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The mapping of the wiring diagrams of neural circuits promises to allow us to link the structure and
function of neural networks. Current approaches to analyzing such connectomes rely mainly on graph-
theoretical tools, but these may downplay the complex nonlinear dynamics of single neurons and the way
networks respond to their inputs. Here, we measure the functional similarity of simulated networks of
neurons, by quantifying the similitude of their spiking patterns in response to the same stimuli. We find that
common graph-theory metrics convey little information about the similarity of networks’ responses.
Instead, we learn a functional metric between networks based on their synaptic differences and show that it
accurately predicts the similarity of novel networks, for a wide range of stimuli. We then show that a sparse
set of architectural features—the sum of synaptic inputs that each neuron receives and the sum of each
neuron’s synaptic outputs—predicts the functional similarity of networks of up to 1000 neurons, with high
accuracy. We thus suggest new architectural design principles that shape the function of neural networks.
These architectural features conform with experimental evidence of homeostatic synaptic mechanisms.
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I. INTRODUCTION

Many biological systems can be described as networks
of interacting elements where the function of the system is
determined by the nature of individual elements, the type of
interactions between them, and the emerging individual and
collective behavior or phenotype. Mapping the relation
between the structure and function of such networks is a
key goal in many areas of biology, as well as engineering,
social networks, and more. Because the number of possible
architectures is combinatorial in the size of the network,
analyzing and understanding the design and function of
biological networks hinge on finding simplifying princi-
ples. Functional “design principles” have been suggested to
include robustness to noise [1–3], resilience to attack [4],
controllability [5], efficiency [6,7], criticality [8,9], and
learnability [10,11]. Structural design principles have
implied the nature of network growth [12], use of small
subnetwork motifs [13], modular organization and power-
law scaling [14,15], sparseness of activity [16], random
connectivity [17,18], and centrality or percolation proper-
ties of networks [19,20]. However, how these functional

and structural design principles relate to one another is not
immediately clear [21].
The reconstruction of the detailed wiring diagrams of

full neural circuits at single-cell resolution [22–26] would
enable direct exploration and characterization of the archi-
tectural design of neural modules and even whole brains
[27]. Importantly, very different connectivity structures
may give rise to very similar function [28]. Thus, the
ability to record the joint activity patterns of large pop-
ulations of neurons [29,30] whose connectome has been
reconstructed is crucial for linking of neural networks’
structure and function [31–34]—which would be central to
our understanding of development, coding, plasticity, and
learning in biological neural networks.
Understanding the relations between network topology

and the activity of networks of neurons requires ways to
measure both the functional similarity of networks and their
architectural similarity and tomap the relations between these
two, potentially very different, metrics. It is not obvious what
is the correct measure for either one or how we may extend
tools from graph and network theories [12,15,35]. For some
classes of networks and of interacting elements, linksbetween
the topology of a network and the nature of its dynamics have
been elucidated, such as the number of fixed points or classes
of attractor dynamics and their stability [36–40]. Toward the
study of real neural networks, we present here a general
framework for linking the topology of networks and their
population spiking patterns for arbitrary classes of network
architectures, in response to a wide range of stimuli. This
framework can be extended to many other biological and
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nonbiological systems that can be described by networks
of interacting elements.
Rather than assuming or guessing which structural

metric should be used to compare networks, we learn a
functional similarity metric based on the structural
differences of the networks. We thus characterize the space
of neural networks in terms of their function and then seek
the architectural principles that govern the organization of
that space. We develop this framework and validate it by
studying simulated networks of spiking neurons, where we
have complete control over all parameters, no limits on
experimental design and length, and the “ground truth”
is known. We show that we can learn the informative
structural features that shape a network’s function and that a
structural metric, based on these features, significantly
outperforms a wide range of graph-theoretical measures

in predicting the functional similarity of neural circuits. We
then show that the informative structural features that we
identify for small networks are highly informative also for
networks of up to 1000 neurons—suggesting them as a
general principle for the comparison of networks of neurons.

II. RESULTS

To study the relation between structure and function in
networks of neurons, we simulate the responses of tens of
thousands of small networks of spiking neurons to a wide
range of stimuli [Fig. 1(a)]. Direct characterization of the
space of all network architectures is impossible for large
networks, since for a group of N neurons there are 2NðN−1Þ
different directed graphs of interactions (topologies); con-
sidering neurons of different types or diverse strengths of

FIG. 1. Simulating the responses of ensembles of networks to the same stimuli and computing functional similarity between networks.
(a) Each of the N neurons in the simulated networks receive as an input a Poisson spike train with rate λi; corresponding neurons in all
networks in the ensemble receive the same exact ith spike train as input. (b) Examples of the simulated networks: networks of four
neurons with identical excitatory synapses and networks of 15, 50, or 1000 excitatory and inhibitory neurons where the synaptic weights
are drawn from a log-normal distribution. (c) Examples of segments of the spike train responses of different networks (left) that are
presented with the same stimulus. The activity of the neurons is discretized into bins of length Δt ¼ 20 ms and binarized (middle; see
the text). The different responses of the networks result in different distributions of population activity patterns (right). (d) The functional
dissimilarity matrixDfuncðG;G0jsÞ for networks of size N ¼ 4. The normalized stimulus strength is η ¼ 1.5 (see Sec. IV), which results
in firing rates ranging between 10 and 20 Hz over all networks in the ensemble. The structure of this matrix implies a low-dimension
organization of the functional space of networks (see the text).
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synaptic connections makes this number considerably
larger. We, therefore, start by seeking the principles that
govern small networks with different topological and sign
properties and increase their size later [Fig. 1(b)]. We first
consider the two exhaustive sets of all 4096 topologies of
networks of four neurons comprised of all excitatory or all
inhibitory leaky integrate and fire neurons, with all syn-
apses having the same strength (we simulate both current-
and conductance-based models for the neurons and both
alpha and delta activation functions for the synapses—see
the Appendix). The next ensemble is comprised of net-
works of 15 excitatory and inhibitory neurons, with 20%
inhibitory neutrons [41], where synaptic strengths are
drawn from a log-normal distribution [42] and the average
excitation and inhibition are balanced. We then consider
another ensemble of balanced networks of 15 neurons in
which the connections are drawn from a 3D geometric
random graph model, such that the probability of synaptic
connections is distance dependent (see Sec. IV), resulting
in different clustering profiles and motif distributions
within networks (Supplemental Fig. S1 [43]). Even for
15 neurons, there are approximately 1063 directed topol-
ogies, and so we use a random sample of 10 000 networks
of each size and rely on cross-validation of new networks to
verify our results and models (see Sec. IV).
To map the functional similarity between networks, we

simulate their responses to the same stimulus s and compare
their respective population activity patterns [Fig. 1(c)]. We
denote each network by aweighted connectivity graph or the
matrix of synaptic connectionG, whereGkl is the strength of
the synapse from neuron k to l. The external stimulus s to the
networks is defined individually for each neuron, such that
the ith neuron in each network receives as an input a 30-s
Poisson-distributed spike train with a rate λi, weighted by an
input synaptic weight winput [Fig. 1(a)]. While the rate λi of
inputs to all neurons is identical, each neuron in the network
receives its own realization of incoming spikes with that rate
(whereas corresponding neurons in different networks
receive the exact same input patterns, i.e., same realization).
We explore the responses of the networks to a wide range of
stimuli (see the Appendix and Supplemental Fig. S2 [43])
and focus henceforth on stimulus parameters and synaptic
strength values for which the networks’ behavior is not
pathological, i.e., epileptic or completely silent. The length
of the stimulus is chosen to give an adequate sample of the
responses that this class of stimuli would elicit. To disen-
tangle the effects of architectural differences between net-
works from the effects of the initial conditions of networks
on their responses, the same set of initial conditions is used
for each network, and all network measures and similarity
measures between networks are the average over many
different sets of random initializations.
We discretize the spiking patterns of the neurons in the

network in response to the stimulus into small temporal
bins of size Δt ¼ 20 ms, such that the activity of the

network in each time bin is given by a binary vector
x ¼ ðx1;…; xNÞ, where xk ¼ 1 if neuron k spikes in that
bin and 0 otherwise [Fig. 1(c), middle]. We then summarize
the response of the network whose synaptic connections are
given by G, to stimulus s by the distribution of population
activity patterns over the whole length of the stimulus
[Fig. 1(c), right], which we denote by PGðxjsÞ. For small
networks, we estimate these distributions by direct sam-
pling of the networks’ “vocabulary,” whereas for large ones
we fit a pairwise maximum entropy model [44] for the
population activity (see Sec. IV). Using different temporal
bin size gives similar results for the analyses that follow
(see the Appendix and Supplemental Fig. S3 [43]).
We quantify the functional similarity of pairs of net-

works whose synaptic weights are given by G and G0 using
the overlap of their population responses, conditioned on
the stimulus s:

