epochs 
were estimated using these trial-averaged responses restricted to nar-
row time windows in each epoch (500 1,000)ms aligned to dots onset, 
as evidence for rotational dynamics was strongest at these times in the 
decision epoch; Figs. 3c and 4d; (−250 250) ms aligned to movement 
onset, as rotational dynamics could underly movement related 
responses36; see also Fig. 3d). jPC vectors were computed in the space 
spanned by the top four principal components (computed jointly on 
⟨Z⟩choice=1 and ⟨Z⟩choice=2), without removing the condition-independent 
components of neural activity36, resulting in two orthogonal jPC planes 
( jPC12 and jPC34; Fig. 3c,d), each spanned by a pair of complex conjugate 
jPC vectors (v1 and v2). To determine the projection of the responses 
onto a single jPC subspace, we computed a pair of normalized 
real-valued vectors u1 and u2 as u1 = v1 + v2 and u2 = j ∗ (v1 − v2), which 
spanned the same subspace as v1 and v2. The imaginary components 
of the EVs associated with v1 and v2 specified the natural frequency of 
rotation associated with a jPC plane. The jPC planes were ordered in 
descending order of their associated rotation frequency.

Only the two jPC planes ( jPC12 and jPC34) were constrained to be 
mutually orthogonal (see Supplementary Analyses for alignment 
between other task activity subspace pairs). The task activity subspaces 
Ujtask capture variance in the aligned, trial-averaged trajectories but 
need not perfectly align with the 8D dynamics subspace Udoptdyn computed 
using the residuals. To assess the extent of the overlap between these 
two subspaces, we computed the fraction of total variance in a given 
task activity subspace that was attributable to activity unfolding within 
the dynamics subspace as follows:

Tr(Cov(Udoptdyn (Udoptdyn

′
Ujtask)U

j
task

′
Z))

Tr(Cov(UjtaskU
j
task

′
Z))

(33)

where Tr(.) is the matrix trace operator; Cov(.) corresponds to the covari-
ance matrix of the argument; and Z is the matrix of aligned, 
condition-averaged trajectories of size 20 × (Tepoch × 2). We computed 
a null distribution by replacing the numerator of Eq. 33 by 

Tr (Cov (Udoptdyn (U
dopt
dyn

′
Urand)Ujtask

′
Z)) , where Urand  (sampled randomly 

5,000 times) is a pair of a random, orthogonal directions embedded 
within the 20D aligned space. The resulting null distribution pro-
vides the range of possible values for the above fraction that could 
occur due to chance alignment of the 8D dynamics subspace with 
an arbitrary 2D subspace embedded within the 20D aligned space. 
The fraction of variance explained was in the range 0.66–0.94 
(median = 0.85, n = 32, 2 task epochs × 4 planes × 4 task configura-
tions) for monkey T, with 31/32 (32/32) data points lying beyond the 
99th (95th) percentile of the null distribution. The range was 0.41–0.95 
(median = 0.72, n = 32) for monkey V, with 25/32 (28/32) data points 
beyond the 99th (95th) percentile of the null distribution. These 
findings imply that the components of the dynamics revealed by 
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projections onto the task activity subspaces largely and consistently 
unfold within the dynamics subspace estimated using the residuals.

Comparison of residual eigenvectors to task activity subspaces. 
We computed the alignment between each task activity subspace (Ujtask) 
and the eigenvectors of the residual dynamics, separately within each 
task epoch. For each real-valued EV (pooled across eight dimensions, 
times within epoch and choices), we computed the subspace angle 
between a chosen task activity subspace and the associated real-valued 
eigenvector. For every estimated complex-conjugate EV pair, we com-
puted a pair of subspace angles between a 2D eigenplane spanned by 
a pair of real-valued projection vectors u1 and u2 (computed as 
described previously—that is, u1 = v1 + v2 and u2 = j ∗ (v1 − v2), where v1 
and v2 are the complex conjugate eigenvector pair) and the task activity 
subspace. To compute these subspace angles, we projected each eigen-
vector/eigenplane through the columns of Udoptdyn, back into the 20D 
aligned space, to ensure that they were of the same dimension as vec-
tors defining Ujtask. We quantified the relationship between the EVs and 
the alignment of the corresponding eigenvector/eigenplanes with the 
task activity subspace using a linear model (Fig. 5e). Specifically, we 
regressed each subspace angle indexed by a given task activity  
subspace (y axis; Fig. 5e) against the corresponding EV magnitude  
(|ev|, x axis in Fig. 5e, top) and rotation frequency (freq, x axis in Fig. 5e, 
bottom; Eq. 29) as shown below:

alignment (EV, j) = βj1 |ev| + β
j
2freq (34)

where j indexes the individual task activity subspaces (j∈ {choice, time, 
jPC12, jPC34}). The regression coefficients were estimated using least 
squares, and we also reported the 95% CIs (based on the t-statistic) for 
each regression coefficient (error bars in Fig. 5f).

Robustness of the analysis pipeline
Estimating bias in the estimates of residual dynamics. The choice 
of bin size for binning spike counts was critical for avoiding biases in 
estimates of At (Extended Data Fig. 9). To illustrate the effect of bin size 
on the quality of estimates, we simulated data from a continuous-time, 
time-invariant linear dynamical system with a linear Gaussian observa-
tion model:

ẋt = Axt + b + ϵt

yt = Cxt + d + ηt

x1∼ 𝒩𝒩 (0,Q0)

ϵt∼ 𝒩𝒩 (0,Q)

ηt∼ 𝒩𝒩 (0,R)

(35)

where 𝒩𝒩(., .) denotes a normal distribution. We simulated 5,000 
single-trial trajectories for a total of 1,500 time steps (1-ms time steps) 
from a system with three latent dimensions and 20 observed dimen-
sions. The elements of the three eigenvectors of A were sampled 
randomly from a standard normal distribution and were orthogonal-
ized (normal dynamics) and normalized to unit norm. The three EVs 
were set to (−2, −4, −6), indicating stable, strongly decaying dynamics. 
The input vector b was set to [2 2 2]T. The covariance of the latent noise 
(ϵt) was set to a scaled identity matrix (Q = σ2I). The values of σ2 (gray 
lines; Extended Data Fig. 9a) were swept across two orders of magni-
tude to assess how latent noise variance affects estimates of At. The 
observation matrix C was a random (elements sampled from a stand-
ard normal distribution), orthogonal matrix. The elements of the 
baseline input vector d were sampled from a uniform distribution 
between [0,8]. The observation noise matrix R was diagonal, with 
elements sampled from a uniform distribution between [0,0.05]. The 
initial noise covariance (Q0) was obtained by solving the 
continuous-time Lyapunov equation.

