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Abstract

Traveling waves have been measured at a diversity
of regions and scales in the brain, however a con-
sensus as to their computational purpose has yet to
be reached. An intriguing hypothesis is that travel-
ing waves serve to structure neural representations
both in space and time, thereby acting as an in-
ductive bias towards natural data. In this work,
we investigate this hypothesis by introducing the
Neural Wave Machine (NWM) – a locally coupled
oscillatory recurrent neural network capable of ex-
hibiting traveling waves in its hidden state. After
training on simple dynamic sequences, we show
that this model indeed learns static spatial struc-
ture such as topographic organization, and further
uses complex spatiotemporal structure such as
traveling waves to encode observed transforma-
tions. To measure the computational implications
of this structure, we use a suite of sequence clas-
sification and physical dynamics modeling tasks
to show that the NWM is both more parameter
efficient, and is able to forecast future trajectories
of simple physical dynamical systems more accu-
rately than existing state of the art counterparts.
We conclude with a discussion of how this model
may allow for novel investigations of the compu-
tational hypotheses surrounding traveling waves
which were previously challenging or impossible.

1. Introduction
In machine learning, inductive biases can be understood as
limiting the search space of possible hypotheses a priori, and
indeed, it is known that without any inductive bias, learn-
ing generalizations beyond the training data is theoretically
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Figure 1: Overview of the Neural Wave Machine. The input
sequence u is encoded with fθ to act as a driving term in
the hidden state x which is modeled temporally (ẍ) as a
network of locally coupled oscillators. The network is then
trained to reconstruct the input sequence: û = gθ(x). The
yellow arrows track a traveling wavefront over time.

impossible (Wolpert, 1996). Modern machine learning re-
searchers have adopted many task-specific inductive biases
almost by default, such as convolution for spatially struc-
tured data. Similarly, natural intelligence as implemented by
biological systems also has many inductive biases by virtue
of the diversity of constraints that it must simultaneously sat-
isfy such as metabolic efficiency. The fields of psychology,
cognitive science, and neuroscience have all studied these
biases and their observed signatures, often hypothesizing
about their computational implications.

One such observation which has recently gained increasing
interest in the neuroscience community is that of traveling
waves of neural activity. Such waves have been measured
at both local (Davis et al., 2020) and global (Muller et al.,
2016b) scales, and have been shown to be strongly related to
alpha, theta, and gamma oscillations in a variety of brain re-
gions (Zhang et al., 2018; Besserve et al., 2015). Prompted
by these observations, a large number of theoretical hy-
potheses have been developed which attempt to explain the
computational purposes of traveling waves (Muller et al.,
2018), and the inductive biases which they may mediate.

Of particular relevance to the machine learning commu-
nity, one hypothesis is that traveling waves serve to bene-
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ficially structure neural representations in both space and
time (Lubenov & Siapas, 2009; Jancke et al., 2004), act-
ing as an inductive bias towards similarly structured natu-
ral data. Structured representations have been previously
demonstrated in the machine learning community to be
extremely valuable, making learning models both more effi-
cient and robust (Worrall et al., 2017). A prime example of
this is group equivariance (Cohen & Welling, 2016); in the
case of translation, this resulted in the convolutional neu-
ral network which reduced the sensitivity of existing fully
connected artificial neural networks to small image shifts
and deformations (Fukushima, 1980; Lecun et al., 1998),
thereby facilitating the rapid growth of the field of deep
learning (Krizhevsky et al., 2012). In the case of traveling
waves, it is thus suggested that they may facilitate a similar
kind of spatiotemporal structure in neural representations,
thereby granting the observed robustness and efficiency of
natural intelligence which is still lacking in modern deep
neural networks (Lake et al., 2017).

To date, however, testing ideas related to the computational
purposes of traveling waves has been challenging due to a
lack of neural network architectures which have a notion of
spatial locality necessary for modeling such spatio-temporal
dynamics. Further, existing networks which do have such
spatial structure often do not have temporal structure (Keller
et al., 2021; Lee et al., 2020), or are not sufficiently flexi-
bly parameterized to allow them to be trained on standard
machine learning benchmarks (Davis et al., 2021).

In this work, we propose to investigate the computational hy-
potheses surrounding traveling waves through a bottom-up
approach; we build a flexibly parameterized computational
model known to be capable of producing traveling waves,
and show that it indeed learns to exhibit complex spatiotem-
poral dynamics when modeling real data. We then show,
relevant to the computational neuroscience community, how
such a network indeed learns spatial and temporal struc-
ture reminiscent of that found in the brain. Specifically, we
observe that our network learns topographically organized
selectivity, similar to the observed orientation columns and
hypercolumns of the primary visual cortex (Wiesel & Hubel,
1974). Further, we show that our network learns to use com-
plex spatiotemporal organization such as traveling waves
to encode transformations by artificially inducing waves in
the hidden state and observing that this allows us to further
progress or reverse the transformations of generated images.

As it relates to inductive biases, we asses the computational
implications of the observed representational structure by
training the model on the physical dynamics forecasting
suite introduced in the paper ‘Which Priors Matter?’ (Botev
et al., 2021). We see that our model is more accurate at pre-
dicting future trajectories of simple physical dynamics when
compared with existing state of the art models, providing

evidence that the structure mediated by traveling waves is
indeed a beneficial inductive bias for modeling such smooth
natural transformations. Further, due to our model’s local
connectivity, we see that it is more efficient both in terms
of parameters, and in terms of biological concerns such as
wiring length, suggesting a connection between locality of
connections, waves, and an inductive transformation bias in
biological systems.

Overall we believe our work offers the concrete contribution
of a new powerful model at the interface of computational
neuroscience and modern machine learning. We show that
this model allows for the investigation of the computational
hypotheses surrounding complex synchrony in the brain in
a new way, and further provides preliminary evidence for
the existing hypothesis that traveling waves serve to induce
spatiotemporal structure in neural representations.

2. Background
Structured Representations In machine learning, an in-
creasingly popular way to incorporate structure into neu-
ral networks is through equivariant architectures such as
group equivariant convolutional neural networks (Cohen
& Welling, 2016). Formally, a map f is equivariant if it
commutes with the transformation: f(τρ[u]) = Γρ[f(u)],
where τ and Γ are the representations of the action of the
group element ρ on the input and output spaces respectively.
At a high level, this can be understood to mean that for
a given set of input transformations of interest, there is a
corresponding known and well-behaved transformation of
the representations in output space. One of the simplest
and most well known examples of an equivariant map is the
convolutional layer; a translation of the input results in a
corresponding translation of the output feature maps. Such
models have been observed to improve sample efficiency,
generalization, and robustness both empirically (Fukushima,
1980; Cohen & Welling, 2016; Worrall et al., 2017; Veel-
ing et al., 2018; van der Pol et al., 2020) and theoretically
(Elesedy & Zaidi, 2021; Bordelon & Pehlevan, 2022) by
serving as an inductive bias towards representations with
naturally realistic symmetry. Despite their efficacy, however,
their application to more complex non-group transforma-
tions has been limited by the restrictions of the underlying
group theory. A recently developing research goal has thus
been to build equivariant maps for a broader range of trans-
formations, including models which aim to learn symmetries
from the data itself (van der Wilk et al., 2018; Bouchacourt
et al., 2021; Keller & Welling, 2021).