DfuncðG;G0jsÞ ¼ DJS½PGðxjsÞjjPG0 ðxjsÞ�; ð1Þ
where DJS is the Jensen-Shannon divergence, a symmetric
and bounded measure of the distinguishability of distribu-
tions, ranging from 0 bits for identical distributions to 1 bit
for nonoverlapping ones (see Sec. IV). Notably, this
comparison of the networks’ population vocabulary in
response to a particular stimulus or class of stimuli is
more general than overlap measures based only on indi-
vidual firing rates, as it also considers differences in the
correlations between neurons. As this does not take into
account the temporal structure of the responses, we also
compare networks based on the similarity of the post-
stimulus-time histogram (PSTH) of the corresponding
neurons in the two networks to the same stimulus,
DPSTH (see the Appendix). We find that DPSTH is strongly
correlated with Dfunc (see the Appendix and Supplemental
Fig. S4 [43]), and we, therefore, focus on the latter for the
rest of the analyses.
We compute the functional dissimilarity between all

networks in our ensembles. Figure 1(d) shows a typical
example of the resulting matrix of dissimilarity values
between pairs of networks, DfuncðG;G0jsÞ, for s with a
normalized input rate of η ¼ 1.5 and winput ¼ 20 pA (which
is equivalent to a total rate of incoming spikes to each neuron
of 8 kHz; see Sec. IV). The structure of the matrix reflects a
low-dimensional organization of the space of networks based
on their response properties—evident by the spectrum of the
eigenvalues of the matrix, which decay significantly faster
than shuffled controls (see the Appendix and Supplemental
Fig. S5 [43]). We then ask what are the structural properties
of the networks that underlie this functional organization.

A. Common structural metrics fail to capture the
functional similarity of networks of neurons

Given the plethora of graph-theory measures of sim-
ilarity, it might seem that a smart choice of one such
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measure might be sufficient to predict the functional
similarity of neural networks. But, which one should we
choose? The simplest intuitive way to compare the top-
ology of networks of the same size is by counting the
fraction of links or synapses they share. For weighted
directed graphs, this can be interpreted in different ways,
and we consider here two options: first, the graph edit or
Hamming distance between G and G0:

dHammingðG;G0Þ ¼
XN
k;l¼1

1sgnGkl≠sgnG0
kl
; ð2Þ

where 1 is an indicator function, which compares the type of
synaptic connections between neurons (inhibitory, excitatory,
or absent) and, second, the L2 norm or Euclidean distance
between the corresponding synapses in the networks:

dL2
ðG;G0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k;l¼1

ðGkl −G0
klÞ2

vuut ; ð3Þ

where Gkl is the strength of the synapse from neuron k to l
in network G. Both of these metrics prove to be poor
predictors of the functional similarity of networks

FIG. 2. Common structural metrics fail to predict the functional similarity between networks of neurons, whereas a learned bilinear
metric succeeds. (a) The first simulated ensemble, consisting of 4096 networks of four neurons with constant weights. (b) Hamming
distances between all pairs of 4096 networks of size N ¼ 4 are plotted against the computed Dfunc between networks (y values are
slightly jittered to show the density of points). We note the points in the upper-left correspond to pairs of networks that have almost no
overlap in terms of synaptic connections yet are functionally very similar. (c) Predictions of the bilinear model on held-out test data, i.e.,
networks that are not used in finding M�. (d) We compare the prediction accuracy of different structural metrics for networks of size
N ¼ 4, by computing the mean Pearson correlation of their predictions with the functional dissimilarity of the networksDfunc (averaged
over 30 different initial conditions). Our learned model (black) outperforms multiple graph-based models (green) and vector-based ones
(orange). Error bars represent one standard deviation. (e) The second simulated ensemble, consisting of 10 000 networks of 15 neurons
with balanced excitatory and inhibitory weights (on average). (f)–(h) The same as (b)–(d) but for an ensemble of networks with N ¼ 15.
Since synaptic weights in this ensemble are continuous, the Euclidean distance between synaptic weights is used instead of Hamming
(see the main text). (i) This simulated ensemble consists of 10 000 “geometric” networks, each with 15 neurons with both excitatory
and inhibitory weights that are balanced (on average), but with distance-dependent connectivity (see the main text). (j)–(l) The same as
(f)–(h) but for the ensemble of geometric networks.
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[Figs. 2(b), 2(f), and 2(j)]. In particular, while low Hamming
or Euclidean distance does imply low Dfunc, medium and
high values of Hamming or Euclidean distance are practi-
cally noninformative of functional similarity.
We examine a wide variety of other common structural

metrics, including ones that treat networks as vectors of
synaptic weights and compare them as vectors in RNðN−1Þ,
as well as explicit metrics of graphs, such as the spectral
distances between directed graph Laplacians. All the
structural metrics in our comparisons give poor results,
for both N ¼ 4 and N ¼ 15—as reflected by the green and
orange bars in Figs. 2(d), 2(h), and 2(l) (a larger set of failed
metrics can be found in the Appendix and Supplemental
Fig. S6 [43]). We, therefore, ask whether, instead of trying
common similarity measures, we could learn a metric
directly from the data.

B. Learning to predict the functional similarity
of networks from their synaptic connections

Metric learning approaches vary significantly in their
assumptions and applications [45] and are used to model
perceptual distances [46,47] and to study the structure of
neural codes [48–50]. Here, we ask how wellDfunc between
networks’ responses to the same stimulus s can be approxi-
mated by a bilinear function of the synaptic differences
between the networks, which we quantify as the difference
of their connectivity matrices ΔGkl ¼ Gkl −G0

kl. To sim-
plify mathematical notation, we denote by

g ¼

0
BB@

G12

..

.