We estimated the dynamics matrix (At) using residuals binned in 
non-overlapping bins of sizes [2, 3, 5, 10, 15, 30, 40, 60]ms. Specifically, 
we chose a Hankel order q = 5 (Equation S14, Supplementary Math Note 
A) and did not optimize hyper-parameters l and α during estimation. 
Instead, we chose l and α sensibly, ensuring that they were consistent 
across different bin sizes and with the underlying model class. For 
instance, α was set to a large value (=106), ensuring time-invariant fits, 
and l was set such that it roughly translated into equal units of time for 
different bin sizes.

We assessed the effect of bin size on the estimated EVs of At. Impor-
tantly, EVs for different bin sizes cannot be compared directly, as dis-
cretizing a continuous-time dynamical system trivially results in EVs 
that depend on the duration of the discretization time step (here the 
bin size). The same dynamical system, when expressed at step sizes Δtj 
and Δtref, would, therefore, result in EVs λ̂Δtj and λ̂(j)Δtref related by the fol-
lowing scaling relation:

λ̂(j)Δtref= (λ̂Δtj )
Δtref
Δtj (36)

To discount these trivial differences, we transformed each esti-
mated EV λ̂Δtj obtained for bin size Δtj into an ‘re-binned’ EV λ̂(j)Δtref 
expected for a reference bin size Δtref = 40 ms and compared them to 
the ‘ground truth’ EV expected for a bin size of Δtref (Extended Data  
Fig. 9a). The absolute value of λ̂(j)Δtref asymptotically converged to the 
ground truth for increasing bin sizes, meaning that large bin sizes 
resulted in unbiased estimates, with convergence being independent 
of the specific choice of Δtref.

We observed a similar asymptotic convergence for the neural data 
(Extended Data Fig. 9b). This observation was used to determine the 
optimal bin size for which estimates of residual dynamics can be 
expected to be unbiased. We binned the recorded spiking data for 
monkey T in bin sizes of [15, 30, 45, 60, 90]ms and projected the result-
ing single-trial trajectories (for all bin sizes) into a common aligned 
subspace (step 1, Extended Data Fig. 2; U⊥

i,M, Eq. 14) determined for a bin 
size of 45 ms, before computing residual dynamics. Once again, we did 
not optimize the hyper-parameters (d, l and α; steps 3 and 4, Extended 
Data Fig. 2) of the pipeline, as the aim was to understand how bin size 
alone affects the estimated EVs. Instead, we fixed values of d and α to 
the optimal ones determined by cross-validation (for residuals binned 
in 45-ms bins) described previously (Extended Data Fig. 8 and Fig. 4; 
d = 8, α = 200/50 for decision/movement epochs). Values of l were 
instead chosen separately for each bin size such that it roughly trans-
lated into equal units of time (l = 3/2 for bin sizes of 45/60 ms, implying 
a 135/120-ms-long window in the past; Eqs. 22–24).

We computed the ‘re-binned’ EV magnitudes of At (Eq. 36) for the 
different bin sizes, expected under a reference bin size (Δtref) of 15 ms. 
The ‘re-binned’ EV corresponding to each of the eight eigenmodes was 
averaged across time within two distinct time windows that exhibited 
the most pronounced temporal dependencies (Fig. 4; t ∈ [200400] ms 
aligned to dots onset, and t ∈ [−150 250] ms aligned to movement onset). 
We observed asymptotic convergence for all eight eigenmodes in all 
task conditions (choice 1 or choice 2), task epochs (decision or move-
ment) and all task configurations in monkey T for bin sizes greater than 
30 ms (Extended Data Fig. 9b). Based on these findings, a bin size of 
45 ms was well motivated for our analyses.

Qualitative estimates of goodness of fit. The average, cross-validated, 
mean-squared error (computed using held-out test trials) of the predic-
tions resulting from the first stage of 2SLS (Efs, Eq. 26; Extended Data 
Fig. 8b, shown only for a single configuration in monkey T) for optimal 
values of hyper-parameters (dopt = 8, lopt = 3) translated into a coefficient 
of determination (R2) of 0.0367/0.0390 (mean across all task con-
figurations and choices, s.d. = 0.0064/0.0029) in monkey T/V, respec-
tively. Similar R2 values (mean(s.d.) = 0.0577(0.014)/0.065(0.013)  

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01230-2

for monkey T/V) were obtained for predictions resulting from the 
second stage of 2SLS (Extended Data Fig. 8b, shown only for a single 
configuration in monkey T) for optimal values of αopt (=200/50 for the 
decision/movement epochs).

The small R2 values made it difficult to gauge ‘goodness of fit’, as 
their relatively small magnitudes could be due to unstructured obser-
vation noise (which cannot be predicted by any model) dominating 
the variability in the residuals. To determine if this is indeed true, we 
simulated residuals from a time-varying linear dynamical system  
(Eq. 11) with dynamics matrix (At) and the observation matrix (C) 
matched to optimal estimates of residual dynamics and dynamics 
subspace (Udoptdyn) obtained using neural data.

Simulating observed residuals (z̃t, Eq. 11) also required, as a first 
step, estimating the latent noise covariance (Cov(ϵt) = Q), variance in 
the initial latent state (Cov(x̃0) = Q0) and the observation noise covari-
ance (Cov (ηt) = R). Closed-form estimates for these parameters were 
obtained using maximum likelihood:

R̂ = 1
(T − l) .K

diag(
T

∑
t=l+1

K

∑
k=1

[z̃t (k) − Udoptdyn
ˆ̃xt (k)] [z̃t (k) − Uddynˆ̃xt (k)]′) (37)

Q̂0 =
1
K

K

∑
k=1

ˆ̃xl+1(k)ˆ̃xl+1(k)′ (38)

Q̂ = 1
d.(T−l−1).K

Tr (
T−1
∑
t=l+1

K
∑
k=1
[ˆ̃xt+1 (k) − Atˆ̃xt (k)] [ˆ̃xt+1 (k) − Atˆ̃xt (k)]′) (39)

where ˆ̃xt (k) is the denoised prediction of the residual latent state at 
time t on trial k (Eq. 24) resulting from the first stage of 2SLS.