Traveling Waves in Neuroscience Neural oscillations
and traveling waves have long been a subject of study in
neuroscience and neurophysiology (Hughes, 1995; Muller
et al., 2018). Although such waves were originally measured
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primarily in anesthetized subjects, improved multi-channel
recording and analysis techniques have recently demon-
strated propagating wave activity in awake functioning sub-
jects as well, originating from both external stimuli and in-
ternal ‘spontaneous’ recurrent connections (Sato et al., 2012;
Muller et al., 2014; 2018). While many hypotheses have
been put forth for their precise computational role, a consen-
sus has yet to be reached. Example hypotheses include that
traveling waves may: influence visual perception (Zanos
et al., 2015); modulate information transfer (Besserve et al.,
2015); correlate with conscious awareness (Bhattacharya
et al., 2022b); facilitate predictive coding (Friston, 2019;
Alamia & VanRullen, 2019); lower the threshold for detec-
tion of weak stimuli (Davis et al., 2020); serve as a short
term memory (King & Wyart, 2021; Bhattacharya et al.,
2022a); or as a mechanism for the formation of long-term
memories during sleep (Muller et al., 2016a). Relevant to
this work, traveling waves have directly been implicated in
the encoding of motion (Heitmann & Ermentrout, 2020),
and have been measured to correlate strongly with perceived
perceptual illusions of motion (Jancke et al., 2004). Further,
it has been suggested that they form the basis of alpha and
theta oscillations (Zhang et al., 2018; Lubenov & Siapas,
2009) and may serve to both structure and integrate infor-
mation across space and time (Sato et al., 2012; Sato, 2022).
Due to the fundamental relationship between neural syn-
chrony and the coordination of spike timing (Bragin et al.,
1995), it is natural to wonder if more complex forms of
spatiotemporal synchrony such as traveling waves may play
a similarly more complex structural role.

Computational Models of Traveling Waves In the fields
of computational and theoretical neuroscience, multiple
models have been developed to help explain the observed
complex synchronous dynamics of neural systems. One
classical model is that of a network of locally coupled os-
cillators (Diamant & Bortoff, 1969; Ermentrout & Kopell,
1984). However, to date, such models have been limited
to those which either are built for the primary purpose of
analysis (Kuramoto, 1981; Ermentrout & Kleinfeld, 2001;
Davis et al., 2021), or those which perform very simple bi-
nary operations (Gong & van Leeuwen, 2009; Izhikevich &
Hoppensteadt, 2008), with neither set leveraging the flexible
computational capabilities of modern deep neural networks.
One line of work has aimed to integrate classical Kuramoto
models into deep neural networks by directly parameterizing
activations in terms of phase values (Ricci et al., 2021), how-
ever such models lack a notion of spatial locality, making the
existence of spatio-temporal dynamics less concrete. Most
recently, Davis et al. (2021) studied a large scale locally
connected spiking neural network model, quantifying the
conditions necessary for the emergence of traveling waves,
and showed such waves appeared to uniquely agree with
human cortical traveling waves in a variety of dimensions.

However, similar to most existing models in this category,
the model is formulated as a spiking neural network thus
requiring more sophisticated training mechanisms which
are yet to scale to the same performance as deep neural
networks (Neftci et al., 2019).

3. Neural Wave Machines
In the following section we introduce the Neural Wave
Machine (NWM), a deep neural network architecture which
exhibits traveling waves and other complex spatiotemporal
dynamics in the service of flexible differentiable compu-
tation. To achieve this, we take inspiration from the seminal
models of traveling waves built as networks of locally
coupled oscillators (Ermentrout & Kleinfeld, 2001), and
propose to integrate them into a modern deep learning
framework by taking advantage of the recently developed
coupled oscillatory Recurrent Neural Network (coRNN)
of Rusch & Mishra (2021).

3.1. Coupled Oscillatory Recurrent Neural Networks

In (Rusch & Mishra, 2021) the authors propose to solve
the Exploding and Vanishing Gradient Problem (EVGP) in
recurrent neural networks by defining a new recurrent neural
network with hidden state dynamics given by the parameter-
ized equations of a system of coupled, damped, and driven
oscillators. Explicitly, the hidden state of the recurrent neu-
ral network x is updated by solving the following second
order partial differential equation:

ẍ = σ (Wxx+Wẋẋ+Vu+ b)− γx− αẋ (1)

Where ∂x
∂t = ẋ, ∂2x

∂t2 = ẍ are the first and second derivatives
of the hidden state with respect to time, and u denotes the
input at each time step. The terms Wxx, Wẋẋ, and Vu can
then be interpreted as the coupling, damping, and driving
terms respectively. Finally, σ is a nonlinear activation func-
tion such as the hyperbolic tangent, and γ & α are scalar
variables which can be fixed or learned in combination with
the above matrices. In practice, the above differential equa-
tion can be discretized and integrated numerically using
an IMEX (implicit-explicit) discretization scheme shown
to preserve the desirable bounds of the continuous system.
Such a discretization can be achieved by first introducing a
‘velocity’ variable v = ẋ, turning the second order system
into a set of two coupled first order equations:

ẋ = v, v̇ = σ (Wxx+Wẋv +Vu+ b)− γx− αv (2)

Then, for a fixed time step 0 < ∆t < 1, the hidden state x
and velocity v of the RNN at time t+ 1 can be updated as:

xt+1 = xt +∆t(vt+1) vt+1 = vt +∆t(v′
t) (3)

v′
t = σ

(
Wxxt +Wẋvt +Vut+1 + b

)
− γxt − αvt (4)
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This model was theoretically demonstrated to have a
bounded gradient and hidden state magnitude under assump-
tions on the time-step ∆t and the infinity norm of the cou-
pling parameters. Empirically, such stable gradient dynam-
ics were shown to yield better performance than existing
RNNs on tasks with very long time-dependencies.

In relation to our goals, the oscillatory dynamics of the
coRNN make it amenable to synchronous activity, unlike
most existing deep neural network models, and the stable
gradient dynamics make it a powerful and flexibly param-
eterizable sequence model, unlike existing models of trav-
eling waves based on spiking neural networks. However,
given that the hidden state x is not endowed with any notion
of spatial layout, it is still not meaningful to study spatiotem-
poral dynamics in such a model. In the following subsection
we describe how such a spatial layout may be implemented
efficiently by replacing the fully connected recurrent cou-
pling matrices Wx and Wẋ with convolution operations.

3.2. Local Connectivity

In (Davis et al., 2021), the authors study a large scale spik-
ing neural network model, quantifying the emergence of
traveling waves, and comparing them with waves observed
in the human cortex. At a high level, as it is relevant to this
work, the study concludes that locally restricted connec-
tivity and distance dependant conduction delays are both
necessary and sufficient to produce traveling waves. Further
they observe that such waves are fairly robust to the synap-
tic strengths of their model when given a sufficiently large
number of neurons. Given these findings, we hypothesize
that the Coupled Oscillitory Recurrent Neural Network may
yield traveling waves if similarly constrained.