GNðN−1Þ

1
CCA ∈ RNðN−1Þ

the vector corresponding to the “flattened” representation of
the matrix G, without its diagonal elements (which are
all zero), and so Δg ¼ g − g0 is the vector of synaptic
differences between two networks. The problem of finding
the optimal bilinear function is then translated into seeking
the optimal matrix M�ðsÞ, which is given by

M�ðsÞ ¼ argmin
M≽0

h½DfuncðG;G0jsÞ − ΔgT ·M · Δg�2iG;G0

þ αkMk2; ð4Þ

whereM is an NðN − 1Þ × NðN − 1Þ positive-semidefinite
matrix (so defined in order for the distances between
networks to be non-negative), known as the Mahalanobis
matrix [45]. The regularization term and its control param-
eter α are chosen by cross-validation (see the Appendix and
Supplemental Fig. S7 [43]). Fortunately, M�ðsÞ we seek is
the solution to a convex constrained optimization problem,
which is, therefore, guaranteed to be the global optimum.We
note the dependence of M� on s and stress that different

stimuli might require different metrics, which we inves-
tigate below.
To find M�ðsÞ, we randomly split the networks in the

ensemble into a training set and a test set (75% and 25% of
the networks, respectively) and use the train set to find
M�ðsÞ, using conjugate gradient descent on the manifold of
positive-semidefinite matrices (see Sec. IV). To assess how
well this learned measure captures the functional dissimi-
larity between networks, we use it to predict the pairwise
distances between all pairs of networks in our held-out test
set and compare these predictions to the empirical Dfunc
values [Figs. 2(c), 2(g), and 2(k)]. We find thatM� captures
functional dissimilarity significantly better than all other
metrics [Figs. 2(d), 2(h), and 2(l)], for networks of size
N ¼ 4 and N ¼ 15. In particular, this is true for different
random graph models (randomly connected ones with
different probability of connections, as well as graphs
with distance-dependent connectivity) and for networks
that have balanced excitatory and inhibitory connections
(on average), as well as completely unbalanced ones,
namely, all-excitatory or all-inhibitory networks. We
emphasize that the predictive accuracy of M� stems from
its ability to capture the geometry of the functional space
of networks and not from the computational expressive
power of this model (see the Appendix and Supplemental
Fig. S8 [43]).
The sparse structure of the Mahalanobis matrix M� for

networks of four excitatory neurons [Fig. 3(a)] reflects the
architectural features that the model relies on. To uncover
what these features are, we use the fact that M� is a
positive-semidefinite matrix that can be decomposed
uniquely into the product of a lower triangular matrix
and its conjugate transpose, or Cholesky factor,M� ¼ RRT ,
such that R is a lower-triangular matrix. We can use R to
find a decomposition of M� that is easier to interpret:
M� ¼ LLT , with L ¼ RU and U is unitary matrix that
makes L as sparse as possible. In other words, right
multiplying R by any unitary matrix U results in a
decomposition M� ¼ ðRUÞðRUÞT , which means
kRTg − RTg0k2 ¼ kðRUÞTg − ðRUÞTg0k2. We then solve
the constrained optimization problem:

L ¼ argmin
U∈fQjQQT¼Ig

kRUk1 ð5Þ

over the manifold of all possible unitary matrices [51,52]
and find a matrix U such that L ¼ RU is maximally sparse
and yet remains an exact decomposition of M�. Using this
sparse decomposition, the distance between networks
can be rewritten as kLTg − LTg0k22, which means that LT

implements a linear transformation that represents each
network using a set of structural features. In this view, our
model measures the squared Euclidean distance between
networks in the feature space induced by LT. The inter-
pretation of the structural features extracted by L [Fig. 3(b)]
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is facilitated by the fact that each column of L defines a
linear combination of synaptic weights. For the ensemble
of excitatory networks of size N ¼ 4, a dominant type of
structural features stands out—one of the form

P
l Glk, or

the sum of synaptic inputs to the kth neuron (this corre-
sponds to the indegree in unweighted networks). Thus, for
example, the left column of L in Fig. 3(b) is akin to the sum

of synapses going into the third neuron. We identify two
other types of features when using other stimuli and for
networks with inhibitory neurons: the sum of outgoing
synapses from a neuron,

P
k Glk, and the sum of synaptic

weights along loops of size 2, Gkl þ Glk; the last type is
dominant, for example, for the ensemble of all inhibitory
networks of size N ¼ 4, as shown in Figs. 3(c) and 3(d).

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Identifying the informative structural features that govern the M� learned model of network similarity. (a) The optimal
Mahalanobis matrixM� for networks of N ¼ 4 excitatory neurons. Each entry in the matrix is the weight assigned to a pairwise term in
the bilinear function. (b) The sparsest L matrix from Cholesky factor-based decomposition of M� from (a). Each column represent a
single structural feature. Matrix entries correspond to the weights of the different synapses in each feature. The first four features
correspond to the total synaptic inputs to each of the neurons; columns are sorted by their Euclidean norm. (c),(d) The same as (a),(b) but
for networks of four inhibitory neurons. Here, loops of length 2 emerge as the dominant structural features. (e) Accuracy of the model
when using only the k most important features (ones that have the largest Euclidean norm), for both ensembles of networks of size
N ¼ 4 (error bars represent standard deviations over different stimuli). Accuracy is defined as the Pearson correlation between the
model’s prediction and Dfunc. (f) An illustration of the most informative types of structural features.
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Since each column of L corresponds to a single structural
feature, we further ask how many features are needed to
accurately approximate the functional dissimilarity. We sort
the columns of L by their norms (as vectors) and approxi-
mateM� using the kth highest norms columns, for different
values of k. We find that, for the ensemble of purely
excitatory networks, the number of required structural
features is small and close to the number of neurons rather
than the number of synapses, whereas for the ensemble of
purely inhibitory ones, a larger number of features is
required [Fig. 3(e)]. For balanced networks of 15 neurons,
a similar saturation of performance for a small number of
features is observed [Fig. 4(a)].

Based on these results, we fit a new model that uses
just the dominant structural features of L to approximate
DfuncðG;G0jsÞ:

DfeaturesðG;G0jsÞ

¼
X
l

αl ·

�X
k

ΔGkl

�
2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
lth neuron

synaptic input

þ
X
k

βk ·

�X
l

ΔGkl

�
2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
kth neuron

synaptic output

þ
X
k<l

γklðΔGkl þ ΔGlkÞ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
kl-neuron pair

; ð6Þ

FIG. 4. High performance of the models of the functional similarity of networks, based on our learned architectural features, across
different structural parameters. (a) Accuracy of the model when using the first k most important features (largest Euclidean norm), for
the ensemble of balanced networks of N ¼ 15 neurons (error bars represent standard deviations over ten different stimuli, spaced
between η ¼ 1.0 and η ¼ 1.8). Accuracy is defined as the Pearson correlation between the model’s prediction of similarity and Dfunc.
(b) The performance of a model based only on the sum of synaptic inputs to each neuron and the sum of synaptic outputs of each neuron
(I þO model) predicts the functional similarity of networks of N ¼ 15 neurons as well as the full model using the full matrix M�; the
inset shows the high correlation between the M� model and the I þO model (stimulus strength η ¼ 1.5). (c) Prediction accuracy of
models using different subsets of structural features, measured by the mean Pearson correlation coefficient with Dfunc. (d) Illustration of
the space of network parameters for which we compute the accuracy of the feature-based model. The set of network parameters explored
is characterized by the probability of forming a synapse between any two neurons (sparseness) and the ratio between excitation and
inhibition in the networks. The drawn networks show examples of networks with the corresponding parameters in different parts of
the space. (e) Accuracy of the M� model as a function of sparseness of connectivity in the networks, for 3 different stimulus values.
(f) Accuracy of the feature-based model that uses the sum of synaptic inputs and sum of synaptic outputs per each neuron (I þO), as a
function of the ratio of excitation and inhibition in the network for three different values of J, the mean strength of excitatory synapses in
the ensemble (error bars correspond to standard deviations across stimuli).
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where αl, βk, and γkl are learned from the data to minimize
the mean squared difference between the two measures. For
many stimuli, the feature-based approximation is close to the
performance of the full learned matrixM�. Furthermore, an
even simpler class of models that relies just on the first two
terms of Eq. (6)—namely, the set of sums of synaptic inputs
and sums of synaptic outputs of each of the neurons—is
nearly as good, as shown in Figs. 4(b) and 4(c).
Theoretical studies of networks that have balanced

excitation and inhibition link the spectral properties of the
connectivity matrix of such networks and their dynamics
[53–56]. To investigate whether the predictive power of the
sum of synaptic inputs per neuron and the sum of synaptic
outputs per neuron originate or depend on the assumption of
E-I balance, we repeat the analysis above for ensembles of
networks of 15 neurons with varying degrees of sparseness
and different balances of excitation and inhibition. We span
the full range from all-excitatory networks, through bal-
anced networks, to all inhibitory-networks [Fig. 4(d)] and
explore different stimulus’ strengths, as well as different
synaptic strengths [Figs. 4(e) and 4(f)]. We find that the
accuracy of the feature-based model in predicting the
similarity of networks is consistent across all these cases
and parameter values. In particular, for larger values of
synaptic strengths, the accuracy is higher for the unbalanced
networks, suggesting that the theoretical framework of
firing-rate-based balanced E-I networks is not sufficient
to explain the accuracy of our models.