These estimates were used to simulate residuals (Eq. 11) for a 
matched number of trials for each choice and task configuration, 
which were then used to compute idealized coefficients of determina-
tion (R2

sim-fs and R2
sim-ss), under the assumption that our analysis pipeline 

works perfectly—that is, is able to perfectly retrieve the dynamics (sec-
ond stage of 2SLS) and the denoised residual latent states (first stage 
of 2SLS) at each time. We reasoned that this would provide a realistic 
benchmark, if not a strict upper limit, for the fit quality that one can 
hope to obtain in the context of large observation noise.

To compute R2
sim-fs and R2

sim-ss, we projected the simulated residual 
observations ( z̃simt (k)) into the estimated dynamics subspace (U

dopt
dyn,  

Eq. 21) and computed the amount of variance explained in the resulting 
projection by (1) the simulated latent state (denoted by x̃simt (k)) and (2) 
a ‘noise-free’, one-step propagation of the simulated latent state 
through the corresponding estimate of the dynamics matrix. The 
former (R2

sim-fs) provides a benchmark for comparing the coefficient 
of determination obtained for the first stage of the 2SLS, whereas the 
latter (R2

sim-ss) provides the same for the second stage of the 2SLS. 
Mathematically, these quantities were defined as follows:

R2
sim−fs = 1.0 −

∑t∑k(U
dopt
dyn

′
z̃simt (k)−x̃simt (k))

2

∑t∑k(U
dopt
dyn

′
z̃simt (k))

2 (40)

R2
sim−ss = 1.0 −

∑t∑k(U
dopt
dyn

′
z̃simt (k)−At−1 x̃simt−1(k))

2

∑t∑k(U
dopt
dyn

′
z̃simt (k))

2 (41)

where x̃simt (k) = At−1x̃simt−1 (k) + ϵ̂t−1, and ϵ̂t−1 is a sample from a multivariate 
Gaussian with covariance Q̂.

The range of values of R2
sim-fs (monkey T: 0.0738 ± 0.011, monkey 

V: 0.0958 ± 0.33; mean ± s.d. across task configurations and choices) 
and R2

sim-ss (monkey T: 0.0512 ± 0.0171, monkey V: 0.0674 ± 0.0157; 

mean ± s.d.) qualitatively matched the range of values of the corre-
sponding cross-validated coefficient of determination (R2) for the first 
and second stage of 2SLS obtained for the data (reported above). This 
finding implies that the low coefficient of determination measured in 
the real data is likely due to residuals being dominated by uncorrelated 
observation noise.

Simulated models
We validated our analysis pipeline on a number of simulated models, 
which were broadly categorized into four groups: (1) models of decision 
and movement, (2) linear state-space models with uncorrelated latent 
noise, (3) linear state-space models with correlated latent noise and 
(4) modular two-area recurrent network model. The first two model 
categories exemplified the simple input regime (Fig. 1b), whereas the 
latter two represented the complex input regime (Fig. 1b). We provide 
only a brief description of these four model categories here (see Sup-
plementary Methods for details).

Models of decisions and movement. We simulated single-trial 
responses from six distinct models; three of these corresponded to 
‘models of decisions’ (saddle point35, line attractor12 and point attrac-
tor), and the other three corresponded to ‘models of movement’ (rota-
tional dynamics36, dynamic attractor37 and point attractor). Within each 
subcategory (decision or movement), the three models had distinct 
recurrent dynamics and time-varying input drives, informed by previ-
ous models of sensory evidence integration and movement generation, 
but defined so as to exhibit the same condition-averaged trajectories 
(Fig. 1c,d and Supplementary Methods). All six models were described 
by a 2D latent state (x) governed by Eq. 1 (see Supplementary Methods 
for specifications of parameters in Eq. 42). Observed states (y) resulted 
from a linear Gaussian observation process (similar to Eq. 11 but with 
C = I) as defined below:

ẋ = F (x) + ut + ϵt

yt = xt + ηt
(42)

For each model, we simulated a total of 4,000 trials, each of dura-
tion 1 second (steps of 1 ms). Each trial belonged to one of two condi-
tions (choice 1 or choice 2) determined by either the initial condition of 
the recurrent dynamics or the inputs. We estimated the time-varying 
residual dynamics (At, Eq. 11) using only the 2SLS regression (steps 3 
and 4 of the analysis pipeline; Extended Data Fig. 2) directly on the 
2D residuals (without steps 1 and 2 of the analysis pipeline; Extended 
Data Fig. 2). We did not optimize any of the hyper-parameters of the 
pipeline. We used dimensionality (d) = 2, lag (l) = 5 and a regularization 
parameter (α) = 100 for all model fits.

To illustrate the various hypothesized relationships between the 
residual dynamics and the condition-averaged trajectories (Fig. 5), we 
also simulated an ‘augmented’ line attractor model (Fig. 5a,b) and an 
‘augmented’ rotational dynamics model (Fig. 5c,d), both characterized 
by two additional latent dimensions (four latent dimensions in total). 
The two additional latent dimensions were orthogonal to the first two 
latent dimensions and were associated with quick, decaying dynamics 
and sinusoidal inputs (Supplementary Methods).

Linear state-space models with uncorrelated latent noise. We also 
validated the analysis pipeline on simulated single-trial responses from 
six distinct latent variable state-space models (Extended Data Fig. 3), 
which were characterized by (1) three distinct linear but time-varying 
latent dynamics (Eq. 11; see also Supplementary Methods) and (2) two 
distinct observation models: linear Gaussian (Eq. 11) or Poisson (Sup-
plementary Methods). Additionally, we simulated three more models 
characterized by linear Gaussian observations (Eq. 11) but subject to 
both time-varying dynamics and time-varying latent noise (Supplemen-
tary Methods). These simulations demonstrated the robustness of our 
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pipeline to different latent dynamics and observation model types. For 
all nine models, residuals were binned in 45-ms bins (Poisson observa-
tions were square root transformed) and were subjected to steps 2–4 of 
the analysis pipeline (Extended Data Fig. 2, without session alignment), 
using cross-validation to tune the hyper-parameters.