To impose such constraints we begin by defining an arbitrary
topographic layout for the N -dimensional hidden state x in
the model. For computational simplicity, we propose to use
a regular 1 or 2 dimensional grid, x1D ∈ RCh×N or x2D ∈
RCh×

√
N×

√
N respectively, where Ch is the number of si-

multaneous ‘channels’ in our hidden state. We then see that
specifically, if the recurrent connections Wx and Wẋ are
made local over our spatial dimensions rather than global,
and a distance-dependant time-delay introduced, the afore-
mentioned constraints will be satisfied and the remainder of
the properties such as synaptic strength and the precise local
distribution of connections will be left up to the model to
learn. In practice, we simplify the model by restricting the
topographic connectivity of each neuron to its immediately
adjacent neighbors in the grid, and define all distances (and
thus time-delays) to these neurons to be equal to 1. Such
a simplification allows us to efficiently implement the local
time-delayed connections with a simple size 3 or 3×3 convo-
lutional kernel for 1 and 2 dimensional grids respectively. In
summary, our model is then given identically as in Equations

3 & 4 but with convolutional layers in place of the dense
recurrent matrices. Explicitly, in the 2-dimensional setting,
for convolutional kernels wx,wẋ ∈ RCh×Ch×3×3, we get:

v′
t = σ (wx ⋆ xt +wẋ ⋆ vt + fθ(ut+1) + b)− γxt − αvt (5)

We see we have additionally replaced the linear encoder
V with a function fθ which can be a convolutional or ‘de-
convolutional’ neural network, or any other mapping from
the input to a spatially organized driving force. Importantly,
we see that our imposed local connectivity does not immedi-
ately invalidate any of the assumptions required for the theo-
rems of Rusch & Mishra (2021) about mitigating the EVGP
since the infinity norm of the weights is unlikely to signifi-
cantly increase when simply switching from fully to locally-
connected matrices. We include the updated bounds and
corresponding proofs in Appendix B. In the end, we denote
this model the Neural Wave Machine due to its emergent
wave-like dynamics, facilitated by both the oscillatory up-
date equations of the coRNN, and the local connectivity con-
straints of biological models. In the next section we measure
these desired spatiotemporal dynamics of the NWM and fur-
ther study their impact as an inductive bias on computation.

4. Experiments
In the following two subsections we provide experiments
which demonstrate: first, that our model learns spatiotempo-
ral structure reminiscent of natural observations from neuro-
science; and second, that such structure is beneficial to both
efficiency and accuracy. We outline our methods briefly be-
low, and more thoroughly in Appendix A.

Methods All datasets used in this paper will be consid-
ered as unsupervised unless otherwise noted, and thus we
will train the model from Section 3 as an autoregressive
model. To do this, we add a learned decoder from the hid-
den state xt back to the input at the next timestep ut+1, and
train the model with a mean-squared error loss. Explicitly,
ût+2 = gθ(xt+1), and L = ||ût+2 − ut+2||22, where gθ is
the decoder which can again be a convolutional neural net-
work, or any network which maps from the spatial hidden
state back to the input space. For the simple tasks in Section
4.1, and the sequence classification tasks of Section 4.2 we
use minimal encoders and decoders corresponding to single
linear layers or small MLPs. For the more complex physi-
cal forecasting tasks of Section 4.2 we use the baseline deep
convolutional encoders and decoders defined in the bench-
mark. As a second minor addition which we observe im-
proves performance on long-term trajectory modeling tasks,
we introduce an additional encoder network which learns to
predict the initial conditions x0 and v0 of the network given
a partial ‘inference’ sequence. Explicitly, we can write this
as: x0,v0 = f IC

θ ({ut}
Tinf

t=0 ). Such an initial-condition net-
work is common in the Neural-ODE literature (Chen et al.,
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Figure 2: Plot of different datasets used in this work (top) and the associated learned hidden state dynamics (bottom). We
see the NWM learns different spatiotemporal structure for each dataset, and no structure when trained on random noise (a).
Additional videos of dynamics, and code for experiments, can be found at: github.com/akandykeller/NeuralWaveMachines.

2018), and in this setting it is beneficial to initialize the
latent dynamics which would otherwise take a significant
number of iterations to reach their final magnitude.

Datasets To investigate how the NWM’s representations
change when modeling different datasets, we focus on three
training sets in this study. Most simply, we first use a dataset
of oriented sine functions (depicted in Figure 2 b) with
a slowly progressing phase over time steps. This dataset
is meant to be a very rough approximation to the sponta-
neously generated retinal waves observed during develop-
ment (Ackman et al., 2012). For this dataset, the wavelength
and magnitude of the sine waves are fixed, and sequences
are generated by randomly sampling an orientation between
0 to π and then sequentially progressing the phase by 1

9π
for each timestep until two periods are complete. As a sec-
ond dataset, we borrow the rotating MNIST dataset from the
equivariance literature (Keller & Welling, 2021), consisting
of sequences of MNIST digits with each timestep rotated
by an additional 1

9π radians. This dataset serves to allow us
to investigate the existence of generalizable spatio-temporal
structure in a limited setting. Finally, for more realistic dy-
namics, we make use of the recent hamiltonian dynamics
suite (Botev et al., 2021). At a high level, the benchmark
consists of a diversity of tasks governed by known equations
of motion, including toy physics examples such as idealized
springs, pendulums, orbits, and double-pendulums (Fig 2 c,
d, e & h), as well as cyclic games (f & g). Models are evalu-
ated based on their ability to accurately forecast dynamics
into the future from a limited number of inference frames.

4.1. Measuring Spatiotemporal Structure

To measure the spatiotemporal representational structure
that the NWM learns, and its alignment with natural struc-
ture, we start with the two simplest tasks: modeling sim-
ple sine waves, and modeling rotating MNIST digits. We
use three separate methods for analyzing the representations
learned on these tasks: Cohen’s d selectivity metric (Cohen,
1988) to depict spatial organization, the Hilbert transform
to measure the instantaneous phase and velocity of putative
waves (Davis et al., 2020), and artificially induced traveling

waves combined with visualized reconstructions to measure
the approximate equivalence of latent traveling waves with
observed transformations.

Topographic Orientation Selectivity One of the most
common methods to demonstrate spatial organization of
neural representations is by measuring their selectivity with
respect to different features and plotting this with respect to
each neuron’s position (Hubel & Wiesel, 1974). As an ini-
tial test of a basic form of selectivity, namely orientation se-
lectivity, we consider a hypothesis from the literature about
how such structure might arise initially in animals (Ackman
et al., 2012). Specifically, we investigate whether simple
periodic inputs, such as the spontaneous retinal waves ob-
served during early development, are sufficient to encourage
smooth topographic organization of orientation selectivity
when modeled by a minimal NWM. To test this, we train our
model on the simple sine waves dataset, and measure the ori-
entation selectivity of each hidden neuron’s time-averaged
response to a static 36-element sequences of oriented grat-
ings using Cohen’s d metric (Cohen, 1988). In Figure 3 we
plot the resulting color/angle of maximal d value for each
of the 72 × 72 neurons (or a black x if all d < 0.65). We
see that the simulated retinal waves do appear to induce to-
pographic organization of orientation selectivity with super-
ficial similarity to the orientation columns of primary visual
cortex (Hubel et al., 1978). Outlined in white, we show a
manually identified ‘pinwheel’ where selectivity for all ori-
entations meet, a hallmark of early visual system organiza-
tion in many species. In relation to prior models of orienta-
tion columns (Swindale, 1982), our work does not presup-
pose the existence of orientation selectivity, but rather it is
absent at initialization and it is instead learned in conjunc-
tion with topographic organization. We note that the exact
statistics of our learned orientation maps have not been mea-
sured, and therefore may differ in their current form from
those measured in animal studies (Kaschube et al., 2010).
In Appendix C.5 we include additional results studying for-
mation mechanism of this orientation selectivity as well as
the model parameters which affect the typical length scale
of the columns. We leave further precise investigation of
the biological similarity to future work.

5

https://github.com/akandykeller/NeuralWaveMachines


Neural Wave Machines

Figure 3: (Left) Plot of orientation selectivity of each NWM
hidden neuron x after training on simple sine waves. (Right)
Plot of the maximum activating image for a subset of NWM
hidden neurons after training on the rotating MNIST dataset
(See Sec. C.6 for full). We see the NWM learns smooth
spatial topographic structure tailored to the input dataset.