C. Scaling and universality of the functional space of
networks for different classes of stimuli

The results above show the success of learning a feature-
based metric for networks for a specific set of stimuli,
where all neurons receive inputs from different realizations
of Poisson-distributed spike trains with the same rate. Next,
we ask how the functional similarity between networks
depends on the nature of the stimulus used and, in
particular, whether the functional metric we learn for
one class of stimuli would generalize to other stimuli.
We, therefore, repeat the mapping of functional distances
between networks,Dfunc, for a wide range of Poisson inputs
with different mean values—from weak stimuli that elicit
almost no responses to strong stimuli that elicit very high
firing rates (see the Appendix and Supplemental Fig. S2
[43]) and from uncorrelated inputs to the different neurons
to highly correlated ones [Fig. 5(a)]. We find that the
distances between networks are highly correlated for
different stimuli: Figure 5(b) shows an example of the
tight correlation of DfuncðG;G0jsÞ for two different stimuli,
over all pairs of networks in the ensemble. Figure 5(c)
shows the strong correlation between the distances of
networks for many different pairs of stimuli, which are
high and significant for all stimulus classes we test (see the
Appendix and Supplemental Fig. S9 [43] for the correlation
values of the dissimilarity of all the stimuli we use

throughout the main text). This implies that, on average,
changing the stimulus changes the dissimilarity between
networks in a way that preserves the relations between their
relative distances: Networks that are relatively close (far)
under one stimulus tend to be relatively close (far) under a
different stimulus. Figure 5(d) shows this explicitly by
using 2D embedding of networks based on their functional
distances, using an example of the same randomly selected
four networks under five different stimuli—reflecting that
the structure of relations between networks is preserved,
while the overall map of distances may stretch or shrink.
The approximate scaling of the map of functional

distances with stimulus strength suggests that the structure
of the Mahalanobis matrixM� should also remain stable, up
to a stimulus-dependent multiplicative factor. Figures 5(e)
and 5(f) show the accuracy of the models based on the sum
of synaptic inputs and sum of synaptic outputs, across the
space of stimuli we explore. Indeed, for the vast majority of
stimulus parameters, the prediction of our model and the
empirical Dfunc values are highly correlated. Interestingly,
the relative importance of the total synaptic inputs and total
synaptic outputs changes across stimulus space, and a
transition from the domination of the total synaptic output
values to the total synaptic inputs occurs as the stimuli
become stronger (see the Appendix and Supplemental
Fig. S10 [43]).
In the analyses above, the inputs to the networks are

sampled from Poisson-distributed spike train that have a
similar input rate for all neurons. While commonly used in
many studies of models of neural activity, this set of inputs
lacks the heterogeneity of stimuli impinging onto real
circuits and misses on the complex temporal structures
that characterize in vivo neural activity. To verify that our
result does not depend on these simplified sets of stimuli,
we repeat the analysis using more biologically realistic
inputs: We use real spike trains recorded in vivo from
neurons in the visual cortex of mice presented with a
natural movie (see Sec. IV). Each of the neurons in the
networks in our ensembles receives spikes from a different
randomly sampled subset of the recorded units. Thus, each
neuron receives its unique time-varying input with differ-
ently modulated mean rate [Fig. 6(a)]. Again, we find that
our feature-based model is highly predictive of the func-
tional dissimilarity of networks [Fig. 6(b)], generalizing our
results to more biologically realistic stimuli. Model accu-
racy remains high for different values of input parameters,
namely, the feed-forward connection probability and syn-
aptic strength (see Supplemental Fig. S11 [43]). Results are
shown for networks with J ¼ 1 mV; different values of
synaptic strength (J ¼ 0.1, 0.3, 0.5 mV) result in different
distributions of pairwise functional similarities, but the
accuracy of the I þO model remains high.
To reflect the effect of the temporal structure of the

stimulus on the measured functional distances, we choose
three specific networks from the same ensemble, such that
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network A and network B have similar responses (low
Dfunc), whereas networks A and C have dissimilar
responses (high Dfunc)—shown in Fig. 6(c). Each of these
specific networks has three different inhibitory neurons.
For reference, we also simulate an “empty” network where
none of the neurons are connected to each other (all weights
are zero), which, by construction, gives the neuronal
activity due to the stimulus alone. A sample of the
responses of the corresponding neurons in these different
networks is shown in Fig. 6(d). To assess the impact of
temporal correlations between neurons on the similarity of

their activity, we also consider mock responses of the
networks, where we shuffle each spiking pattern of each
neuron in the network in time, giving responses that
preserve firing rates of each neuron but no stimulus-
induced or structure-induced correlations. We then com-
pute the dissimilarity matrix between all eight response
distributions (four original networks and their correspond-
ing shuffled responses). The functional similarity of the
responses to the natural stimulus due to structural features
[DfuncðA;CÞ and DfuncðB;CÞ] are similar to the functional
similarity between a network and its shuffled variant

FIG. 5. The structure of the map of functional similarities between networks is conserved across stimuli. (a) Illustration of the space of
different stimuli for which we compute the pairwise similarity between networks. The set of stimuli explored is characterized by the
average rate of the external Poisson input to the neurons, η, and the correlation between different inputs to different neurons, ρ. (b) An
example of the correspondence of Dfunc for 1 million pairs of networks in the ensemble of networks of size N ¼ 15 is shown for two
different stimuli; every dot represents one pair of networks. (c) The same as (b) but for many pairs of stimuli, from the parametric space
of stimuli, described in (a). The correlations between the distances between all pairs of networks are shown for the whole range of ρ and
η values. Green panels show the case of varying ρ, at fixed η ¼ 1.5; purple panels varying η at fixed ρ ¼ 0. (d) Five overlaid 2D MDS
embeddings of four example networks of size N ¼ 15, based on the functional dissimilarity between them. The networks in each case
are the same and are marked by a dot of the same color. The colors of the lines between nodes denotes which of the five stimuli this
embedding relates to. Overlaying is done by anchoring the network marked by the red dot. Overlaid maps show the geometric
organization is preserved across stimuli space. (e) Pearson correlation between the computed functional similarity Dfunc between
networks and predictions of the models based on the sum of synaptic inputs and sum of synaptic outputs of each neuron, for 900
different combinations of ðη; ρÞ for networks of size N ¼ 15. (f) The interquartile ranges of the data shown in (e) are shown by
aggregating the values shown in (e) over η (top) and ρ (bottom). Percentage values of each bar denote the parameter value between
lowest strength or correlation (0%) and highest ones (100%).
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[e.g., DfuncðA; AshuffledÞ] as shown by multidimensional
scaling (MDS) embedding of the eight networks [Fig. 6(e)].
This relation replicates over many different groups of such
networks [Fig. 6(f)], namely, that shuffling the spikes of
individual neurons in a network results in network responses
that are as remote from the original network as the
differences between two remote networks responding to
the same stimulus. Moreover, it is especially interesting to
note that the correlation between the functional similarity of

networks measured by the overlap of the PSTH of corre-
sponding neurons and the functional similarity measured by
Dfunc as in Eq. (6) is 0.85, whereas the correlation between
Dfunc and the prediction of the I þO model is also 0.85 (the
correlation between the I þO model and PSTH similarity is
0.83)—reflecting that our feature-based model is as accurate
in predicting the networks’ responses as does knowing the
overlap of the PSTHs of the neurons of networks. We also
repeat the analysis for networks in which the identity of the

