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 2 

Abstract 17 

 18 

A hallmark of various psychiatric disorders is biased future predictions. Here we examined the 19 

mechanisms for biased value learning using reinforcement learning models incorporating recent 20 

findings on synaptic plasticity and opponent circuit mechanisms in the basal ganglia. We show 21 

that variations in tonic dopamine can alter the balance between learning from positive and 22 

negative reward prediction errors, leading to biased value predictions. This bias arises from the 23 

sigmoidal shapes of the dose-occupancy curves and distinct affinities of D1- and D2-type 24 

dopamine receptors: changes in tonic dopamine differentially alters the slope of the dose-25 

occupancy curves of these receptors, thus sensitivities, at baseline dopamine concentrations. We 26 

show that this mechanism can explain biased value learning in both mice and humans and may 27 

also contribute to symptoms observed in psychiatric disorders. Our model provides a foundation 28 

for understanding the basal ganglia circuit and underscores the significance of tonic dopamine in 29 

modulating learning processes. 30 

 31 

 32 

Introduction 33 

 34 

Our ability to predict the outcomes of our actions is crucial in selecting and motivating 35 

appropriate actions. Systematic biases in future predictions or expectations, however, can lead to 36 

maladaptive behaviors, such as those observed in patients with various psychiatric disorders1–4. 37 

For example, overly negative or pessimistic predictions can contribute to major depression1,5, 38 

whereas excessively positive or optimistic predictions may be associated with pathological 39 

gambling, addiction, and mania3,4,6–8 . Despite the importance of understanding the causes of 40 

biased future predictions, the biological mechanisms underlying them remain poorly understood.  41 

 42 

Our future expectations and decisions are shaped by experiences of positive and negative events. 43 

The process of learning from outcomes has been modeled using reinforcement learning (RL) 44 

models9–12, where value predictions are updated based on reward prediction errors (RPEs), that is 45 

the discrepancy between received and expected outcomes. In addition to its role in learning, 46 
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 3 

recent studies have indicated the importance of RPEs in mood; these studies have suggested that 47 

mood depends not on the absolute goodness of outcomes, but rather on the recent history of 48 

RPEs13,14.  49 

 50 

In the brain, dopamine is thought to be a key regulator in this process of learning from positive 51 

and negative outcomes. The dynamics of dopamine are often categorized into two modes: tonic 52 

and phasic. Tonic dopamine refers to “baseline” dopamine that operates on a long timescale such 53 

as tens of seconds or minutes, while phasic activity refers to transient changes that occur at a 54 

much shorter, sub-second timescale, often triggered by external stimuli15–18. A significant body 55 

of evidence has shown that phasic responses of dopamine neurons convey RPEs and drive 56 

learning of values and actions17–20. On the other hand, changes in tonic dopamine might also 57 

modulate value learning, yet whether and how the level of tonic dopamine modulates learning 58 

remain poorly understood. 59 

 60 

Previous studies have reported that patients with psychiatric disorders exhibit biased learning 61 

from positive versus negative outcomes. For one, some studies have shown that patients with 62 

major depression have a reduced sensitivity in learning from rewarding events, while their ability 63 

to learn from negative events remains relatively intact1,5,21. Similarly, patients with Parkinson’s 64 

disease are better at learning from negative than positive outcomes22,23. Analysis of these patients 65 

using RL models has suggested that biases in learning can be explained by alterations in specific 66 

parameters in RL models, such as the learning rate parameters or the sensitivity to positive and 67 

negative outcomes. For example, some studies have suggested that anhedonia in major 68 

depressive disorder may correspond to a reduced learning rate from positive compared to 69 

negative outcomes1.  70 

 71 

Mechanistically, some of these changes in RL parameters can be linked to altered functions of 72 

dopamine. First, it has been shown that dopamine synthesis capacity, an approximate indicator of 73 

baseline dopamine levels, in the striatum, as measured using positron emission tomography 74 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.10.566580doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.10.566580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