General Topographic Organization On the right of Fig-
ure 3, we show the spatial structure of feature selectivity for
a network trained on rotating MNIST digits instead. Specif-
ically, we plot the image from the MNIST dataset which
maximally activates each neuron in our 2-dimensional hid-
den state (at the final timestep). We see that neurons are
organized with respect to digit class and style, but also ori-
entation, implying that activity is likely to travel over these
paths as a traveling wave for observed rotation transforma-
tions. Such structure is reminiscent of the higher level cate-
gory selectivity of the ventral temporal cortex (Kanwisher
et al., 1997; Khosla et al., 2022), and also the temporal struc-
ture observed to be related to theta oscillations and waves
in the hippocampus (Lubenov & Siapas, 2009).

Instantaneous Phase and Velocity Next, we demonstrate
that the proposed model indeed exhibits full spatiotempo-
ral structure beyond static spatial structure. Compared with
biological neural networks, it is easy for us to directly visu-
alize the spatio-temporal activity of our network and quali-
tatively validate the existence of structure. Figures 1, 2, and
4 provide such examples, while additional samples can be
found in Appendix C.7 and the github repository. For ad-
ditional rigor, however, we borrow state of the art methods
from neuroscience to directly compute the instantaneous
phase and velocity of putative waves from noisy real-valued
signals. Specifically, we follow the work of (Davis et al.,
2020) and compute the ‘generalized phase’ of a real valued
signal x(t) by first transforming the signal to a complex-
valued analytic signal xa(t) through the Hilbert transform
H and then taking the complex argument of this signal as
the phase ϕ(t) at each point in space and time. Formally:
xa(t) = x(t) + iH[x(t)], and ϕ(t) = Arg[xa(t)]. Finally,
wave velocities can then straightforwardly be computed us-
ing the spatial gradient of this phase: ν = −∇ϕ. In Figure
4 we depict such phases and velocities for the NWM trained
on the rotating MNIST task. We see that, in alignment with
expectation, the estimated phases have a spatially periodic

Figure 4: (Left) Plot of hidden state x (top), generalized
phase ϕ (mid), and estimated wave velocity −∇ϕ (bot)
over the course of a transformation sequence T = 0 to 3.
A small gold star moves along with a wave front, relative
to a stationary grey triangle, both added to help track the
approximate peak of a traveling wave in the hidden state.
(Right) Estimated wave velocity before and after training.

pattern which oscillates with sequence length, while the es-
timated velocities similarly align to point in the downward
direction after training (but not before training, as outlined
by the disjoint velocity vectors in Figure 4 top right).

Controlled Generation with Induced Traveling Waves
One of the benefits of structured representations in genera-
tive models is that they allow for controlled generation of
new observations by taking advantage of the known latent
operator for a desired input transformation. In this section
we demonstrate that such controlled generation is indeed
similarly possible by artificially inducing traveling waves in
the NWM hidden state, thereby evidencing the spatiotem-
poral structure of its representations. Given the high de-
gree of flexibility of the potentially emergent wave dynam-
ics of the 2-D system presented in Figure 4, we concede
that two restrictions must be placed on the model in order
for us to be able to accurately induce waves which match
those the model has learned. Explicitly, we first define the
latent space to be a set of disjoint 1-dimensional tori such
that learned wave propagation will be restricted to a single
axis. Secondly, we restrict our topographic coupling to be 1-
directional by masking out all weights except for one (non-
central weight) in our convolutional kernel which is shared
over all tori. In combination, these restrictions ensure that if
traveling waves are learned by the model, they will likely
be able to be approximately modeled by solutions to the 1-
dimensional 1-way wave equation: y(x, t) = f(x− vt).

In Figure 5 we depict the results of this experiment. In de-
tail, we train the 1D NWM described above on a dataset
of length T = 18 sequences of rotating MNIST digits. At
test time, we encode a full sequence (left) and take the fi-
nal hidden state xT as the initial state for our system. We
then induce a traveling wave in the hidden state in the re-
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Figure 5: Visualization of controlled generation with induced traveling waves. An input sequence from u0 to uT (left) gets
encoded to a hidden state xT . We then induce a traveling wave in the opposite direction of the estimated instantaneous
velocity and observe we can decode back to the original input û0 (highlighted yellow, right). Furthermore, we see by
continuing the wave, we can continue the transformation past the bounds of the input sequence (highlighted pink, right).

verse direction of the instantaneous velocity. In practice,
since we have limited our system to 1-dimensional tori, this
corresponds to sequentially cyclically shifting (or linearly
interpolating) activations across the spatial dimension of
each circular subspace according to the inverse of our as-
sumed velocity. The result in Figure 5 (right) shows that
indeed by inducing such reverse traveling waves we can
then decode the original input sequence, and even predict
elements before the start of the sequence (highlighted in
pink). Such sensible decodings highlight the generaliza-
tion power of the representational structure learned by the
NWM. In this example we propagate waves with assumed
velocity v = 1 and observe that this is slightly faster than
the ground truth transformation, resulting in a return to the
start state in 14 steps rather than 18. Additional transfor-
mations can be found in Appendix Figure 11.

4.2. Computational Implications of Structure

Given the structure measured in Section 4.1 is known to
be related to beneficial inductive biases (Fukushima, 1980;
Keller & Welling, 2021), in this section we perform prelimi-
nary experiments to measure such potential benefits in the
context of sequence modeling.

An Inductive Bias for Simple Physical Dynamics First,
inspired by the literature relating traveling waves to visual
motion perception (Jancke et al., 2004) and spatiotemporal
structure in the hippocampus (Lubenov & Siapas, 2009), we
hypothesize that the spatiotemporal structure of the NWM
demonstrated in Section 4.1 may serve as an inductive bias
towards simple physical dynamics. To measure this, we train
NWM models on a representative subset of the Hamiltonian
dynamics suite, and measure their error when attempting to
forecast long test trajectories into the future. Specifically,
we consider six distinct dynamic modeling tasks: three sim-
ple physical dynamics including the pendulum, spring, and
two body gravitational tasks; one less physical but still tem-
porally smooth task, namely the matching pennies task; and
the last, the double pendulum, a complex chaotic physical
dynamics task. We compare performance of the NWM with
the state of the art baselines using optimal hyperparame-
ters directly given in prior work (Botev et al., 2021; Hig-
gins et al., 2021). These include the HGN++ (Higgins et al.,
2021), a standard autoregressive model (AR) (Hochreiter &

Schmidhuber, 1997), and a Neural ODE (Chen et al., 2018)
trained both forwards and backwards in time (ODE [TR]).
We additionally include a final globally coupled coRNN
baseline with equivalent parameters to our NWM to study
the direct impact of the imposed structure on model perfor-
mance. In Table 1 we see that, in alignment with our intu-
ition, the NWM models achieve the lowest forecasting error
on the simple physical dynamics tasks, providing evidence
in support of the hypothesis that the observed spatiotempo-
ral structure of Section 4.1 is beneficial for modeling such
systems. Further, we see that the coRNN baseline performs
the best on the less physical but predictable matching pen-
nies task, while the maximally flexible Neural ODE per-
forms the best on the chaotic double pendulum task. Despite
these promising results, we note that accurately measuring
forecasting performance in image space is notoriously hard
(Botev et al., 2021; Higgins et al., 2021), and therefore rec-
ommend future work pursue the development of alternative
benchmarks and metrics for evaluating the beneficial induc-
tive biases present in the NWM and other forecasting mod-
els. In Appendix C.3 and the limitations section below we
include additional discussion of these considerations.