Linear state-space models with correlated latent noise. To study 
the inflationary effects of correlated, latent input noise (ξ(t) in Fig. 1b, 
complex input) on estimates of residual dynamics, we considered 
state-space models with linear time-invariant dynamics, characterized 
by latent noise with decaying temporal autocorrelations (correlated 
noise). We used these models to understand how neural activity that 
is a consequence of recurrent processing in unobserved/unrecorded 
areas influences residual dynamics measured within recorded/
observed areas. To model correlated latent noise, we assumed a 
time-invariant, linear state-space model governed by the following set 
of equations:

ε (t + 1) = ϕε (t) + ζζζ (t)

x (t + 1) = Ax (t) + ε (t)
(43)

where ζ(t) is a zero-mean white Gaussian noise process with covariance 
matrix Q. We interpreted the model specified in Eq. 43 as follows. x(t) 
was assumed to represent the latent population state of the recorded/
observed area, yielding observations z(t). ε(t) was considered to rep-
resent the latent population state of unobserved or unrecorded areas, 
contributing an autocorrelated, latent input noise process (similar to 
ξt; Fig. 1b, complex input) that directly influenced x(t). Therefore, ϕ, 
which determined the dynamics of ε(t), reflected the dynamics of the 
unobserved/unrecorded areas. For a given A, ϕ and Q, we were able to 
analytically derive the 2SLS estimate of the residual dynamics (Sup-
plementary Math Note B), assuming that (1) the model operated in 
steady-state and (2) we only had access to x(t). We systematically varied 
A, ϕ to quantify the effect of correlated, latent input noise on analyti-
cally derived estimates of residual dynamics, under steady-state condi-
tions (Extended Data Figs. 4 and 5, Supplementary Methods and 
Supplementary Math Note B). These analyses did not require specifying 
an observation model (unlike the previous models).

Modular two-area recurrent neural networks. We simulated 
single-trial responses using a modular, two-area RNN model of percep-
tual decision-making, which emulated the interactions between PPC 
and PFC38. Each area was characterized by two choice-selective (choice 
1 or choice 2) neural populations, which were recurrently intercon-
nected through E–I intra-areal (within-area) connections. These neural 
populations were also interconnected across areas though inter-areal 
(between-area), E–I, feedforward and feedback connections.

We denote the state of area a (local state) at time t as xat, a 2D vector 
(one dimension per choice-selective population in area a). The ‘global’ 
network state xt (four dimensional) was defined by concatenating the 
local state across both areas (Eq. 44). Observations specific to area a, 
denoted by yat  (ten dimensional), were obtained through a linear Gauss-
ian observation model (ηt is multivariate, isotropic Gaussian, with 
variance equal to 0.0006) applied to the ‘global’ state. The observation 
matrix (Cmodel) was block-diagonal (each block representing the obser-
vation matrix specific to an area):

yt = (
yppct

ypfct
) = Cmodelxt + ηt = [

Cppc 0

0 Cpfc
] (

xppct

xpfct
) + ηt (44)

Considering that each area is characterized by two choice-selective 
populations, the task-relevant dimensions corresponding to ‘choice’ 
and ‘time’ modes specific to each area (Fig. 6a,d) were naturally defined 
in the 4D ‘global’ state-space as:

uuuppcchoice = [1 − 1 0 0]T

uuuppctime = [1 1 0 0]T

uuupfcchoice = [0 0 1 − 1]T

uuupfcchoice = [0 0 1 − 1]T

(45)

We simulated two different types of networks, one in which feed-
back from PFC to PPC was absent and another in which feedback was 
present (see details in Supplementary Methods). For each network 
type, we simulated 30 different network configurations with distinct 
intra-areal and inter-areal connectivity strengths, parameterized using 
scalar-valued parameters Jself (five distinct values; colored markers,  
Fig. 6c,f) and Jacross (six distinct values; x axis in Fig. 6c,f), respectively. For 
the network configuration shown in Fig. 6a ( Jself = 0.36, Jacross = 0.08 and 
no feedback), we simulated an identical network (with frozen noise) for a 
‘shuffled’ condition, in which only the feedforward current inputs at each 
time from PPC to PFC were randomly shuffled across trials, to remove 
any slow temporal autocorrelations (Fig. 6b). Only PPC was driven using 
external input on each trial (indexed by k), defined as follows:

Ik (t) = {
0, 0 < t ≤ Ton

Ie (1 ±
c(k)
100%

) , t > Ton
(46)

where Ie = 0.0130 nA; Ton (=400 ms) is the time of stimulus onset; and c(k) 
corresponds to the coherency on the kth trial. We simulated only trials 
with zero coherency (c(k) = 0) and assigned each trial as either ‘choice 1’ 
or ‘choice 2’, depending on the population ‘choice’ readout from PFC 
(projection onto uuupfcchoice) at the last time step of the trial. Specific details 
about network architecture and dynamics can be found in ref. 38.

Residual dynamics was estimated either ‘locally’ (Fig. 6b), using 
observations of PPC alone (yppct ) or PFC alone (ypfct )), or ‘globally’  
(Fig. 7a), using observations from both areas (yt). Observations were 
temporally binned in 45-ms-long bins, and residual dynamics was 
computed separately for each choice condition by employing the full 
analysis pipeline (Supplementary Methods) but excluding the session 
alignment (step 1 in Extended Data Fig. 2). Additionally, we computed 
the ‘local choice’ residual dynamics by fitting the one-dimensional 
projection of residuals in PPC and PFC onto their respective choice 
dimensions, uuuppcchoice and uuupfcchoice. We examined the relationship between 
the largest EV magnitude (across time in the trial) of the ‘local choice’ 
residual dynamics (y axis in Fig. 6c,f ; error bars are 95% bootstrap CIs) 
and the network connectivity parameters Jself (colors in Fig. 6c,f) and 
Jacross (x axis in Fig. 6c,f).

We performed a set of targeted causal perturbation experiments 
(Fig. 8 and Extended Data Fig. 10) for the two example network con-
figurations (Figs. 6 and 7). We first obtained a set of ‘ground truths’ that 
summarized how activity patterns associated with each area change 
in response to a simulated perturbation. We then compared the simu-
lated perturbations to predictions based on either the ‘local’ or ‘global’ 
estimates of residual dynamics (Supplementary Methods).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All neural data used in the manuscript are available at https://doi.
org/10.5281/zenodo.7378387.