(PET), correlates with learning rate parameters24. Second, dopamine medications can change the 75 

balance between learning from positive and negative outcomes22,24,25. Third, responses to 76 

positive outcomes in the nucleus accumbens (NAc), as measured based on blood oxygenation-77 

dependent (BOLD) signals, are reduced in patients with psychiatric disorders such as 78 

depression26–29 . These observations point to important roles of reinforcement learning processes 79 

and dopamine in regulating value learning. However, the parameters in RL models remain an 80 

abstract entity, and biological processes underlying changes in these parameters are still largely 81 

unknown.  82 

 83 

One limitation in most RL models used in previous studies is that they do not reflect key neural 84 

circuit architectures in the brain (but see 30–32) nor recent findings on intracellular signaling and 85 

plasticity rules that can constrain how dopamine functions in biological circuits33–35. 86 

Incorporating these key biological factors may lead to better understanding of how changes in 87 

RL parameters may arise in psychiatric disorders. Furthermore, recent studies have found that 88 

the activity of dopamine neurons is consistent with a novel RL algorithm called distributional 89 

RL36–38. Distributional RL takes into account the diversity in dopamine signals, and a population 90 

of dopamine neurons together encodes the entire distribution of rewards, not just the average. 91 

Although distributional RL has shown to be efficient in solving various RL problems in artificial 92 

intelligence37,39, how distributional RL can be implemented in biological neural circuits and how 93 

distributional RL relates to biased value learning remain to be examined.  94 

 95 

In this study, we sought to identify potential mechanisms that cause biased value predictions 96 

using biologically inspired RL models. To this goal, we first construct an RL model that 97 

incorporates recent biological findings, such as intracellular signaling and synaptic plasticity 98 

rules as well as the basic circuit architecture in the brain32. Based on this model, we propose two 99 

potential biological mechanisms that can cause optimistic or pessimistic biases in value 100 

predictions. We will then show that some existing data can be explained by one of these models. 101 
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 5 

Finally, we will show how our model can provide an account of how biases in value predictions 102 

arise in psychiatric disorders. 103 

 104 

 105 

Results 106 

 107 

Basic reinforcement learning algorithms  108 

Here we first formulate basic RL algorithms that will become the basis of our later models. In 109 

RL, an agent learns to predict the expectation of future rewards associated with a given state, a 110 

quantity termed as value11. For simplicity, we will drop the dependency on time here, but note 111 

that the basic results hold even if time is considered (Methods 1.1). Learning of value is driven 112 

by RPEs (𝛿), the discrepancy between the actual and expected reward (𝑟 and 𝑉, respectively) 113 

(Eq1). To improve the accuracy of the value prediction, RPEs are utilized to update the estimate 114 

of 𝑉. This is done iteratively by adding a fraction (𝛼) of 𝛿 (Eq2) where 𝛼 defines the learning 115 

rate. 116 

 117 

𝛿 = 𝑟 − 𝑉  (1) 118 

𝑉 ← 𝑉 + 𝛼 ∙ 𝛿  (2) 119 

 120 

When the magnitude of reward 𝑟 is fixed (i.e., deterministic environment), the value 𝑉 learned 121 

through this algorithm (Eq 1 and 2) converges on 𝑟 and the RPE converges on zero. When the 122 

magnitude of reward 𝑟 varies stochastically trial-to-trial, the value at convergence fluctuates 123 

around the expected value of the reward distribution (see Methods 1) (Fig. 1a) and the RPE 124 

around zero.  125 

 126 

Risk-sensitive RL. In the framework called risk-sensitive RL40, learning rates are defined 127 

separately for positive and negative RPEs (denoted by 𝛼+, 𝛼−).  128 

  129 

𝑉 ← 𝑉 + 𝛼+ ⋅ 𝛿   if 𝛿 > 0  (3) 130 
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𝑉 ← 𝑉 + 𝛼− ⋅ 𝛿   if 𝛿 < 0  131 

 132 

In the presence of stochastic rewards, when the learning rates between positive and negative 133 

RPEs are different, the value learned through this algorithm (Eq 1 and 3) does not converge on 134 

the expected value, but instead on a value higher or lower than the expected value depending on 135 

the relative amplitude of the learning rates 𝛼+, 𝛼−. This algorithm, therefore, develops optimistic 136 

or pessimistic value expectations, respectively. This learning algorithm is called “risk-sensitive" 137 

because values of probabilistic (risky) rewards are biased compared to deterministic (certain) 138 

rewards, and, therefore, the agent develops a preference between risky and certain rewards even 139 

when the expected values are the same (Fig. 1b).  140 

 141 

Distributional RL. The concept of asymmetric updates has been utilized in a novel RL 142 

framework called distributional RL36,37,41. This algorithm allows an agent to learn the entire 143 

probability distribution of rewards, instead of the expected value which is typically the learning 144 

target in traditional RL algorithms (Fig. 1c). In distributional RL, an agent is equipped with a set 145 

of value predictors (𝑉𝑖), where 𝑖 corresponds to the index of the value predictor (or “value 146 

neuron”). The value of the 𝑖-th neuron (𝑉𝑖) is updated based on the learning rates (𝛼𝑖
+, 𝛼𝑖