Efficiency As a second potential benefit related to the
NWM’s demonstrated spatiotemporal structure, our neu-
ral wave machines are highly parameter efficient by de-
sign when compared to the globally coupled coRNN. As
explained in Section 3, the recurrent connections of our
model are restricted to be entirely local as implemented by
the convolution operation, thereby allowing for arbitrarily
large hidden state sizes with a constant number of recur-
rent parameters, significantly improving over the quadrati-
cally increasing number of parameters in the coRNN. In Ta-
ble 4 we see that on the canonical long sequence classifica-
tion tasks of sequential MNIST (sMNIST) and permuted se-
quential MNIST (psMNIST) (Rusch & Mishra, 2021), our
model achieves comparable performance with the coRNN
(and thus existing state of the art) while requiring a fraction
of the parameters. In Appendix C.2 we include additional
results on other sequence modeling tasks such as IMDB
sentiment classification and long sequence addition show-
ing the same benefits. Interestingly, efficiency in terms of
wiring length is also implicated in the formation of orienta-
tion columns in natural systems (Koulakov & Chklovskii,
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Table 1: Forward extrapolation mean squared reconstruction error on the Hamiltonian Dynamics Benchmark held-out test
set (displayed in units of 1× 10−8). We see, in alignment with intuition, the 1 and 2-dimensional Neural Wave Machines
(NWM 1D & 2D) perform best on simple physically realistic dynamics such as the spring, pendulum, and two body problem.
The globally coupled coRNN performs best on the smooth, but non-physical, matching pennies task, while the maximally
flexible Neural ODE performs best on the highly complex and chaotic double pendulum task.

AR HGN++ ODE coRNN NWM 2D NWM 1D

Spring 20.97 1.58 1.58 2.52 5.46 1.45
Pendulum 4,208.0 166.5 166.0 548.0 110.9 237.2
Two Body 91.4 5.0 4.2 2.0 1.9 0.9
Pennies 126.3 190.0 119.3 28.2 47.2 43.1
Double Pendulum 3,905.0 1,531.0 1,296.0 1,666.0 2,512.0 2,821.0

2001). We believe that our work reinforces this relationship
from another perspective by showing that when a recurrent
oscillatory computational system is constrained to be wiring
length efficient by design, it naturally learns topographic or-
ganization (e.g. Figure 3) in order to optimally function.

5. Discussion
In this work we introduce the Neural Wave Machine, a
recurrent neural network model shown to learn spatiotempo-
rally structured representations through local connectivity
and oscillatory dynamics. We propose this model as a
rich testing ground for the diversity of computational hy-
potheses surrounding traveling waves in the neuroscience
literature, and demonstrate its potential value in this regard
by providing evidence for a variety of hypotheses, includ-
ing one relating to the origin of orientation columns, and
one relating to a simple physical inductive bias. Further,
we show that this model is competitive with state of the art
on sequence modeling tasks, hoping to encourage future
use of such models to study the computational purpose of
spatiotemporal dynamics in natural systems.

Related Work In recent years, multiple works have at-
tempted to integrate topographic organization in deep neu-
ral networks for various purposes including learning gener-
alized invariance (Kavukcuoglu et al., 2009), learning gen-
eralized equivariance (Keller & Welling, 2021) or for devel-
oping more accurate models of the development and struc-
ture of natural systems (Lee et al., 2020; Doshi & Konkle,
2022; Blauch et al., 2022). Other work has studied the tem-
poral aspects of neural activations and attempted to inte-

Table 2: Test accuracy on supervised sequence benchmarks.
All results are mean ± std. over 3 random initalizations.

sMNIST psMNIST
Acc. #θ Acc. #θ

coRNN 99.1 ± 0.1 134k 95.0 ± 2.4 134k
NWM 98.6 ± 0.3 50k 94.8 ± 1.1 50k

grate such structure into deep neural networks. For exam-
ple, researchers have studied the integration of recurrence
into feed forward classification networks (Kietzmann et al.,
2019), or the integration spike-time coding through com-
plex activations (Löwe et al., 2022). Separately, others have
aimed to directly integrate natural architectural biases by fix-
ing early layers of a convolutional neural network to mimic
the early stages of the natural visual stream, ultimately re-
sulting in improved robustness (Dapello et al., 2020). Our
work is highly related to these efforts in motivation, but
largely unique in terms of methodology and its focus on
complex spatiotemporal dynamics such as traveling waves.
One class of models which shares some relation intuitively
is reservoir computing (Lukoševičius & Jaeger, 2009). A
primary difference between the NWM and reservoir com-
puting frameworks is that our network has a significant num-
ber of learned parameters within its recurrence that mediate
complex hidden dynamics, while prior work typically relies
on a reservoir of fixed dynamics.

Limitations In this work we have put significant effort
into quantifying the existence of complex spatiotemporal
structure and its impact on the NWMs computational per-
formance. However, due to the inherent flexibility of the
possible dynamics which may emerge, there remain limi-
tations in our ability to due so. In future work, we would
hope to be able to get a more concrete metric correspond-
ing to spatiotemporal structure to better correlate the struc-
ture of our models with their performance. Furthermore, on
tasks such as forecasting dynamics, it is still an open ques-
tion how to best compare the performance of such models
in the most comprehensive and fair manner (Higgins et al.,
2021). In Appendix C.3 we include additional metrics eval-
uating model performances on the Hamiltonian Dynamics
Suite, highlighting this challenge. Finally, our explorations
of parameter efficiency are inherently preliminary and use
fully connected encoders and decoders in the NWM, ulti-
mately contributing 45k of the 50k parameters noted for the
NWM in Table 4. If we were able to replace these compo-
nents with similarly locally connected functions, such as
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convolutional networks, the parameter efficiency would fur-
ther dramatically increase.

Conclusion As a flexible computational model of travel-
ing waves, we believe the NWM framework offers signifi-
cant potential to the computational neuroscience community
as a method for testing other computational hypotheses re-
lating to traveling waves and synchronous neural dynamics
broadly. Similar to convolutional neural networks for mod-
eling the visual system (Yamins et al., 2014; Cadieu et al.,
2014; Kanwisher et al., 2023), neural wave machines do not
match all biologically relevant details of neural dynamics,
but we believe they may capture sufficient abstract prop-
erties to be useful for performing investigations that other-
wise wouldn’t be possible. Examples of initial hypotheses
which we believe would be primarily suited for future study
would be the use of traveling waves as a short term memory
mechanism (Bhattacharya et al., 2022a), or as a mechanism
for sequencing actions (Sato, 2022). Ultimately, we believe
this work suggests that complex spatiotemporal dynamics
and structure should be investigated further in the future to
develop the next set of inductive biases necessary to bring
deep neural networks to the same levels of efficiency and
robustness that we see in natural intelligence.
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A. Experiment Details
Videos of traveling waves and code to reproduce all experiments in the paper can be found at the following github repository:
https://github.com/akandykeller/NeuralWaveMachines.

The code is built as extensions of three existing public repositories, allowing us to reproduce all baseline results
from the original authors’ code. Specifically, we make use: (I) The coRNN repository (https://github.com/
tk-rusch/coRNN) for the supervised sequence experiments, (II) The Topographic VAE repository (https://
github.com/akandykeller/TopographicVAE/) for the rotating MNIST experiments, and (III) The Deep-
Mind Physics Inspired Models repository (https://github.com/deepmind/deepmind-research/tree/
master/physics_inspired_models) for the Hamiltonian Dynamics Suite Experiments.

A.1. Sequence Classification

The efficiency experiments from Section 4.2 were performed by modifying the published code for the original coRNN
(Rusch & Mishra, 2021) to incorporate the local connectivity constraints outlined in the main text. All hyperparameters were
thus set to the defaults in the published code which matched the optimal hyperparameters stated by the authors to be found
from a grid search on each dataset independently. The baseline coRNN values in Table 4 are thus simply from re-running
the original authors code, and we observe similar values to those published in (Rusch & Mishra, 2021). We acknowledge
that running a separate grid search for the NWM models may be beneficial to their performance but we were unable to do so
due to time and computational constraints and thus leave this to future work. In practice, we found the original coRNN
parameters worked well enough to give an initial intuition for the relative performance of the NWM.