(a)

(c)

(d) (f)

(e)

(b)

FIG. 6. Feature-based model predicts functional similarity under natural stimuli. (a) Our ensemble of networks are stimulated with
spike trains recorded from mouse in vivo (see Sec. IV). Each neuron in the networks is stimulated by a randomly selected set of
approximately 15 neurons out of the 59 recorded units from the visual cortex of a mouse presented with a 30-s-long natural movie.
(b) The prediction of the feature-based I þO model for the pairwise similarity of 10 000 balanced networks of 15 neurons, stimulated
with spike trains as described in (a), is highly correlated with the functional similarity of the responses of networks, Dfunc.
(c) Connectivity matrices for three specific networks from the ensemble (described in the main text). Each entry is a synaptic weight
(red, excitatory; blue, inhibitory). A and B have similar responses to the stimuli, as measured by Dfunc, while A and C have dissimilar
responses. The connectivity matrix of the empty network is not shown. The mean synaptic input (bottom) and output (right) of each
neuron are shown for each network. (d) Firing rates of the 15 neurons in all four networks in the first second of the simulation, obtained
by convolving individual spike trains with a Gaussian kernel (A, green; B, dark green; C, orange; empty, black dashed line). Kernel
standard deviation is 60 ms (three time bins). (e) 2D MDS embedding of networks A, B, and C, the “empty” network, and time-shuffled
variants of their responses (denoted as A0, B0, C0, and empty0; see the main text). (f) The functional dissimilarity matrix between a
reference network (similar to A above), the functionally closest and farthest networks with the same number of inhibitory neurons (the
same as B=C above), the empty network (E above), and the shuffled variants of their responses, averaged over 100 reference networks.
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inhibitory and excitatory neurons in the network is fixed
(neurons 1–12 are excitatory, and neurons 13–15 are
inhibitory for all networks in the ensemble) and obtain
similar results (see Supplemental Fig. S12 [43]).

D. Predicting the similarity of large networks
from their structural features

We next ask whether the structural features we identify
for small networks generalize to large ones. Notably, for
networks of 100 neurons, there are 29900 possible unsigned
topologies and 2100 possible activity patterns of the net-
work. Thus, whereas mapping all networks is intractable
already for 15 neurons, here even measuring the similarity
of networks using the overlap of their sampled response

distributions becomes impractical. We, therefore, fit sec-
ond-order maximum entropy models for each network’s
activity (see Sec. IV) and use them to measure the func-
tional dissimilarity between networks G and G0 by the
average of the log-likelihood ratio of the spiking response
of G under a model that is learned from the spiking
responses of G0, and vice versa:

DfuncðG;G0jsÞ ¼ 1

2T

XT
i¼1

�
log

PGðxiÞ
PG0 ðxiÞ

þ log
PG0 ðx0iÞ
PGðx0iÞ

�
; ð7Þ

where xi (x0i) denotes the ith activity pattern of net-
work G (G0). This measure converges to the symmetric

(a) (c) (e)

(b) (d)

FIG. 7. The architectural features identified in small networks predict functional similarity of networks of 50, 100, and 1000 neurons.
(a) We pick 100 randomly connected networks of size N ¼ 50 and N ¼ 100 and use each of these networks as a “template.” From each
such original network, we create 100 variants preserving the sum of synaptic inputs to each neuron, by shuffling the source of the
synapses into each neuron (red), 100 variants preserving the sum of synaptic outputs of each neuron, by shuffling outgoing synapses
(green), and 100 variants where all synapses shuffle (black). (b) A 2D MDS embedding of one original network of 50 neurons and its
300 variants, based on their log-likelihood-based functional similarity values. (c) Dfunc between each template network of 100 neurons
and its three types of shuffled variants. Each of the 50 lines using different shades of red connects the values of the mean Dfunc between
one original template network and its 100 shuffled variants of each type. Error bars represent one standard deviation over the set of
variants. (Small random horizontal jitter is added to the points for clarity.) (d) For each of the original networks, we show the ratio
between its average Dfunc to all the output shuffle variants against the average of its Dfunc to all the shuffle variants, normalizing both
values for each network by its average Dfunc to input shuffled variants. The colored dots mark the values for the networks under two
different stimuli, showing that all 100 original networks reside in the part of the “phase space” where their input-shuffled networks are
closer to the original network than the output-shuffled ones, which are closer than the all-shuffled ones. (The relations between variants
in other parts of the phase space are labeled in each of the corresponding parts of the figure.) (e) Left: examples of E-I balanced networks
of 50, 100, 500, and 1000 neurons, for which we compare functional similarity measures and feature-based models. Right: The
dissimilarity between networks based on the respective firing rates of the neurons in the networks (top) and by the dissimilarity of their
PSTH (bottom) is presented against the prediction of the I þO feature-based models, for different levels of sparseness of synaptic
connectivity and strengths of the stimulus.
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Kullback-Leibler (KL) divergence between conditional
response distributions, as the number of samples increases.
We use randomly sampled networks of 50 and 100

neurons and create 300 variants for each one of these origin
networks, by manipulating their connectivity graphs
[Fig. 7(a)]: (i) 100 variants in which the sum of synaptic
inputs to each neuron is preserved, but the incoming
synapses to each neuron are assigned to a random neuron
in the network (shuffle inputs). (ii) 100 variants that
preserve the sum of synaptic outputs of each neuron, but
the outgoing synapses of each neuron are randomly
connected to the other neurons (shuffling the outputs).
(iii) 100 variants in which all synapses are randomly
shuffled, regardless of their presynaptic or postsynaptic
neuron. As before, all networks are presented with the same
stimulus and have identical initial conditions. Figure 7(b)
shows the 2D MDS embeddings of all the variant networks
of one original network of 50 neurons, based on their
functional dissimilarity matrix—where closer points re-
present networks that have similar conditional response
distributions. Figure 7(c) shows for 50 randomly chosen
original networks, each with N ¼ 100 neurons, that variant
networks with the same total synaptic inputs to each neuron
(input shuffle) are functionally more similar (smaller Dfunc)
to their original network compared to networks with the
same total synaptic outputs for each neuron, which, in turn,
are more similar than networks where all synapses of the
original network are shuffled. Figure 7(d) shows this is the
case for all the networks we test and that this result
replicates under different stimuli.
We then aim at scaling the analysis to even larger

networks. Learning a functional metric as in Eq. (4) and
the decomposition of such matrices is impractical, sinceM�

scales as OðN4Þ. Moreover, even measuring the functional
similarity of networks of more than 100 neurons is
challenging. Instead, we ask whether the architectural
features we identify for small networks would generalize
to large ones. We find that, using models based on these
features [Eq. (6)], we can accurately predict functional
dissimilarity between networks of 50, 100, 500, and 1000
neurons with different probabilities of synaptic connectiv-
ity [Figs. 7(e) and 7(f)], both when we quantify their
functional dissimilarity using the differences in firing rates
of the respective neurons and when we use a PSTH-based
dissimilarity measure (see Sec. IV).

III. DISCUSSION

Measuring the functional similarity of small neural
networks in terms of their population spiking patterns
allows us to learn a structural metric on the space of
networks that predicts functional similarity with high
accuracy. Our learned metric outperforms a wide range
of commonly used graph-theory metrics, by very large
margins. We then use the learned metric to identify features
of the topology of networks that govern their function.