−) and 147 

the RPE (𝛿𝑖) for that neuron 𝑖: 148 

 149 

𝑉𝑖 ← 𝑉𝑖 + 𝛼𝑖
+

 ∙ 𝛿𝑖     𝑖𝑓 𝛿𝑖 > 0  (3) 150 

𝑉𝑖 ← 𝑉𝑖 + 𝛼𝑖
− ⋅ 𝛿𝑖     𝑖𝑓 𝛿𝑖 < 0  151 

 152 

Similar to risk-sensitive RL, the learned value of each value predictor converges on estimates 153 

larger or lower than the expected value, determined by the ratio between 𝛼𝑖
+ and 𝛼𝑖

−. 154 

Mathematically, each 𝑉𝑖 converges on the 𝜏𝑖-th expectile of the distribution (Fig. 1c) where 𝜏𝑖 155 

(asymmetric scaling factor) is defined by: 156 

 157 
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Asymmetric scaling factor: 𝜏𝑖 =
𝛼𝑖

+

𝛼𝑖
−+𝛼𝑖

+   (4) 158 

 159 

Expectiles are the solutions to asymmetric least squares minimization and generalize the mean of 160 

a distribution (with the mean being the 0.5th expectile) as quantiles generalize the median (with 161 

the median being the 0.5th quantile)42. Since a set of expectiles can define a distribution, the 162 

diversity of 𝜏𝑖 across the population enables learning of the entire probability distribution.  163 

 164 

Problem. In both risk-sensitive RL and distributional RL, unbalance in learning rate parameters 165 

for positive and negative RPEs gives rise to optimistic and pessimistic biases in learned values. 166 

Importantly, however, the underlying biological mechanism regulating learning rate parameters 167 

(𝛼+, 𝛼−) and asymmetry thereof (𝜏) remains unclear.  168 

 169 

In the following sections, we will discuss potential biological mechanisms that regulate 170 

asymmetric learning rates (𝛼+, 𝛼−). We will first modify the above RL algorithms to incorporate 171 

important neural circuit architectures in the brain. We will then propose two key biological 172 

mechanisms that can give rise to asymmetric learning rates (called Model 1 and 2). We will then 173 

show that our model can explain previous experimental data and psychiatric conditions. 174 

 175 

Incorporating biological features into RL models 176 

The above RL models provide algorithmic-level formulations, yet they do not recapitulate 177 

fundamental characteristics of the neural circuits thought to perform RL in the brain43–46. We 178 

next incorporate some of the important circuit and synaptic properties into the model.  179 

 180 

In the brain, it is thought that dopamine neurons in the ventral tegmental area (VTA) broadcast 181 

RPEs17 and modulate synaptic plasticity in dopamine-recipient areas33,47. The striatum is the 182 

major target of dopaminergic projections. It has been thought that spiny projection neurons 183 

(SPNs) in the striatum represent values, and dopamine modulates plasticity of synapses on 184 
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 8 

SPNs33,34,47,48 (Fig. 2a). Under this framework, the value representations in SPNs are updated by 185 

dopaminergic RPEs. In most RL models, each value predictor is typically updated by both 186 

positive and negative RPEs. If the value is computed based on a weighted sum of some inputs 187 

(i.e., using linear function approximation11), the update rules described above (Eq 3 and 4) are 188 

equivalent to performing a semi-gradient descent that minimizes RPEs11 (see Methods).  189 

 190 

The basic architectural assumptions of these RL models are, however, at odds with the RL 191 

circuitry in the brain. Importantly, in the striatum, there are two major classes of dopamine-192 

recipient SPNs characterized based on the type of dopamine receptor that they express: D1- or 193 