For the NWM, the topology of the hidden state was defined to be a regular square 2D grid with side lengths equal to square
root of the default hidden state size (or the integer floor of the square root for non-perfect-square values). Each neuron was
defined to be connected to its immediate surrounding 8 cells in the grid, in addition to a self-connection. The boundary
conditions of the topology were defined to be periodic (implemented through circular padding) such that the global topology
was that of a 2-dimensional torus. The recurrent local coupling parameters were shared over all spatial locations of the
grid, allowing the above local connectivity to be implemented as a periodic convolution with a kernel of size 3× 3. We
noted that increasing the number of channels in the convolutional layers dramatically improved performance, and thus
for the NWM models in Table 4 we use 16 channels in the hidden state. This yeilded a parameter count computation of:
#θ = 1× 256× 16 + 16× 16× 3× 3× 2 + 256× 16× 10 = 49, 664.

A.2. Rotating MNIST and Sine Waves

The experiments on measuring spatiotemporal structure using the MNIST and simple sine waves datasets were performed
by modifying the published code for the Topographic VAE (Keller & Welling, 2021) to introduce our proposed NWM in
place of the ‘shifting temporal coherence’ construction of the topographic Student’s-T variable in the original paper. To
achieve this, the encoder and decoder (fθ & gθ) were implemented as a variational autoencoder (Kingma & Welling, 2014)
with a standard Gaussian prior and Bernoulli distribution for the likelihood of the data. Practically, this was achieved by
setting the output dimensionality of the encoder fθ to twice the hidden state dimensionality, defining half of the outputs as
the posterior mean µθ, and the second half as the log of the posterior variance σθ. We additionally found that applying Layer
Normalization (Ba et al., 2016) (denoted LN) to the output of the encoder helped increase convergence speed. Explicitly,
the model can thus be described as:

zt+1 ∼ qθ(zt+1|ut+1) = N
(
zt+1;µθ(ut+1), σθ(ut+1)I

)
, z̄t+1 = LN(zt+1) (6)

vt+1 = vt +∆t
(
σ (wx ⋆ xt +wẋ ⋆ vt +Vz̄t+1 + b)− γxt − αvt

)
(7)

xt+1 = xt +∆t (vt+1) (8)
pθ(ut+2|gθ(xt+1)) = Bernoilli(ut+2; gθ(xt+1)) (9)

Where the objective is then computed by averaging the evidence lower bound (ELBO) over the length of the sequence:

L(u1:T ;θ) =
1

T

T∑
t=1

Ezt∼qθ(zt|ut)

(
log pθ(ut+1|gθ(xt))−DKL[qθ(zt|ut)||pZ(zt)]

)
(10)

The initial conditions for the NWM were then given by simply setting the initial position equal to the first encoder output,
and the initial velocity to zero, i.e. x0 = z̄0 & v0 = 0. Although we did not test the MNIST experiments with a deterministic
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autoencoder, we note that traveling waves can also clearly be seen in the hidden states of the deterministic models presented
in Sections 3 and 4.2 (as visualized in Figure 2 and the supplementary material), implying that the variational formulation is
not necessary for the emergence of traveling waves.

For the experiment depicted in Figure 4 of Section 4, we used a simple linear encoder and decoder, and a hidden state
dimensionality of 1296 reshaped into a 2D grid of shape 36× 36. As in the rest of the paper, our topographic connectivity
was implemented using a convolutional kernel of shape 3× 3 shared over all elements of the grid, with circular padding
to enforce periodic boundary conditions on the grid. For training, we presented the model with length 18 sequences of
MNIST digits rotating at 20 degrees per step (thus completing a full period per training sequence). At test time, to create
the visualization in Figure 4, we increased the sequence length to 72 elements (or four periods) and visualize a portion of
the final period, allowing the system to reach a steady state of wave activity for better visualization. We see that despite not
being trained on such long sequences, the NWM is able to generalize and maintain wave activity. For computing the gen-
eralized phase, we set use a 4-th order butterworth bandpass filter with bounds set at 0.2 and 0.4 of the Nyquist frequency.
As hyperparamters for training, we used standard SGD with momentum of 0.9, a learning rate of 2.5× 10−4, and a batch
size of 128 for 50 epochs. Following the suggestion outlined in (Rusch & Mishra, 2021), we allowed the parameters γ, α, &
∆t to be learned during training by initializing them to ∆t = σ−1(0.125) = −1.95, γ = 1.0, & α = 0.5 and then applying
appropriate activation functions to keep them within the desired bounds (e.g. sigmoid, ReLU, & ReLU respectively). These
hyperparameters and initalization values were determined by implementing a simple toy version of the model with random
data and random weights and manually altering parameters to determine the ranges for which coherent wave dynamics
were likely to emerge. We note that the properties of the emergent waves appear qualitatively different for different random
initalizations of the model. Specifically the wavelength and velocity of the waves appears to vary greatly from run-to-run.
We show a few of these different learned dynamics in the additional results section below.

For the experiment depicted in Figure 5 of Section 4, we used a 3-layer Multi-Layer Perceptron (MLP) for the both encoder
and decoder, and a hidden state of dimensionality 1296 reshaped into a set of 24 disjoint 1-D tori (circles) each composed of
54 neurons. We implemented topographic coupling between the immediate neighbors on each circle via a 1-dimensional
convolutional kernel of size 3 with circular padding. We then implemented the uni-directionality constraint outlined in the
main text be masking the first two elements of the kernel to 0, yielding a kernel with a single trainable parameter explicitly
connecting each neuron with its neighbor directly to one side. For training, the dataset and hyperparameters all remained
the same as in Figure 4 described above, however the batch size was reduced to 8 for quicker evaluation. We found that
additionally adding another layer normalization layer between recurrent steps improved the consistency of the learned waves
and thus allowed us to simulate them more accurately at test time. Explicitly this amounted to modifying Equation 8 to:
xt+1 = LN

(
xt +∆t (vt+1)

)
. Furthermore, to ensure consistency of waves across each circular subspace separately, we

shared the bias vector b across each subspace. To induce a traveling wave in the hidden state of the network and thereby
generate the transformation sequence shown in the bottom row of the figure, we first encode the input sequence (shown in
the top row), using the equations outlined in this section. We take the final hidden state of the network (xT ) as the initial
state from which we begin the wave propagation. Then, across each 1-D circular subspace of the hidden state, we update the
values of the hidden state based on the 1-D 1-way wave equation y(x, t) = f(x− vt) for a velocity v = 1 for time t = 1
to 18. Written in terms of the hidden state xt, we can effectively propagate waves backwards through the hidden state by
moving activation from one spatial location l to a location shifted by v∆t: xT (l) → xT (l − v∆t). Practically, this amounts
to sequentially circularly shifting the hidden state activation across each circular subspace as depicted in Figure 5.

A.3. Hamiltonian Dynamics Suite

The experiments in Section 4.2 were performed using the DeepMind Physics Inspired Models and Hamiltonian Dynamics
Suite, implemented in JAX, as a starting point. All values reported for the baselines (HGN++, AR, and ODE [TR]) were
thus obtained by re-running the original code with the hyperparameters stated in (Botev et al., 2021). Specifically, for the
HGN++, we trained the model both forwards and backwards in time, including over the inference steps, with a final beta
value of 0.1 in the ELBO. For the AR model, we used an LSTM with all other paramters default. For the ODE, we used the
default parameters with forwards and backwards training, again including inference steps. The only change to the default
hyperparamters for all three models was to reduce the batch size to 8 per GPU (thus 32 total per iteration) to fit on our GPUs.