Code availability
The data analysis pipeline and code to generate simulations pre-
sented in the paper are available at https://github.com/anirgalgali/
residual-dynamics.
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Extended Data Fig. 1 | Residual and effective dynamics in models of decisions 
and movement. a, Variability in responses across trials from the same task 
condition are interpreted as perturbations away from the condition-averaged 
trajectory. The evolution of these perturbations reflects the properties of the 
underlying recurrent dynamics (flow field, same conventions as in Fig. 1c). 
Inset on right shows a magnified view of the condition-averaged trajectory 
(red, choice 2) and corresponding single trials (dark gray) simulated from the 
saddle point model. Residual vectors at each time (shown in purple for a single 
trial and time) are computed by subtracting the condition-averaged response 
at that time from the corresponding single-trial response (purple equation). 
Time-varying dynamics matrices (At) of a linear time-varying, autonomous 
state-space model (black equations, top-right) are fit to the residuals. These 
matrices approximate the dynamics in distinct ’local’ regions of state space (for 
example dashed boxes) and are indexed according to time and condition. b-c, 
Components of the dynamics for the models of decisions (b) and movement (c) 
for an example reference time (blue dot) along the condition-averaged trajectory 
for choice 1. Same conventions as in Fig. 2a. Dynamics are shown for a local 
state-space region close to the corresponding initial condition (boxes in Fig. 1c, 
d; left). For all models, the estimated effective and residual dynamics (columns 

5 and 6) closely match the true effective and residual dynamics (columns 3 and 
4). In these models, the residual dynamics (column 4) reflects only the recurrent 
dynamics (column 1), but is not identical to it. For one, the fixed point of the 
residual dynamics by definition is located at the location of the reference state 
(the blue dot), which in general does not match the position of fixed points 
of the recurrent dynamics (for example the red circle in the first row and first 
column, corresponding to the position of the unstable fixed point in the saddle 
point model). The position of fixed points of the recurrent dynamics can only 
be inferred if the inputs are known, a requirement that is not fulfilled in many 
experimental settings. For another, consistent drifts resulting from the recurrent 
dynamics (for example the drift along the channel in the dynamic attractor 
model) are not reflected in the residual dynamics. Such drifts are ‘subtracted’ 
from the variability in the computation of residuals. Differences in the underlying 
recurrent dynamics are more apparent in the residual compared to the effective 
dynamics in cases where the input drive is strong. For example, the average 
cosine similarity between flow fields is 0.27/0.99 (saddle vs. line-attractor), 
0.02/0.94 (saddle vs point-attractor) and 0.58/0.95 (line-attractor vs point-
attractor) for the residual/effective dynamics.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Schematic of analysis pipeline. Schematic depicting 
the complete data analysis pipeline for inferring residual dynamics from 
noisy neural population recordings (see Methods). The pipeline involves four 
sequential steps. Step 1: session alignment; involves pooling single trials from 
different recording sessions to increase the statistical power of the analyses. 
Step 2: dynamics subspace estimation; involves using ‘aligned’ single-trial neural 

residuals to obtain estimates of a dynamics subspace (Udyn) that effectively 
contains the residual dynamics. Step 3: residual latent state estimation; involves 
using the first stage of a two stage least squares (2SLS) approach to estimate a 
‘denoised’ latent residual state. Step 4: time-varying dynamics estimation; uses 
the denoised residual latent states (obtained in step 3) for the second stage of the 
2SLS, to estimate the time-varying residual dynamics matrices (At).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Residual dynamics of simulated, time-varying, linear 
dynamical systems. a-c, Validation of the estimation procedure on simulations 
of time-varying, linear dynamical systems with temporally uncorrelated latent 
noise (see Methods; Supplementary Methods). Simulations are based on a 
latent variable dynamical system with 3 latent dimensions and 20 observed 
dimensions. Residual responses are generated using a gaussian (circle markers: 
fixed latent noise variance; square markers: latent noise variance switches 
mid-way through the trial) or poisson (triangle markers) observation process. 
In all simulations, the properties of the dynamics switch midway through the 
simulated time window, from slowly decaying to quickly decaying (a); from 
normal to non-normal (b); or from non-rotational to rotational (c). As in Fig. 
4b–d, we characterize dynamics with the magnitude of the eigenvalues (left), 
the rotational frequency (middle), and the singular values (right). Markers 
correspond to the estimated residual dynamics, black curves to the ground-truth 
values. The estimated residual dynamics accurately matches the ground-truth 
for all types of dynamics and observation models, before and after the switch, 
and also reveals the time of the switch. We observed this match even when the 
latent noise variance of gaussian observations was switched at the same time as 
the eigenvalues/eigenvectors of the dynamics (square markers), demonstrating 

that estimates of residual dynamics are robust to changes in latent noise variance 
(see also Extended Data Fig. 5a-b vs e-f). d, Analogous to c, but for residual 
dynamics (circles) estimated using ordinary least squares (OLS) instead of two-
stage least squares (2SLS) as in c. Results are only shown for data simulated using 
a gaussian observation process. Unlike the 2SLS estimates, the OLS estimates 
are strongly biased, that is the magnitude of the eigenvalues and the singular 
values are consistently underestimated. These biases are expected—they 
arise because both the regressors and the dependent variables are corrupted 
by observation noise (see Methods). The 2SLS instead produces unbiased 
estimates, as the first stage of 2SLS results in a denoising of the regressors 
(Methods; see also Extended Data Fig. 9). e, Parameters of the latent noise and 
observation noise for the simulations in a-d were chosen to approximately 
match the variability in the measured PFC responses. The variability in the 
measured responses were quantified in terms of four statistics (l0, l1, l1/l0 and 
pvar, x-axis; see Supplementary Methods). Histograms indicate the respective 
values of these statistics in the neural data (one data point per task configuration, 
choice condition and monkey; see legend in Extended Data Fig. 6a). The open 
markers (top, same conventions as a-c) indicate the values of the statistics in the 
simulations for each of the three models.
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Extended Data Fig. 4 | Inflation of local residual dynamics in a linear two-area 
dynamical system. We systematically explored the effect of correlated input 
variability on estimates of residual dynamics in a two-area, linear dynamical 
system (see Methods & Supplementary Methods). The input area implements 
2D isotropic recurrent dynamics characterized by parameters λ1, τ1, and ω1 
(eigenvalue, time-constant, rotation frequency). Activity in the input area is 
externally driven by uncorrelated noise. Values of λ1 closer to 1 result in longer 
auto-correlation times in the variability of activity in the input area. This activity 
provides the input into the recorded area, which implements 2d isotropic 
recurrent dynamics with parameters λ2, τ2, ω2. Residual dynamics at steady-state 
is estimated from activity of the recorded area. At steady state, estimates can be 
derived analytically (see Supplementary Math Note B). Because of temporally 
correlated input variability, the properties of the residual dynamics (λres, τres, 
ωres) in general do not match those of the recurrent dynamics in the recorded 
area. a-b, Inflation of eigenvalues. a, Schematic of the model (top) and recurrent 
dynamics in each area (bottom, flow fields). Recurrent dynamics is stable and 
non-rotational in both areas. b, Residual dynamics (λres) in the recorded area as a 