D2-type dopamine receptors (D1R and D2R)48. SPNs expressing D1R and D2R constitute the so-194 

called direct and indirect pathways and exert opposing effects on downstream “output" neurons, 195 

with each pathway promoting or opposing a certain output (e.g., movement).  196 

 197 

In addition to the presence of direct and indirect pathways, there are two additional properties in 198 

these opposing populations that need to be considered32. First, D1R and D2R have different 199 

affinities to dopamine: high in D2R and low in D1R (EC50 affinity constant is 1 µM for D1R and 200 

10 nM for D2R)49,50. The dose-occupancy relationship of D1R and D2R are sigmoidal but they 201 

are shifted with one another with respect to dopamine concentration (Fig. 2b). Importantly, at 202 

normal dopamine levels (approx. 50-100nM)51,52, D2Rs are mostly occupied while D1Rs are 203 

mostly unoccupied (Fig. 2b). Although whether the affinities of D1R and D2R differ at the 204 

molecular level has been questioned53, a recent study showed that intracellular signaling through 205 

protein kinase A (PKA) in D1- and D2-SPNs is triggered by a phasic increase and a decrease in 206 

dopamine, respectively, in behaving animals35. These results are consistent with (apparent) 207 

difference in affinities of D1R and D2R assumed in previous studies49, although the exact reason 208 

for the difference remains to be clarified53.  209 

 210 

The second important property pertains to different learning rules in D1- and D2-SPNs which are 211 

predicted from different affinities of the receptors. Consistent with the observed PKA signals in 212 
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these cells, recent studies have shown that glutamatergic inputs on D1-SPNs are potentiated by a 213 

transient increase in dopamine, whereas those on D2-SPNs are potentiated by a transient 214 

decrease in dopamine34,35 (Fig. 2c), supporting opposing plasticity rules between D1- and D2-215 

SPNs.  216 

 217 

There have been previous efforts to incorporate in RL models the direct and indirect pathways 218 

(also called “Go” and “NoGo” pathways, respectively) such as Opponent Actor Learning 219 

(OpAL30, OpAL*54) and Actor learning Uncertainty (AU)32 models.  These previous models 220 

were developed as Actor-Critic models11. Here, we will build on the AU model to focus on the 221 

problem of value learning and extend it to support risk-sensitive RL and distributional RL. Our 222 

model has two separate populations of value predictors corresponding to D1R- and D2R-SPNs, 223 

that store the quantities P𝑖 and 𝑁𝑖 respectively (Eq 6, Fig. 2d). Mimicking dopamine's effect on 224 

potentiation, 𝑃𝑖 or 𝑁𝑖 will increase their estimates if an RPE is positive or negative, respectively, 225 

with the learning rates defined by 𝛼𝑖
+, 𝛼𝑖

− (Eq. 6). Importantly, the value 𝑉𝑖 can be obtained 226 

simply by taking the difference between 𝑃𝑖 and 𝑁𝑖. (Eq. 7).  227 

 228 

D1R-SPN: 229 

𝑃𝑖 ← 𝑃𝑖 + 𝛼𝑖
+ ⋅ |𝛿𝑖| − 𝛽 ⋅ 𝑃𝑖         𝑖𝑓 𝛿𝑖 ≥ 0  (5) 230 

𝑃𝑖 ← 𝑃𝑖 − 𝛽 ⋅ 𝑃𝑖         𝑖𝑓 𝛿𝑖 < 0  231 

D2R-SPN: 232 

𝑁𝑖 ← 𝑁𝑖 + 𝛼𝑖
− ⋅ |𝛿𝑖| − 𝛽 ⋅ 𝑁𝑖       𝑖𝑓 𝛿𝑖 ≤0 233 

𝑁𝑖 ← 𝑁𝑖 − 𝛽 ⋅ 𝑁𝑖       𝑖𝑓 𝛿𝑖 > 0 234 

Value: 𝑉𝑖 =  𝑃𝑖 − 𝑁𝑖    (6) 235 

 236 

where 𝛽 is a decay parameter which represents synaptic decay in the absence of RPEs. This 237 

model (Eq 6 and 7) preserves various essential properties of the previous RL models: (1) 238 

learning in 𝑃 and 𝑁 can be combined to provide a simple update rule for value 𝑉, and (2) this 239 