The coRNN and NWM architectures were added as extensions to the auto-regressive model already implemented in library.
They thus made use of all the same default hyperparameters, with the only changed values being the aforementioned reduced
batch size, an increased number of inference steps (31), an increased number of target steps (60), and an increased hidden
state size (23×23). The increased number of inference and target steps was found useful to improve performance on more
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chaotic tasks such as the pendulum where the accuracy of the initial state is hugely important to the model forecasting
performance. Additionally, we note that these values are within the values searched by the grid search of the authors in
(Botev et al., 2021) making their use here for comparison relatively fair. The size of the hidden state was picked as the
largest which fit in our GPU memory across all devices. The values of α, γ, and ∆t were initialized to the same values as
the MNIST experiments described above, and were again allowed to be updated during training simultaneously with the
other model parameters. For the 2D NWM, the hidden state topology was again defined to be a 2D torus of size (23×23)
implemented through periodic convolution with a 3 × 3 kernel. The 1D NWM topology was similarly composed of 23
disjoint 1D circles each with 23 neurons, again implemented with periodic convolution with a 1× 3 kernel. The coRNN and
NWM models additionally used a separate initial condition network to initialize x0 and v0. This network was implemented
as a GRU with a hidden state of size 2 × 23 × 23 which ran backwards over the inference sequence (length 31) first
embedded with the model encoder fθ. The final hidden state of the model was then split in half and taken to initialize the
inital positions and velocities of the coRNN & NWMs.

All models make use of the same deep convolutional encoder with ReLU activations and a similarly deep convolutional spatial
broadcast decoder as in the original work. They were similarly all trained for 500,000 iterations to match the original work.

A.4. Hardware Details

All models were run on a cluster across roughly 8 NVIDIA GeForce 1080Ti GPUs, 8 NVIDIA GeForce 980Ti GPUs, and 8
NVIDIA Titan X Gpus. Each model in Table 1 thus required roughly 6-8 GPU days to train to the final number of iterations.

B. Analytical Treatment of Neural Wave Machines
In this section we extend the analytical treatment of Neural Wave Machines, verifying that the model does indeed inherit
many of the same beneficial bounds on hidden state and gradient magnitudes as the original coRNN, as stated in the main
text. Specifically, by carefully reviewing the proofs for Proposition 3.1 (bounded hidden state energy) and Proposition 3.2
(bounded hidden state gradients) of Rusch & Mishra (2021), it can be shown that the Neural Wave Machine satisfies the
conditions necessary for these bounds to similarly hold with minor modifications. At a high level, the intuition for why
these bounds hold is that our convolutional parameterization of the coupling matrices does not change the theoretical bounds
on the infinity norm of the weights, the crucial element necessary for bounding these quantities (e.g. see equation (13) of
Rusch & Mishra (2021)). In the following, we detail each of these bounds more precisely.

B.1. Bounds on Hidden State Energy

Identically following the proof of Proposition 3.1, from Section E.1 of Rusch & Mishra (2021), defining the total energy of
our model’s hidden state as xT

nxn+vT
nvn, it can be seen this value is bounded at time-step n, and with hidden state size m, as:

xT
nxn + vT

nvn ≤ xT
0 x0 + vT

0 v0 + nm∆t

We see that this bound does not change from the original work as the derivation is not dependent on the parameterization of
the coupling matrices W,W . Furthermore, this bound applies equally in the case when we have non-zero initial conditions
(as through our initial condition network).

B.2. Sensitivity to Inputs

From Section E.2, Proposition E.1, of (Rusch & Mishra, 2021), it can be seen that the NWM also inherits a bound on how
much differences in inputs are able to change the hidden state. Specifically, since the activation function we use is tanh, our
bound is identical. This is the theoretical justification for our comment regarding the NWM’s apparent inability to model
chaotic dynamics (which we expand on in Appendix C.4).

B.3. Bounds on Hidden State Gradient

From Section E.3, following the proof of Proposition 3.2, of Rusch & Mishra (2021), we see that, assuming α = γ = 1, we
can again derive bounds on the gradient of the loss with respect to the model parameters. Specifically, the outline of the
proof is nearly identical, with only equation (28) being modified to reflect the fact that our parameters are now shared over
all spatial locations (due to the convolution). In detail, the matrix Zi,j

m,m̄ no longer only has a single non-zero value, but
instead m non-zero values equal to σ′(Ak−1)i (for an m sized hidden state). We see that when this matrix is then multiplied
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with each vector (xk−1,vk−1,uk), using the bound ||Zi,j
m,m̄(Ak−1)||∞ ≤ 1, the upper bounds in equation (29) change from

||xk−1||∞, ||vk−1||∞, ||uk||∞ to m||xk−1||∞, m||vk−1||∞, m||uk||∞. Carrying these extra factors of m through the
rest of the proof, we arrive at the following final bound on the gradient of the loss function ξ with respect to any parameter θ:∣∣∣∣∂ξ∂θ

∣∣∣∣ ≤ 3

2
(m+ X̄m3/2)

where X̄ = maxn ||x̄n||∞.

B.4. Assumptions

As with the proofs for the coRNN, the same assumptions are necessary for the bounds to hold. Specifically, it is assumed
that ∆t is chosen such that:

max
(∆t(1 + ||W||∞)

1 + ∆t
,
∆t||W||∞
1 + ∆t

)
≤ ∆tr,

1

2
≤ r ≤ 1 (11)

Since this assumption is indeed satisfied throughout training for the original coRNN, we assume that it is likely satisfied
with the NWM as well. Intuitively, we find no reason to believe that changing the fully connected matrices W & W to
convolutional matrices will have the necessary order-of-magnitude impact on the infinity norm of the weight matrices
necessary to invalidate this assumption. In preliminary experiments on sMNIST we also find this intuition to hold.
Specifically, for the optimal value of ∆t = 0.042, and r = 1

2 , we see that the maximum over training of the quantity of interest
(Equation 11) is actually lower for the NWM than the coRNN (0.157 vs. 0.188) with both being lower than the limit (0.205).

C. Extended Results
C.1. Impact of ∆t parameter

In this section we include an additional preliminary analysis to measure the impact of changing the ∆t parameter. In practice,
we see that the parameter has an impact not only on the numerical integration, but also on the speed at which the network’s
hidden state is able to update. Therefore, similar to prior work with the coRNN, we find it best to treat this parameter as a
hyperparameter and tune it in addition to the other hypterparameters. In the table below, we show the results of our model
on sMNIST for a range of ∆t values:

Table 3: Test accuracy on the sMNIST dataset for a range of ∆t values.

∆t 0.001 0.1 0.042 0.15 0.30 0.45

Test Accuracy 87.7 90.6 98.4 97.5 89.8 NaN

We see that a moderate value of ∆t is optimal, while too large causes divergence (perhaps due to excessive discretization
errors) and too small disrupts information processing in the RNN.

C.2. Additional Efficient Sequence Modeling Results

In this section we include additional results comparing the coRNN and NWM on different sequence modeling tasks. Specif-
ically, we show model performance on the long-sequence addition task initially introduced by Hochreiter & Schmidhu-
ber (1997), and the IMDB sentiment classification task (Rusch & Mishra, 2021). On both datasets we see that the NWM
achieves comparable performance to the coRNN while requiring significantly fewer parameters, in line with results on the
sMNIIST and psMNIST datasets.