Surprisingly, while the full synaptic connectivity map for n
neurons is of size n2, only a small number of architectural
features emerge as shaping the function of networks: the
total synaptic sum of inputs and total synaptic sum of
outputs for each neuron. This set of 2n features is highly
predictive for small networks and generalized well to
predict the functional similarity of networks of up to
1000 neurons. We further find that the “geometrical
organization” of distances between networks is highly
correlated over a wide range of stimulus strengths and
correlations. We emphasize that, unlike previous studies,
our work quantitatively describes and models the relations
between structure and function, and the metric-learning-
based approach allows us to provide a geometrical
interpretation for fundamental neural processes such as
learning, development, and plasticity in brain networks.
We note that, while many of the ensembles of networks

we analyze above are balanced on average in terms of their
excitatory and inhibitory synapses, our results do not rely
on an assumption of E-I balance. In particular, our learned
metric and features are accurate for all-excitatory or all-
inhibitory ensembles of spiking neural networks, as well as
different combinations of excitatory and inhibitory rations,
for different random graph models, and for different classes
of stimuli, including inputs that are taken from real spike
trains. We hope that future theoretical work would bring
together the theoretical work on rate-based E-I balanced
networks [39,41] and that on inhibitory threshold linear
networks [57] with our results on a spiking neural network
under nonbalanced networks and realistic stimuli. Another
potential direction of theoretical analysis would relate our
results to the functional similarity of other biological
networks that differ in their connectivity patterns and
single-element dynamics (e.g., Ref. [37]).
Our results imply that within the space of networks there

are subspaces or manifolds that retain similar functional
properties and that these manifolds are the ones which
contain networks that have the same sum of synaptic inputs
and sum of synaptic outputs. A network that changes its
synaptic connections along a trajectory contained within
such a manifold could, therefore, be very different struc-
turally, without changing its function. This implies a
“neutral evolution” path for neural networks’ organization
and learning dynamics [58]. Interestingly, our results con-
form with the synaptic homeostatic mechanisms that have
been extensively studied both experimentally and theoreti-
cally [59,60]. In particular, our model predicts that homeo-
static mechanisms that redistribute synaptic weights but
preserve the total synaptic inputs to a neuron or its outputs
may not only shape the computational properties of single
cells, but play a crucial role in learning, plasticity, and
development at the level of the network. We reiterate,
however, that the models based on the total synaptic inputs
and total synaptic outputs capture most but not all of the
functional similarity between networks. Thus, “perfect
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homeostatic” changes would not result in functionally
identical networks.
While there are many potential extensions of our work in

terms of more biologically realistic neurons and neuronal
classes, we note that our analysis mostly focuses on cases
where all neurons in a network receive external stimuli that
have similar statistical properties. Extending our work to
the general case of arbitrary stimuli would require learning
a joint metric for stimulus space and the space of network
architectures. These are likely to reveal new, more intricate
design features of neural circuits. In addition, while our
analysis focuses on stimulus values that do not result in
pathological behavior of the network (silence or epilepsy),
the framework we introduce may be applied to identify
which network topologies would be susceptible to such
events. We also note that our ensembles of networks regard
the neurons as “identified” in the sense that there is a
unique correspondence between neurons in different net-
works. The comparison of networks without such identi-
fication would be interesting. An even more general case to
consider would be the comparison of networks of differ-
ent sizes.
The metric we learn gives accurate results by relying

only on the differences between corresponding synapses
of two networks. To explain the small residual part of
the functional similarity between networks that our metric
does not account for would require to go beyond pairwise
relations between synapses. Such extensions could
elucidate the functional importance of longer loops and
global structural properties, which our current model
cannot account for. Moreover, our metric also implies
the functional difference between networks would be
“translation invariant” in δG, i.e., DfuncðG;G0jsÞ ¼
DfuncðGþ δG;G0 þ δGjsÞ for any δG. This is unlikely to
be true, in general, especially for large δG. We, thus, expect
that refinements of the approach we present here, such as
learning different local metrics, would be important for
analyzing larger networks and real networks, and likely
reveal additional design principles.
The growing abundance of connectomics data makes it

imperative to combine theoretically grounded computa-
tional frameworks and experimental measurements in
understanding networks’ structure and function. The
approach we present here is a step toward building such
a framework. While we rely on simulated networks, these
are models of spiking neurons, and so we believe our
results reflect fundamental design principles of real neural
networks. Moreover, we have focused here mostly on small
networks, where sampling and evaluation of our models is
relatively simple, but even for networks of 1000 neurons
that we study here there are 2999000 possible directed
topologies. Thus, sampling and evaluating the success of
our approach for even larger networks present considerable
computational challenges—which would require scaling of
the learning and cross-validation, at the least. Ultimately,

this kind of approach would be extendable to asking how to
design neural circuits that would perform a desired function
or how to interface and control neural circuits in the brain.
Finally, we note that the framework we present here is
immediately extendable to studying artificial neural net-
works and other biological and nonbiological networks.

IV. MATERIALS AND METHODS

A. Simulating neural networks

All networks are simulated using the NEST simulator
for spiking neural network models [61]. Networks of four
neurons—either all excitatory or all inhibitory ones—are
simulated using the following parameters for an integrate
and fire neuron model (which are the default integrate
and fire model parameters in NEST; “iaf psc alpha”):
resting membrane potential EL ¼ −70 mV; membrane
capacity Cm ¼ 250 pF; membrane time constant τm ¼
10 ms; refractory period τref ¼ 2 ms; spike threshold
V th ¼ −55 mV; reset potential Vreset ¼ −70 mV; rise time
of the synaptic alpha function τsyn ¼ 2 ms. Networks of 15
excitatory and inhibitory neurons are simulated using the
biophysical parameters taken from Ref. [41]: EL ¼ 0 mV;
Cm ¼ 250 pF; τm ¼ 20 ms; τref ¼ 2 ms; Vth ¼ 20 mV;
Vreset ¼ 0 mV; τsyn ¼ 0.5 ms. Networks of 50 and 100
neurons are simulated using the same biophysical param-
eters as for networks of 15 neurons.
For the given values of the synaptic time constant,

membrane time constant, and membrane capacitance, we
compute the amplitude of the postsynaptic potential Junit
for a synaptic input current of 1 pA. Mean synaptic weights
are then chosen such that an input spike to a neuron results
in a 0.1 mV increase in its membrane potential, corre-
sponding to wsyn ¼ ð0.1=JunitÞ [42]. Other mean synaptic
weights (ranging from 0.05 to 0.5 mV increase per spike)
are also considered and give similar results.
The external stimulus to each neuron is a sequence of

spikes drawn from a Poisson distribution with rate λi, with a
fixed synaptic strength winput. The synaptic weight from the
inputs to the circuit is chosen such that an input spike to a
neuron results in a 0.1 mV increase in its membrane
potential, resulting in winput ¼ 20 pA for the biophysical
parameters used for networks of N ¼ 15 neurons and
winput ¼ 8 pA for the parameters of networks of N ¼ 4.
These biophysical parameters and input weights induce
threshold rates (the external rate that fixes the membrane
potential of the receiving neuron around its threshold) of
8.8 and 7.2 kHz for networks of N ¼ 15 and N ¼ 4,
respectively. Input rates are then defined as λi ¼ η · λth,
where λth is the threshold rate and η is the ratio between the
input rate and the threshold rate, as in Ref. [41]. Simulated
stimulus values, therefore, correspond to inputs from
thousands of external neurons (see the Appendix and
Supplemental Fig. S2 [43]). Correlated stimuli are gen-
erated using a multiple interaction process [62]; we
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consider stimulus correlations ranging from 0 (independent
stimuli) to 0.99.