update rule approximates the gradient descent that minimizes RPEs (when 𝛽 = 0, the update rule 240 
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 10 

is equivalent to the gradient descent). Importantly, with 𝛽 > 0, we can show that these simple 241 

learning rules guarantee convergence of value, without the need for additional mechanisms to 242 

modulate the learning rates over iterations (Methods 1.3).  243 

 244 

For instance, in a stochastic environment where there is a probability 𝑝 of receiving a reward of a 245 

fixed magnitude 𝑟 = 1, the stochastic fixed point of the learned value 𝑉𝑖 (i.e., convergence point) 246 

will be defined by Eq 7.  247 

 248 

𝑉𝑖 =

𝜏𝑖
1−𝜏𝑖

⋅
𝑝

1−𝑝
 

𝜏𝑖
1−𝜏𝑖

⋅⋅
𝑝

1−𝑝
+1+ 𝐶

∙ 𝑟 , where 𝐶 =
𝛽

(1−𝑝)⋅(1−𝜏)
    (7) 249 

 250 

Note that Eq.7 contains an additional term C which depends on 𝛽 and this decay factor 𝛽 is 251 

important to stabilize the 𝑃𝑖 and 𝑁𝑖 estimates (avoid infinite increases) (Methods, 1.3.1, Extended 252 

Data Fig. 1).  253 

 254 

This formulation now provides a mechanistic model suitable for risk-sensitive RL (when there is 255 

one value predictor) as well as distributional RL (when there are multiple value predictors), 256 

which incorporate the neural circuit architecture and plasticity rules of D1R- and D2R-SNPs 257 

found in the brain.  258 

 259 

With this model at hand, we now discuss potential mechanisms that produce an asymmetry in 260 

learning rates 𝛼𝑖
+, 𝛼𝑖

− , which, in turn, causes biases in value predictions. In principle, learning 261 

rate parameters can be a function of (1) the scaling of RPEs, i.e., the slope of dopamine 262 

responses as a function of RPE (δ), and (2) the scaling of value updates, i.e., the efficacy of 263 

dopamine-dependent synaptic plasticity at the level of SPNs. In the following, we discuss each 264 

scenario, emphasizing the role of either tonic or phasic dopamine activity in each of these 265 

mechanisms (Model 1 and 2, respectively). For simplicity, we will start with a model in which 266 

𝛼+, 𝛼− are equal for all neurons within both 𝑃 and 𝑁 populations, equivalent to risk-sensitive 267 
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RL. We will then relax this assumption and introduce heterogeneity by allowing 𝛼𝑖
+, 𝛼𝑖

− to vary 268 

across neurons, implementing a form of distributional RL. 269 

 270 

Model 1: The role of baseline dopamine in asymmetric learning 271 

As discussed above, D1R and D2R have different affinities to dopamine which leads to different 272 

levels of receptors’ occupancy at a given baseline dopamine level (Fig. 2b). Crucially, due to the 273 

sigmoidal shape of the dose-occupancy curves, the slope of the curve changes with baseline 274 

dopamine level, which means that a given dopamine transient leads to a different change in 275 

receptor occupancy depending on the baseline dopamine level (Fig. 3a,b). That is, the receptors’ 276 

sensitivity changes with baseline dopamine (Fig. 3c). In addition, a key consequence of the 277 

distinct receptors’ affinities is that an increase and decrease in baseline dopamine will cause 278 

opposite changes in the sensitivity of D1R and D2R. Specifically, an increase in dopamine will 279 

decrease D1R sensitivity relative to D2R, whereas a decrease in dopamine will increase D2R 280 

sensitivity relative to D1R (Fig. 3c,d). 281 

 282 

Building on this insight in Model 1, we postulate that the learning rates for positive and negative 283 