C.3. Additional Hamiltonian Dynamics Results

In this section we include an alternative metric for measuring model forecasting performance on the Hamiltonian Dynamics
Suite. Specifically in Table 5, we report the ‘Valid Prediction Time’ as reported in prior work (Botev et al., 2021), defined
as the number of time steps into the future the models are able to accurately predict the dynamics of the system with
reconstruction error under a predefined threshold (MSE < 0.025). Given the high variance of the VPT value from batch-
to-batch, the values reported in Table 5 are computed as the mean and standard deviation of the VPT over the final 5
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Table 4: Test accuracy on additional sequence modeling benchmarks including the long-sequence Addition task from
Hochreiter & Schmidhuber (1997), and the IMDB sentiment classification task. All results are mean ± std. over 3 random
initalizations. We see similar results to those shown in Table 4, the NWM achieves comparable performance while requiring
significantly fewer parameters.

Adding Task IMDB
Accuracy #θ Accuracy #θ

coRNN 0.0035 ± 0.01 131k 86.4 ± 0.2 46k
NWM 0.0046 ± 0.0016 <1k 86.1 ± 0.3 13k

evaluation iterations. We see that the values roughly agree with those reported in (Botev et al., 2021), however certain
discrepancies may still appear due to the fact that the authors of (Botev et al., 2021) only report the range of the grid search
they performed but not the actual hyperparameter values of their best performing models. Further, we see that the ranking of
model performance under this metric is quite noisy due to the high variance of the metric. We therefore urge future work to
consider alternative benchmarks and metrics for evaluating the forecasting performance of such models.

Table 5: Valid Prediction Time ‘VPT’ (± std.) on the Hamiltonian Dynamics Benchmark. We highlight in bold results
which fall within one standard deviation of the best performing model. We see that the VPT metric has large standard
deviation owing to the reliance on an arbitrary threshold of image-space similarity, however the NWM models still perform
favorably compared with existing state of the art.

AR HGN++ ODE [TR] coRNN NWM 2D NWM 1D

Spring 302 (63) 447 (0) 430 (26) 375 (14) 311.8 (27) 431 (24)
Pendulum 3 (4) 105 (21) 212 (65) 179 (91) 155.1 (24) 174 (65)
Two Body 263 (92) 444 (3) 439 (11) 431 (40) 413 (53) 420 (27)
Pennies 118 (25) 79 (6) 164 (14) 165 (23) 141 (37) 163 (9)
Double Pendulum 0 (0) 11 (5) 22 (7) 3 (1) 9 (9) 10 (8)

C.4. On Modeling Chaotic Dynamics

In this section, we include an extended evaluation to investigate the apparent inability of the NWM to model more chaotic
dynamics such as the double pendulum task. To do this, we perform an analogous experiment to that reported in Appendix
A of the original coRNN work (Rusch & Mishra, 2021). Specifically, we measure the ability of our model to predict the
state of a system at a fixed 25-time steps ahead for a Lorentz ’96 attractor (x′

j = (xi+1 − xi−2)xi−1 − xi + F ). Here, F is
an external force which controls how chaotic the trajectories are, where F = 8 corresponds to a highly caotic trajectory
and F < 1 is significantly less chaotic. Ultimately, we see that, similar to the original coRNN work, the LSTM performs
significantly better than the NWM in the chaotic regime, providing empirical evidence for the theoretical claim that the
coupled oscillator networks are unable to model chaotic dynamics.

Table 6: Test Mean Squared Error of an LSTM and NWM when forecasting the Lotentz ’96 attractor. We see that the NWM
performs better in the non-chaotic regime (F = 0.9), while in chaotic regime (F = 8) the LSTM performs significantly better.

Model F = 0.9 F = 8.0

LSTM 5.2× 10−3 1.9× 10−2

NWM 2.4× 10−3 4.8× 10−2

C.5. On the Formation of Orientation Maps

Although there is significant prior work which can give intuition as to why the smooth orientation selectivity maps of Figure
3 may arise from our model, we believe we are the first to demonstrate a system which actually learns these types of maps
from data in the service of sequence modeling. At the highest level, the intuition for the mechanism behind these maps can be
seen to come from the combination of phase-synchrony of coupled oscillator systems, and the necessity to model temporally
correlated transformations. Extensive prior work on so-called ‘phase-reduced’ Kuramoto models demonstrates the emergence
of complex spatiotemporal patterns such as plane waves, spirals, and pinwheel lattices. Examples include early work from
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Ermentrout et al. (1970) (Figure 6), showing various steady state phase relationships in the solutions of the locally coupled
oscillator dynamics. Similarly, more recent works, (Jeong et al., 2002) (Figs. 3 & 4) and (Breakspear et al., 2010) (Figs. 5 & 6)
have studied how this phase-locking can vary for different types of chosen couplings. Given that these phase-reduced systems
are theoretical approximations to the more flexible (non-reduced) oscillator dynamics implemented in the NWM, it makes
sense that we also see these types of phase relationships (e.g. Fig. 4 of the main text). When such complex phase-synchrony
is combined with the task of sequence modeling, the synchrony can be seen to essentially be inducing local correlations
between neurons for each time-step. Thus, when the training set contains input at a variety of different angles, and the
model is required to represent these over time, the intuition follows that there will be spatially-smooth orientation selectivity
corresponding to these induced correlations. In Figure 6 we provide some quantitative measurements which align with this
intuition. Specifically, the figure shows the instantaneous phase measurement of each neuron (right) next to the orientation
selectivity of the same neurons (left). As can be seen, there is a rough correlation between phase values and orientation
selectivity, with unexplained variance likely arising due to computing the depicted instantaneous phase values from a single
training example, while selectivity measurements are computed over an entire dataset. Furthermore, in Figure 7 we show
how different hyperparameters affect the size of the resulting learned orientation columns. We see that both the wavelength
of the training dataset (λtrain of sine waves) and the kernel size (size(wz)) have a direct increasing relationship with the size
of the learned orientation columns, suggesting these parameters could be tuned to better fit observations from neuroscience.

Figure 6: Orientation selectivity (left) and instantaneous phase at a random sequence element (right) for a model trained on
the sine waves dataset. We see that the phase synchrony across the neurons is roughly in alignment with the orientation
selectivity, supporting the hypothesis that this is one of the primary mechanisms for topographic organization in the NWM.

Figure 7: Orientation selectivity maps as a function of training dataset wavelength (λtrain), and kernel size (size(wz)).
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C.6. Full Rotating MNIST Topographic Organization

Figure 8: Depiction of the maximum activating image for the full set of neurons in the NWM when training on Rotated
MNIST. The subset depicted in Figure 3 is highlighted in yellow. We see that topographic organization is widespread and
roughly continuous throughout the hidden state.
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C.7. Visualizing Traveling Waves on MNIST

Figure 9: Additional hidden state visualizations for the model in Figure 4. Reconstructions (Top), Hidden state (middle) and
generalized phase (bottom), for the final 18 timesteps of the test sequence.

Figure 10: Visualization of the hidden state and phase for three models identical to those in Figure 4, but with different
random initalizations. We see that the models learn different wavelengths and velocities depending on their initialization.
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Figure 11: Additional visualizations of reconstructions from induced wave activity in the hidden state of the 1D NWM as
depicted in Figure 5. We show a set of random input sequences (top), the original model reconstruction (middle), and images
generated by sequentially propagating the initial state backwards by an induced wave and decoding at each step (bottom).
We see that, as in the main text, the assumed wave velocity of v = 1 is slightly faster than the actual velocity, and thus the
reconstructed transformations are slightly faster than the input transformations. Because of this, we also observe that for
certain examples, the induced wave reconstructions lose consistency with the input after the first period. This appears to
imply that both the initial location of the wave activity matters in addition to its wave properties, and thus our model has
learned to only propagate waves over parts of the feature space to optimize the capacity of the hidden state for this dataset.
Finally, we observe that the induced transformations occur in reverse order due to the fact that our induced waves propagate
in the reverse direction to those naturally exhibited for training examples, effectively propagating backwards in time.
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