function of recurrent dynamics in the recorded area (λ2, x-axis) and in the input 
area (λ1, gray lines). The eigenvalues of the residual dynamics are inflated, that 
is λres is larger than λ2 (all gray lines above the green line). Larger λ1 (longer input 
auto-correlations) lead to stronger inflation. For λ2 = 0 (no recurrent dynamics 
in the recorded area) λres = λ1 (gray circles). c-d, Inflation of rotation frequency. c, 
Recurrent dynamics is rotational in the input area, but stable and non-rotational 
in the recorded area. d, Residual dynamics in the recorded area, expressed as the 
magnitude of the eigenvalue (λres, top) and the rotation frequency (ωres, bottom). 
The eigenvalues of the residual dynamics are generally inflated (top), but the 
relation with λ2 is non-monotonic and depends on ω1. The residual dynamics is 
rotational (bottom, ωres >0) even though the recurrent dynamics in the recorded 
area is not (ω1= 0). The inflation of rotation frequency is reduced for increasing 
λ2. e-f, Equivalence of upstream and local recurrent dynamics. e, Analogous to c, 
but dynamics is switched between input and recorded area. f, Analogous to d, but 
for the dynamics in e. The residual dynamics is identical to that in d. In general, 
residual dynamics in the recorded area reflects the combined effect of local and 
upstream recurrent dynamics.
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Extended Data Fig. 5 | Explanation of input driven inflation in residual 
dynamics. To gain an intuitive understanding of inflation of eigenvalue 
magnitude, we consider simulations of two-area linear dynamical systems 
similar to those in Extended Data Fig. 4a. For simplicity, here we simulate stable 
1d-dynamics in each area, whereby variability of the input into the recorded area 
is either temporally correlated (c-d) or uncorrelated (a-b, e-f), and has fixed 
(a-b, c-d) or time-dependent latent noise variance (e-f). The variability injected 
into the input area is always temporally uncorrelated. Recurrent dynamics in 
the recorded area is identical in all simulations. a, Model parameters for the 
case of temporally uncorrelated input (λ1 = 0). b, Contributions to activity x in 
the recorded area at steady-state. Activity x(t) (x-axis) is propagated through 
the recurrent dynamics (left, y-axis) and added to the noise e(t) (middle, y-axis) 
to obtain activity x(t+1) at time t+1 (right, y-axis). The noise e(t) corresponds to 
activity/output of the input area, and is shaped by dynamics determined by λ1. 
Points in the scatter plots correspond to different simulated trials. Estimating the 
eigenvalue of the residual dynamics in the absence of observation noise amounts 
to measuring the slope of the regression line relating x(t) to x(t+1) (right, gray 
line). In this case, this slope is identical to that obtained if the latent noise had 
not been added to the activity (left, gray line), meaning that residual dynamics 

correctly reflects the effect of the recurrent dynamics in the recorded area (slope 
< 0, reflecting λ2 < 0; left). c, Model parameters for the case of correlated input  
(λ1 > 0 for t > 0; λ1 = 0 at other times). d, Analogous to b, but for the model in c. 
Here activity and noise are shown at two times in the trial: early, when steady-
state is not yet reached (top) and late, at steady-state (bottom). At both times, 
residual dynamics is inflated, that is the regression slope between x(t) and x(t+1) 
(right) is larger than that obtained by applying only the recurrent dynamics (left), 
indicating inflation of the eigenvalues. Inflation occurs because the noise itself 
is correlated with activity in the recorded area (middle, slope > 0), an effect that 
results indirectly from the correlation between e(t) and e(t-1). At steady state, 
even the inflated residual dynamics is still stable (bottom-right, slope < 1; see 
also Extended Data 4b). However, immediately after the onset of the temporally 
correlated input, residual dynamics erroneously reveals an instability (top-right, 
slope > 1). e, Parameters for the case of temporally uncorrelated noise but time-
varying noise variance. The variance of the noise injected into the input area is 
increased at time t = 0, from σlatent = 10−6 to 10−5. f, A change in noise variance does 
not result in inflation of the residual dynamics, neither early nor late after the 
change (right, top and bottom; same slope as on the left; see also Extended Data 
Fig. 3a-c, squares).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Alignment of neural population responses from 
different experiments. Validation of the session alignment procedure of 
the analysis pipeline (Extended Data Fig. 2, Step 1; see Methods). We aligned 
neural population responses of all experiments belonging to the same task 
configuration and then pooled the aligned single trial responses across 
experiments before computing the residuals used in estimating the dynamics. 
The outcome of the session alignment procedure is a set of 20 ‘aligned’ 
modes for each experiment, defined such that the activity of each mode has 
the same dependency on time and choice across experiments. a, Definition 
of task configurations. We assigned each experiment to one of four target 
configurations (distinguished by markers, indicated on top of each panel along 
with number of experiments) based on the angular position of the targets (blue: 
choice 1; red: choice 2). The position of the targets was similar, but not identical, 
across experiments within the same task configuration. (left: Monkey T, right: 
Monkey V). b, Psychometric curves for all experiments in both monkeys (left: 
Monkey T, right: Monkey V), showing the fraction of saccades to choice 1 as a 
function of the signed motion coherency. Each gray data point is computed from 
trials belonging to a single experiment. The employed values of signed coherency 
varied slightly across experiments, in an attempt to achieve a comparable 
overall performance in each experiment. Black curves show logistic functions 
fitted separately to data points from a given task configuration (different 
markers; see legends in c) and evaluated at logarithmically spaced levels of 
coherency (positions of the white markers along the x-axis). c, Cumulative 
variance explained in condition-averaged population responses (mean +/− 
2 s.e.m. across experiments; symbols as in a, n = number of experiments in 
each task configuration: see a) as a function of the number of aligned modes 
in both monkeys (left: Monkey T, right: Monkey V). The cumulative variance 
explained by the first 20 aligned modes for all 164 experiments in Monkey T 
and 80 experiments in Monkey V showed a strong positive trend with number 
of trials (inset, bottom) and a weak negative trend with the number of units 
(inset, top). d, Activity of the first 20 aligned modes (numbered from top-left 