RPEs are a function of the D1R and D2R sensitivity, respectively. This is supported by previous 284 

studies that have reported that the effect of dopamine transients of a given magnitude in SPNs’ 285 

plasticity can be modulated by the level of dopamine baseline34. In addition, it has been reported 286 

that the level of potentiation in SPNs33,34 or plasticity, which are related to intracellular signals35, 287 

scale with the magnitude of dopamine transients, keeping all else fixed. These observations can 288 

be summarized with the following rule:  289 

𝐿𝑇𝑃𝐷1 ≈ 𝛼+ ⋅ |𝐷𝐴𝑏𝑢𝑟𝑠𝑡| 290 

𝐿𝑇𝑃𝐷2 ≈  𝛼− ⋅ |𝐷𝐴𝑝𝑎𝑢𝑠𝑒| 291 

Where 𝛼+, 𝛼− correspond to the receptors’ sensitivities and depend on the dopamine baseline 292 

level. This rule can be directly related to the update equations for the 𝑃 and 𝑁 populations in our 293 

model:  294 

Δ𝑃 = 𝛼+ ⋅ |𝛿| … if   𝛿 ≥ 0 295 
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Δ𝑁 = 𝛼− ⋅ |𝛿| … if   𝛿 < 0 296 

 297 

It can been shown that this learning rule is in agreement with the normative solution for the 298 

problem of value learning11 (Methods 1.6).  299 

 300 

In short, in Model 1, a shift in the baseline dopamine level causes asymmetries in scaling of the 301 

value updates for positive versus negatives RPEs via the modulation of receptors’ sensitivities, 302 

which leads to value learning biases. This is a direct consequence of the dose occupancy 303 

relationships of D1R and D2R (Fig. 3b-d).  304 

 305 

Model 2: Asymmetric scaling of phasic dopamine responses, inspired by distributional RL 306 

In Model 2, we postulate that the learning rates 𝛼+ and 𝛼− are a function of the scaling (i.e., 307 

‘slope’) of dopamine responses evoked by positive and negative RPEs, respectively: 308 

𝐷𝐴𝑏𝑢𝑟𝑠𝑡 = 𝛼+ ⋅ 𝛿 … if   𝛿 ≥ 0 309 

𝐷𝐴𝑝𝑎𝑢𝑠𝑒 = 𝛼− ⋅ 𝛿 … if   𝛿 < 0 310 

This is supported by a previous study on distributional RL that demonstrated that individual 311 

dopamine neurons vary in terms of how the magnitude of reward responses is scaled as a 312 

function of positive and negative RPEs (Fig. 3e)36.  313 

 314 

In the distributional RL framework, individual dopamine neurons vary in terms of their 315 

asymmetric scaling factor 𝜏𝑖 and each of the multiple value predictors (𝑉𝑖) converges on the 𝜏𝑖-th 316 

expectile of the reward distribution (Eq. 4). However, in most applications of distributional RL, 317 

action selection is still based on the expected value of the reward distribution. Thus, the quantity 318 

relevant to action selection can be described using the population level average 𝜏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, and 319 

biased value learning at the behavioral level could arise if 𝜏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is higher or lower than 0.5. 320 

This can occur from a differential loss of optimistic or pessimistic dopamine neurons. Another 321 

possibility is an overall upward or downward shift in the distribution of 𝜏𝑖 across the population 322 

due to, for example, intrinsic factors modulating the gain of dopamine phasic responses.  323 
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 324 

Risk-sensitive RL can be thought of as a special case of distributional RL which has only one 325 

value predictor. Here, the slope of the average dopamine evoked transient to positive and 326 

negative RPEs, may correspond to the population level learning rates for positive and negative 327 

RPEs (𝛼+, 𝛼−), respectively. If the asymmetric scaling factor 𝜏 is higher or lower than 0.5, value 328 

learning will be biased (Fig. 3e). 329 

 330 

Testing for evidence of either model in experimental data 331 

Tian and Uchida (2015). 332 

We next examined whether Model 1 or 2 can explain empirical data obtained in experimental 333 

animals or humans. We first examined the data obtained in mice in our previous study55. In this 334 

study, the authors tested the effect of lesioning the habenula, a brain structure implicated in 335 

depression56–58, on the activity of dopamine neurons and on reward-seeking behavior. Head-fixed 336 

mice were trained in a Pavlovian conditioning task in which odor cues predicted reward with 337 

different probabilities (10%, 50%, 90%). After performing habenula (n=5) or sham (n=7) lesions 338 