B. Generating ensembles of networks

For the all-excitatory and all-inhibitory networks of four
neurons, we simulate all 4096 unweighted and directed
topologies. For networks of 15 neurons, the number of
different unweighted directed topologies is larger than 1063.
We, therefore, estimate the similarity metrics for an
ensemble of 10 000 unweighted directed networks,
sampled from an Erdős-Rényi random graph model [12],
where the probability of forming a synapse between any
two neurons in a network is psyn ¼ 0.5. Each of the 15
neurons is randomly assigned a “type”—excitatory or
inhibitory—where the probability of a random cell being
inhibitory is pinhib ¼ 0.2. This determines the sign of each
synapse in the network. Synaptic weights are drawn from
a log-normal distribution with parameter σ ¼ 0.5 [42].
For wsyn ¼ 20 pA (J ¼ 0.1 mV), the resulting standard
deviation of the log-normal distribution is approximately
9 pA. The mean strength of inhibitory synapses is scaled to
ensure pinhibhwinhibi ¼ ð1 − pinhibÞhwexi, where the average
is over the entire ensemble of networks. Networks of 50 or
100 neurons are randomly generated in a similar manner
such that the probability of forming a synapse between
two arbitrary neurons is psyn ¼ 0.1 and pinhib ¼ 0.2.
(psyn ¼ 0.5 and psyn ¼ 0.05 are also considered and give
similar results.) “Geometric networks” are randomly gen-
erated by sampling 15 points in ½0; 1�3 (uniform sampling,
different points for each network), computing their
Euclidean pairwise distances, and sampling a synapse from
neuron i to neuron j with probability e−kri−rjk=D. D is
chosen such that the marginal edge probability is 0.5,
similarly to the value used for the nongeometric ensemble.

C. Permutation of synapses for networks
of 50 and 100 neurons

The original random networks (see the main text) are
shuffled to generate variants that retain the total sum of
synaptic input to the ith neuron, by permuting all 49 (or 99)
off-diagonal elements of the ith column in the network’s
connectivity matrix. Variants that retain the total sum of
synaptic outputs are similarly generated by permuting off-
diagonal elements of each rows. Control networks are
generated by shuffling all off-diagonal elements, irrespec-
tive of their original row or column.

D. Fitting pairwise maximum entropy models

For large networks, direct estimation of PempðxjsÞ
requires prohibitive or unrealistic long stimuli (since, for
a network of N neurons, the number of possible activity
patterns is 2N). We, therefore, use pairwise maximum
entropy models to describe the response distributions.
These models are shown to be highly accurate for the

activity patterns of groups of this scale [10], and we
validate that this was the case for our networks. For each
network and stimulus, we learn the maximum entropy
model of its responses to the stimulus based on the firing
rates and pairwise correlations between cells, given by
PðxjsÞ ¼ ð1=ZÞ exp½−P

i αixi −
P

i<j βijxixj�; models are
learned using the MaxEnt toolbox software [63].

E. Finding a sparse representation of structural
features based on Cholesky decomposition

The Cholesky decomposition of a Hermitian positive-
definite matrix [64] factorizes it uniquely into the product
of a lower triangular matrix and its conjugate transpose.
To interpret the structure of the matrix M� based on the
decomposition M� ¼ R · RT , we use the fact that right
multiplying R by any unitary matrix U results in a decom-
positionM� ¼ ðRUÞðRUÞT ,whichmeanskRTg − RTg0k2 ¼
kðRUÞTg − ðRUÞTg0k2. We, therefore, solve the constrained
optimization problem: L ¼ argminU∈fQjQQT¼IgkRUk1 over
themanifold of all possible unitarymatrices [51,52] and find a
matrix U such that L ¼ RU is maximally sparse and yet
remains an exact decomposition of M.

F. Multidimensional scaling of networks

Given an N × N dissimilarity matrix Dfunc and a desired
number of dimensions p (p ¼ 2 in the main text), we find
the N × p embedding matrix such that the pairwise dis-
tances in the p-dimensional space minimize the mean
squared error with respect to the dissimilarities specified
by D. MDS is implemented using the scikit-learn PYTHON

package [65].

G. Divergences between probability distributions

The Kullback-Leibler divergence between probability
distributions P and Q is defined as DKLðP;QÞ ¼P

x PðxÞ log (PðxÞ=QðxÞ), which measures the distin-
guishability of distributions in bits and has multiple
information theory and statistics motivations and interpre-
tations [66]. The Jensen-Shannon divergence [67] is a
symmetric and bounded extension of the Kullback-Leibler
divergence, defined as DJSðP;QÞ ¼ 1

2
DKLðP;MÞ þ

1
2
DKLðQ;MÞ, where M ¼ ðPþQ=2Þ. This is a measure

of dissimilarity between probability distributions, which is
0 bits for identical distributions and 1 bit for nonoverlap-
ping distributions.
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APPENDIX: EXPANDED METHODS AND
IMPLEMENTATION DETAILS

1. Identifying stimulus strengths
that elicit networks’ responses

We repeat the analysis of network responses and sim-
ilarity for a wide range of external input rates—from very
weak stimuli that elicit almost no spiking responses to very
strong stimuli that elicit firing rates that saturate our chosen
binning resolution. The relation between the firing rates
and the stimulus strength parameter η, for the ensemble of
15 neurons, is shown in Supplemental Fig. S2 [43] and is
used to set the range of stimulus values that are studied in
detail along the manuscript. The networks analyzed in
Figs. 1–3 in the main text use η ¼ 1.5.

2. Different choice for temporal bin size, synaptic
dynamics, and single-neuron models

To verify our results do not depend on a specific choice of
the simulation configuration, we repeat the analysis in the
main text for different simulation and analysis parameters.
(1) Temporal bin sizes.—The analysis presented in main

text uses a time bin of Δt ¼ 20 ms. We repeat the
analysis with Δt ¼ 10 and 40 ms.

(2) Synaptic dynamics.—Throughout the main text, the
synaptic dynamics of the simulated networks follows
an alpha function, IðtÞ ¼ wsyn · ðt=τÞ · e1−ðt=τÞ [68],
in which postsynaptic potentials have a finite rise time
(here, wsyn is the synaptic weight and corresponds to
the amplitude of the excitatory post synaptic poten-
tial). We repeat the analysis with delta-function
activation function of synapses [69], in which post-
synaptic potential jumps on each spike arrival.

(3) Neuron model.—The neuron model used in the main
text is a current-based model (“iaf_psc_alpha” in
NEST [61]), in which subthreshold dynamics are
linear and threshold crossing is followed by an
absolute refractory period. Conductance-based net-
works are simulated using Brian 2 [70], and simu-
lation parameters are adopted from Ref. [71].

Similar to the results presented in the main text, the model
based on the full Mahalanobis matrix, the complete feature-
basedmodel, and themodel basedon the total synaptic inputs
all show significantly higher correlationwithDfunc compared
to other structural measures. Euclidean distance is shown in
Supplemental Fig. S3 [43] as an example, but the behavior
for other structural metrics is similar.

3. Predicting PSTH-based functional similarity

The similarity between the spiking responses of net-
works can be evaluated using different metrics, and the

specific choice of a metric highlights different aspects of
the neural code. It is not immediately clear whether the
model defined in Eq. (3), which accurately predicts Dfunc
(as defined in the main text), generalizes to other functional
metrics. We, therefore, ask whether our feature-based
model can predict a PSTH-based similarity measure of
the neural responses.
We use the binarized spiking response of network G to

stimulus s (a matrix of the form f0; 1gN×T as in Fig. 1,
where N is the number of neurons and T is the number of
time bins), which we denote by xGðsÞ, to get the time-
dependent firing rate or PSTH: For a given stimulus s and
for each network G, we convolve the ith row of xGðsÞ with
a 200-ms sliding window to get the PSTH of the ith neuron
in network G, riGðtÞ (which is a vector of real numbers of
size T −W, where W is the number of time bins corre-
sponding to the window—10 for 200-ms window and
20-ms time bins). We then measure the PSTH-based
functional dissimilarity between two networks as the
average over neurons of the PSTH difference between
the corresponding neurons in each network:

DPSTHðG;G0jsÞ ¼ 1

N

XN
i¼1

kriGðtÞ − riG0 ðtÞk2:

We find thatDfunc andDPSTH are highly correlated across
different stimuli. Consequently, our feature-based model
accurately predicts the PSTH-based functional dissimilar-
ity, as shown in Supplemental Fig. S4 [43].