to bottom-right) for config-3 in monkey T (15,524 trials across 41 experiments) 
ordered according to the amount of variance explained. Activity is defined 
as the projection of the population condition averages onto each mode. The 
projection was computed separately across experiments for choice 1 and choice 
2 (blue and red) with responses aligned either to stimulus onset or saccade onset 
(black arrows). The resulting projections were then averaged across experiments 
(line: mean; shading: 2 s.e.m. across 41 experiments). e, Same data as in d, but 
showing the time-course of each aligned mode (numbered from 1 to 20) for 
each individual experiment (y-axis) separately for the two choice conditions 
(choice 1 and choice 2, top and bottom sub-panels). Differences in the activation 
of a given mode across experiments (that is across rows in each sub-panel) are 
much smaller than the differences in the activations across modes (that is across 
sub-panels), demonstrating the success of the alignment procedure. f, Absolute 
value of the projection (y-axis) of the 8 basis vectors (dim-1 through dim-8; 
red to blue) that span the dynamics subspace (Udyn, estimated in Step 2 of the 
analysis pipeline; Extended Data Fig. 2) onto the 20 aligned modes, indicating 
the relative alignment of the aligned and dynamics subspace. The dynamics 
subspace is computed separately for each task configuration (symbols as a) in 
each monkey (left: Monkey T, right: Monkey V), and projects most strongly onto 
the first few aligned components (i.e large projection values for smaller aligned 
mode number). The dynamics subspace thus largely overlaps with the subspace 
of activity that captures most of the task-related variance in the responses (see 
also Extended Data Fig. 7c). g, Evaluation of the alignment procedure for all task 
configurations (columns) in both animals (rows). Each element of the matrix 
is obtained from the correlation coefficient between the time-courses of two 
aligned modes (that is positions along horizontal and vertical axes). We show the 
median correlation coefficient across all pairs of dissimilar experiments. Values 
close to 1 along the diagonal and close to 0 in the off-diagonal indicate that the 
time-courses are much more similar across experiments than across modes, 
indicating successful alignment.
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Extended Data Fig. 7 | Single session and single unit results. a, Residual 
dynamics estimated using neural data for a single choice condition (choice-1, 
875 trials) from a single experiment in monkey T. This experiment has the largest 
number of trials among all experiments in monkey T. Conventions as in Fig. 4b-d. 
We estimated the residual dynamics directly from high-dimensional residual 
observations that corresponded to square-root transformed, binned spike-
count vectors (dimensionality = number of units; 170 for this session), without 
performing the session alignment (step 1 in Extended Data Fig. 2). Overall, the 
properties of the residual dynamics estimated from this single session are similar 
to those obtained after pooling trials across sessions (Figs. 4b-d, 8 dimensional), 
suggesting that the main features of the residual dynamics (Fig. 4) are not 
affected by the alignment procedure. The lower dimensionality of the estimated 
residual dynamics (4 dimensions, blue to cyan; compared to 8 dimensions in 
Fig. 4a-d) most likely is a consequence of the smaller number of available trials 
in the single session compared to the aligned sessions. The resulting smaller 
statistical power makes is harder to estimate, in particular, the faster decaying 
eigenmodes of the dynamics. b, Trial-by-trial variability in single neurons is 
transiently reduced at the onset of specific task-events. We quantified single 
neuron variability as the time-varying, mean-matched Fano-factor computed 
by pooling units/neurons across all experiments in a monkey (empty circles: 

mean; dashed curve: 95% normal confidence intervals obtained by resampling 
datapoints; left: Monkey T, n = 218,856 datapoints; right: Monkey V, n = 118,629 
datapoints; each datapoint corresponds to a single neuron-condition pairing 
within an experiment). In both monkeys, the mean-matched Fano factor 
undergoes a transient reduction locked to the onset of the stimulus and the onset 
of the saccade. The reduction in variability around the time of saccade onset 
coincides with a contraction of the eigenvalues of the residual dynamics (Fig. 
4b,e), suggesting that more quickly decaying dynamics may underlie variability 
quenching at that time. A contraction of eigenvalues, however, does not appear 
necessary to explain variability quenching, as an analogous contraction is not 
observed at the time of stimulus onset, despite the consistent reduction in 
variability at stimulus onset. c, Overall fraction of variance explained by the 
dynamics subspace. We quantified what fraction of the variance of the condition-
averaged trajectories in the high-dimensional neural space (state space defined 
by the individual units) is contained in the dynamics subspace (Udyn, estimated 
in Step 2 of the analysis pipeline; Extended Data Fig. 2). Data from all 164 
experiments in monkey T. On average in monkey T, the 8-dimensional dynamics 
subspace explains 68% of the variance in the average neural trajectories in 
monkey T (dashed vertical line, n = 164 experiments).
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Extended Data Fig. 8 | Cross-validation of hyper-parameters used for 
estimating residual dynamics. a-c, Representative results of the cross-
validation procedure used to determine the various hyper-parameters of the 
analysis pipeline (Extended Data Fig. 2; see Methods) for neural data from a  
single task configuration in monkey T (config-3, see Extended Data Fig. 6a).  
a, Cross-validated hankel matrix reconstruction error (Ehankel; circle: mean over  
n = 20 repeats of hold-out cross validation; error bars: 1 s.e.m) plotted as a 
function of the rank of the hankel matrix (r, step 2 in Extended Data Fig. 2; see 
Methods) for residuals from the two epochs (left: decision; right: movement) 
and two choices (blue: choice 1; red: choice 2). The reconstruction error for each 
of the 20 repeats was computed by assigning a random 50% of the trials as a 
“training” set and the rest as a “test” set. b, 5-fold cross-validated mean squared 
error (Efs; circles: mean over n=5 folds; error bars: 1 s.e.m) of the denoised 
residual predictions obtained from the first stage of the two-stage least squares 
regression (2SLS; step 3 in Extended Data Fig. 2), plotted as a function of the 
hyper-parameters: d (dimensionality of dynamics subspace); and l (number of 
past lags). For each cross-validation fold, a single mean squared error measure 