(Fig. 4a), the spiking activity of VTA dopamine neurons was recorded while mice performed the 339 

task. 340 

 341 

After lesions, mice exhibited an elevated reward-seeking behavior (anticipatory licking) in 342 

response to cues predictive of probabilistic rewards, consistent with an optimistic bias in reward 343 

expectation (Fig. 4b, right). Importantly, anticipatory licking gradually increased over several 344 

sessions after lesions, suggesting that the optimistic bias developed through learning (Fig. 4b, 345 

left). To bring insight into the underlying cause of these biases, we fit two different RL models to 346 

the anticipatory lick responses on a trial-by-trial basis (Extended Data Fig. 2), assuming a linear 347 

relationship between value predictions and anticipatory licking. These models considered either a 348 

change in the sensitivity to rewards (Extended Data Fig. 2b) or asymmetric learning rates 349 

(Extended Data Fig. 2c). This analysis showed that the biases observed in the behavior could be 350 

explained by asymmetric learning rates, but not by reward sensitivity because the reward 351 
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sensitivity was unchanged in the lesion group with respect to the control group (Extended Data 352 

Fig. 2c). 353 

 354 

Dopamine neurons’ responses to reward-predictive cues reflect the increases in value expectation 355 

predicted by the cue with respect to baseline. The overall magnitudes of cue-evoked responses 356 

were not elevated in lesioned animals compared to control animals (Fig. 4d). However, the shape 357 

of the response curve indicated an ‘optimistic’ bias: although in control animals, cue responses 358 

scaled linearly with the expected value (i.e., reward probability), the response function of the 359 

lesioned animals was convex. In other words, in control animals the response to the 50%-reward 360 

cue was not significantly different from the quantity that results from the linear interpolation 361 

between the responses to 10%- and 90%-reward cues. In lesioned animals, however, the response 362 

to the 50%-reward cue was significantly greater than this quantity, which is indicative of an 363 

optimistic bias in value predictions (Fig. 4d, see Methods 1.3.3 for analysis of value predictions 364 

curve convexity). Such a change was observed at the level of the population average. Further 365 

analysis using individual neurons showed that when calculating a single-cell level metric that 366 

compares the 50%-reward cue to the same linear interpolation point, there was a broad 367 

distribution in this metric below and above the interpolated point both in the control and lesion 368 

groups (Fig. 4e-f). The distribution was, however, shifted in its mean in the lesion group (Fig. 369 

4e). These analyses indicated that both anticipatory licking and dopamine cue responses have an 370 

optimistic bias as characterized by an overvaluation of probabilistic rewards, without still 371 

pointing to the underlying mechanism. 372 

 373 

Model 2 cannot explain the optimistic biases in behavior and cue-evoked dopamine 374 

responses after Hb lesions 375 

 376 

In Model 2, an optimistic bias in reward expectation can arise if the average of the asymmetric 377 

scaling factor at the population level (𝜏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) becomes greater than 0.5 (Fig. 5a,b).  378 

 379 
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To test this idea, we obtained the asymmetric scaling factors (𝜏𝑖) from dopamine neurons based 380 

on their outcome responses: for each neuron, we constructed outcome response functions against 381 

the magnitude of RPEs (Fig. 5c, Extended Data Fig. 3a,b). The response functions were obtained 382 

based on (1) whether reward was delivered (positive RPEs) or not (negative RPEs), and on (2) 383 

the magnitude of the reward expectation given by the reward probabilities predicted by each cue 384 

(0.1, 0.5, 0.9) (Extended Data Fig. 3a,b). We then obtained the point at which the responses are 385 

more likely to be below or above baseline (i.e., ‘zero-crossing points’)36 (Extended Data Fig. 3c), 386 

and computed 𝛼𝑖
+ and 𝛼𝑖

− as the slopes of the responses in the positive and negative domains 387 

with respect to this zero-crossing point (Extended Data Fig. 3d), respectively. In both control and 388 

lesioned animals, asymmetric scaling factors tiled a wide range between 0 and 1 and presented 389 

other signatures consistent with distributional RL36 (Extended Data Fig.4). Nonetheless, although 390 

the variance of the distribution of asymmetric scaling factors was greater in lesioned animals, the 391 

mean did not change, indicating a lack of bias between 𝛼𝑖
+ and 𝛼𝑖

− at the population level (Fig. 392 

5d). This was also the case when the asymmetric scaling factor was derived directly from the 393 

population average response (Fig. 5c). Thus, contrary to the conclusion in our previous study15, 394 

these analyses indicated that changes in reward responses (and the resulting scaling factor 𝜏) do 395 

not explain the optimistic biases in behavior nor cue responses in lesioned animals (Fig. 5e,f). 396 