4. Low-dimensional complexity of the dissimilarity
matrix between networks

To assess the lower-dimensional structure of the dis-
similarity matrix, we compare its spectrum to that of
randomly shuffled controls. In Supplemental Fig. S5
[43], we show, for three representative example networks
of size 15 responding to three different stimuli, that the
spectrum of the original dissimilarity matrix (“empirical” in
blue) decays significantly faster than that of a randomly
shuffled version of these matrices (“control” in black).
Thus, the lower-dimensional structure of these matrices
depends on the relations between all the pairwise distances
and not merely their overall distribution.

5. Comparing the predictive power of different
common structural metrics

We explore a wide range of structural metrics and ask
how well they predict the functional dissimilarity of net-
work responses. Supplemental Fig. S6 [43] shows an
extended version of Fig. 2 in the main text: Accuracy is
measured by the correlation between the distances com-
puted by each of the methods and the functional dissimi-
larity Dfunc. As in Fig. 2, the stimulus to each neuron is an
independent realization of the same Poisson inputs, with
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N ¼ 15, η ¼ 1.5, and ρ ¼ 0. Our learned model (black)
outperforms all metrics by a large margin.

6. Firing-rate-based dissimilarity measure

The firing rate ri of the ith neuron in a network G of N
neurons is defined as the ratio between the number of time
bins in which the neuron spikes and the total number of
time bins (equivalently, the marginal spike probability).
The firing rate vector of each network is defined as the
vector of firing rates of all N neurons, r ¼ ðr1;…; rNÞ. The
firing-based dissimilarity between networks G and G0 is
taken to be the Euclidean distance between their firing rate
vectors, DFRðG;G0Þ ¼ kr − r0k.

7. Constructing naturalistic stimuli from
electrophysiological recordings

Spike trains are obtained from The Allen Brain
Observatory, a database of the visually evoked functional
responses of neurons in mouse visual cortex based on two-
photon fluorescence imaging. We include 30-s data from
59 units with a signal-to-noise (SNR) ratio larger than 4,
recorded using six neuropixel probes from a male mouse in
response to a natural movie. To construct the stimulus to
the network, we randomly sample a 59 × 15 feed-forward
connectivity matrix, such that each column represents the
subset of input units connected to each of the 15 neurons
(different feed-forward connectivity values are considered;
see Supplemental Fig. S11 [43]). Synaptic weights from the
inputs to the networks are chosen to elicit nonpathological
network response; different values are considered and give
similar results (Supplemental Figure S11 [43]).
Details of the metrics used in the comparison are as

follows.
(1) Metrics between continuous vectors:

(i) L1 (Manhattan),
P jxi − yij;

(ii) Braycurtis,
P

iðjxi − yij=jxi þ yijÞ;
(iii) Canberra,

P
iðjxi − yij=jxij þ jyijÞ;

(iv) L∞ (Chebyshev), max jxi − yij.
(2) Metrics between binary vectors (applied to binarized

connectivity matrix):
(i) Dice,

P jxi − yij=2
P

xi · yi þ
P jxi − yij;

(ii) Jaccard,
P jxi − yij=

P
xi · yi þ

P jxi − yij;
(iii) Kulsinki,

P jxi − yi − jP xi · yi þ NðN − 1Þ=P jxi − yij þ NðN − 1Þ;
(iv) Rogers-Tanimoto, 2

P jxi − yij=
P

xi · yi þP ðxi − 1Þ · ðyi − 1Þ þ 2
P jxi − yij;

(v) Russel-Rao, NðN − 1Þ −P
xi · yi=NðN − 1Þ;

(vi) Sokal-Sneath,2
Pjxi−yij=

P
xi·yiþ2

Pjxi−yij;
(vii) Yule, 2

Pjxi−yij=
P

xi ·yi ·
Pðxi−1Þ·ðyi−1ÞþPjxi−yij.

All structural metrics are computed using the SciPy
PYTHON package [72]. Spectral distances are computed as
follows: For each connectivity matrix G, the directed graph
Laplacian is computed using three different algorithms,
as implemented by the networkx PYTHON package [73].

The real part of each Laplacian spectrum is computed
and sorted, yielding a vector of size N. Finally, Euclidean
pairwise distances are computed between the vectors [74].

8. Finding the optimal Mahalanobis matrix M�
under a regularized optimization

The optimal Mahalanobis matrixM� is found by solving
the optimization problem described in the main text
[Eq. (2)]. For networks of size N, the number of parameters
in M� is N2 · ðN − 1Þ2. To avoid overfitting, we use a
regularization term that is weighted by a free parameter α.
For networks of size 15, we solve the optimization problem
with 50 different values of α, equally spaced on a
logarithmic scale from 10−6 to 106. For each value of α,
we estimate the accuracy of the resulting M� on a held-out
validation set (a quarter of the size of the train set). The
value of α that gives the minimal loss for each stimulus is
used to obtainM� that are used in the main text; with some
small variation across stimuli, αopt ≈ 103.

9. The optimal Mahalanobis M� for shuffled
data shows no structure

To verify that the success and accuracy of our learned
Mahalanobis matrix M� is not a result of overfitting or of
overexpressive power of this model, we repeat the fitting
procedure with shuffled functional dissimilarity values, by
randomly permuting the entries of the dissimilarity matrix.
For different values of the regularization parameter α, we
solve the optimization problem and assess predictive
performance on a validation set, as described above. The
value of α that gives the best performance on the validation
set is used to computeM�, and its performance is measured
on a test set, shown in Supplemental Fig. S8 [43]. Unlike
the case for the real data, the optimalM� is unable to model
the shuffled data. This result, together with the cross-
validation strategy described above, shows that the pre-
dictive accuracy of M� stems from its ability to capture the
geometry of the functional space of networks and not from
its computational expressive power.

10. Correlation between dissimilarity matrices
across the space of stimuli

The functional dissimilarity matrix between networks
depends on the stimulus that is presented to the networks.
It is not immediately clear that these dissimilarity
matrices are related in a simple way. In particular,
networks that respond very differently to one stimulus
may have very similar responses to another stimulus. To
investigate this, we calculate the Pearson correlation
between all computed dissimilarity matrices for the
different stimuli and the one presented in the main text
(for which η ¼ 1.5 and ρ ¼ 0).
Supplemental Fig. S9 [43] shows that, over large parts of

the space of stimuli, functional dissimilarity matrices are
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highly correlated. This implies that the functional distances
between networks are scaled on average by a multiplicative
constant that is a function of the statistics of the stimulus.
Up to this scaling behavior, the overall structure of func-
tional networks space remains stable.

11. Relative importance of the sum of synaptic
inputs and the sum of synaptic outputs for the

feature-based models

The models based on the sum of synaptic inputs and the
sum of synaptic outputs (IO-based models), described
by Eq. (3) in the main text, are fitted by a linear regression
that predicts Dfunc using a weighted sum of the squared
differences between the sum of synaptic inputs and the
sum of synaptic outputs of each of the neurons. To
characterize the relative importance of the synaptic inputs
and synaptic outputs in predicting functional dissimilarity
of networks, we fit two additional models for each ðη; ρÞ
stimulus: a model that relies only on the sum of synaptic
inputs of each neuron and a model that relies only on the
sum of synaptic outputs of each neuron. We compute the
accuracy of each model, defined as Pearson’s correlation
with empirical Dfunc, denoting the accuracy of the input-
based model as AI and the accuracy of the output-based
model as AO. We then compare the accuracy of these two
models by computing the ratio between correlation coef-
ficients, AI=AO, as plotted in Supplemental Fig. S10 [43].
Interestingly, we find a transition from an output-
dominated to an input-dominated regime as stimulus
strength increased. We note that the model in the main
text uses both the inputs and outputs as features and,
therefore, outperforms both, by construction.
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