was computed by pooling the denoised predictions across time points in both 
epochs (left: choice 1; right: choice 2). c, Cross-validated mean squared error 
(circle: mean across n = 5 ’repeats’ of the average mean squared error across 
5-folds; error bars: 2 std across repeats) of the residual predictions obtained 
from the second stage of the 2SLS regression (step 4 in Extended Data Fig. 2), 
plotted as a function of the smoothness hyper-parameter α for different epochs 
(left: decision; right: movement) and choice (choice 1 and 2). Both the train 
(orange) and test (gray) error are shown. d, Summary showing the optimal 
value for the dimensionality d and lag l (step 3 in Extended Data Fig. 2) for all 
task configurations and monkeys (symbols as in Extended Data Fig. 6a). A 
dimensionality of 8 and a lag of 3 was deemed optimal for both monkeys and task 
configurations (used in Fig. 4). e, Summary showing the optimal smoothness 
hyper-parameter α(step 4 in Extended Data Fig. 2) for all task configurations and 
monkeys. Final values of α were chosen to be the same across monkeys in Fig. 4  
(decision epoch:α = 200; movement epoch:α = 50) despite a small degree of 
variability across the two monkeys. Same conventions as in d.
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Extended Data Fig. 9 | Assessing statistical bias of eigenvalue estimates. We 
estimated the residual dynamics for different choices of bin size, to identify the 
smallest bin size resulting in unbiased estimates. In the discrete time formulation 
of a linear dynamical system, like the one we use here, re-binning of the responses 
trivially results in a scaling of the estimated eigenvalues of the residual dynamics. 
To compensate for this rescaling, here we ‘mapped’ the estimated eigenvalues 
onto a common, reference bin size (see Methods). In the absence of statistical 
biases, the resulting ‘re-binned eigenvalue’ would be independent of bin size.  
a, Re-binned eigenvalues for simulations of a time-invariant, latent-variable  
(3 latent dimensions), LDS model (reference bin size = 40 ms) as a function of bin-
size (dashed line: ground truth). Different gray lines correspond to models with 
different levels of latent noise (legend). When latent noise is large, estimates of 
the residual dynamics are biased for small bin sizes, but become unbiased when 
bin size is sufficiently large (light gray). When latent noise is too small, estimates 

are biased for any choice of bin size (black). b, Estimated, re-binned eigenvalues 
(reference bin size = 15 ms) as a function of bin size for all configurations in 
monkey T. Columns correspond to the 8 distinct eigenmodes of the estimated 
8-dimensional residual dynamics (left to right, largest to smallest EV), rows 
correspond to task configurations (top to bottom, config-1 to 4; see Extended 
Data Fig. 6a). Here the re-binned eigenvalues were computed separately for each 
choice (red vs blue) and averaged in small temporal windows specific to each 
epoch: 0.2-0.4 s relative to stimulus onset (solid lines) and −0.15 to 0.25 s relative 
to saccade onset (dashed lines). All main analyses of recorded neural responses 
are based on a bin size of 45 ms, for which eigenvalue estimates have converged 
to an asymptote, suggesting that our estimates are not biased. Note that the 
re-binned eigenvalues for a bin size of 45 ms are larger than the corresponding 
eigenvalues reported in other figures (for example Figure 4b), because the 
former were mapped onto a reference bin size of 15 ms.
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Extended Data Fig. 10 | Unidirectional and bidirectional communication 
between areas. A population level mechanism explaining unidirectional and 
bidirectional communication between areas, incorporating key properties of  
the global residual dynamics in the feedforward (a, b) and feedback networks  
(c, d) in Fig. 7. We simulated time-independent, two-dimensional, linear 
dynamics, whereby the two cardinal dimensions (left panels in a-d) represent the 
choice modes in PPC and PFC (Fig. 6a,d). The time modes in each area are ignored 
here. We simulated a local perturbation (right panels in a-d) either in PPC (a, c) 
or PFC (b, d) by initializing activity along the corresponding choice mode (black 
circles, left panels) and then letting activity evolve (white points) based on the 
linear dynamics determined by the respective EVs (Fig. 7a; see Supplementary 
Methods). a, Perturbation in PPC in the feedforward model. Left: evolution of 
activity in the two-dimensional, global state-space spanned by PPC and PFC. 
Right: time-course of the norm of the population activity. The PPC perturbation 
causes expanding activity in PPC that propagates to PFC. b, Perturbation of PFC 
in the feedforward model in Fig. 6a. The PFC perturbation decays in PFC and does 

not propagate to PPC. This unidirectional communication results from  
non-normal dynamics, as EV1 is shared, while EV3 is private to PFC (EV1 not  
orthogonal to EV3). c, Perturbation of PPC in the feedback model. The PPC 
perturbation causes a dip in PPC and expanding activity in PFC. d, Perturbation 
of PFC in the feedback model in Fig. 6d. The PFC perturbation causes a dip in 
PFC and expanding activity in PPC. In the feedback model, perturbations in one 
area thus propagate to the other area. This bidirectional communication arises 
because both EV1 and EV4 are shared equally between PPC and PFC. Somewhat 
counter-intuitively, the existence of bidirectional communication in these 
models can be inferred when considering activity in the perturbed area alone. 
Activity in the perturbed area initially decays, and expands only later; activity in 
the unperturbed area does not show this dip. The dip occurs because any local 
perturbation is only partially aligned with the shared, unstable direction (EV1). 
Initially, activity in the perturbed area then mostly reflects the rapidly decaying 
component of activity along the second, global eigenvector (EV4).
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The neural and behavioral data used for this study are available online.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
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Sample size No statistical method was used to predetermine sample size. We used data from a total of 157 recording sessions, which contributed a total 

of 58,187 and 34,451 trials from two monkeys. These sample sizes were deemed sufficient based on comparisons to previous literature.

Data exclusions Exclusion criteria for trials and neurons and their underlying motivation are described in the Methods.  

1) We removed silent units with average firing rate (computed across all trials and time bins) < 1Hz, and units exhibiting strong non-

stationarities in their temporally averaged firing rates, in an automated manner. 

2) We split each recording session into 'shorter' experiments, and only used experiments with more than 200 trials. Neural data was analyzed 

in 1.2s long time windows aligned to stimulus onset ([-200 1000]ms) and movement onset  ([-700 500]ms). All trials with delay lengths < 

400ms were excluded, to ensure minimal overlap between decision and movement epoch responses  

Replication All code used for the analyses and simulations reported in this study is publicly available on Github

Randomization No randomization was performed as the experiments in this study were not grouped. Cross-validation involved randomly assigning trials in 

each animal to folds, when performing hold-out or 5-fold cross-validation.

Blinding The experiments in this study were not grouped, and thus no blinding procedures were required.
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
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Laboratory animals Two adult rhesus macaque (Maccaca Mulatta) monkeys

Wild animals No wild animals were used in this study

Reporting on sex Both monkeys were Male. Sex was not considered as a relevant variable in the design of this study.

Field-collected samples No field collected samples were used in this study.

Ethics oversight All surgical, behavioral, and animal-care procedures complied with National Institutes of Health guidelines and were approved by the 

Stanford University Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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