 397 

Model 1 can explain the optimistic biases in behavior and cue-evoked dopamine responses 398 

by Hb lesion 399 

In addition to changes in the magnitude of dopamine RPEs, we observed that the baseline firing 400 

rates of dopamine neurons were elevated in lesioned animals (Fig. 6a). According to Model 1, if 401 

these changes are followed by an increase in the baseline dopamine levels in the striatum, this 402 

should give rise to biased value learning (𝛼+ > 𝛼−) and an optimistic bias in value expectation. 403 

In this way, this change in baseline firing can explain optimistic biases observed in lesioned 404 

animals. However, it remains unclear whether the observed change in baseline firing can result in 405 

functionally relevant levels of changes in the receptor occupancies discussed above. 406 

 407 
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To quantitatively predict dopamine concentrations in the striatum and resulting receptor 408 

occupancies of D1R and D2R, we used a biophysical model commonly used in the field59 409 

(Fig.6a). This model has the firing rate of dopamine neurons as its input, and considers diffusion 410 

of dopamine, dopamine reuptake, and D2-autorreceptor-mediated inhibition of dopamine release 411 

to predict the dopamine concentration in the striatum (Fig. 6b,e). In addition, it considers the 412 

affinities of D1R and D2R to estimate their occupancy levels (Fig. 6c,f). After estimating these 413 

two variables (dopamine concentration and receptor occupancy), we derived the receptor 414 

sensitivities (Fig. 6g-h). The receptor sensitivities were quantified as the slope of the resultant 415 

changes in receptor occupancy given the observed baseline and phasic responses of dopamine 416 

neurons. We then trained Model 1 using the receptor sensitivities as learning rates (𝛼+ and 𝛼−) 417 

for both control and lesioned animals.  418 

 419 

The biophysical model indeed supported that the observed change in dopamine neuron firing can 420 

cause a significant increase in dopamine concentration (Fig. 6e) and in D1 and D2 receptor 421 

occupancies at baseline (Fig. 6g). These changes are expected to cause a significant asymmetry 422 

in receptor sensitivities favoring D1 receptors over D2 receptors (Fig. 6h-i).  423 

 424 

These receptor sensitivities were directly used as the asymmetric learning rates in a temporal-425 

difference (TD) learning version of Model 1 (see Methods 1.3, 3.3). After training, the model 426 

incorporating the predicted asymmetries in learning rates (𝛼+, 𝛼−) produced optimistic biases in 427 

value predictions and in normalized cue responses, similar to those observed in lesioned animals 428 

(Fig. 6k-l). The model simulating control animals developed no significant biases. 429 

 430 

Additionally, the overall decrease in the magnitude of cue responses, observed in lesioned 431 

animals, was reproduced in Model 1 using TD learning (Fig. 6k). This occurs because TD 432 

learning calculates RPEs based on the change in values between before and after cue 433 

presentation, and the “baseline” (pre-cue) reward expectation was also increased by optimistic 434 

value learning (Fig. 6k). These results, together, indicate that Model 1 provides a parsimonious 435 
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account of the data: a change in baseline firing of dopamine neurons, rather than changes in 436 

phasic responses, is the likely mechanism that led to optimistic biases in reward-seeking 437 

behavior as well as cue-evoked dopamine responses in habenula lesioned animals.  438 

 439 

Model 1 and model 2 play complementary roles in the encoding of asymmetric learning 440 

rates  441 

Although Model 2 did not explain the optimistic biases in the data in habenula-lesioned mice, the 442 

distributional RL version of Model 2 explained other features of the data (Extended Data Fig. 3-443 

4). As mentioned, in both control and lesioned animals, asymmetric scaling factors tiled a wide 444 

range between 0 and 136 (Extended Data Fig.4). Furthermore, cue-evoked responses of individual 445 

neurons showed a wider distribution than what is expected by noise (Figure 4d). Finally, the core 446 

prediction of distributional RL – a positive correlation between the asymmetric scaling factors of 447 

the RPE responses of individual dopamine neurons and their zero-crossing points36 – was also 448 

present in controls and after Hb lesions. Together these results support that the basic features of 449 

distributional RL are present in a way consistent with Model 2.  450 

 451 

To complement this analysis, we tested whether Model 2 could have explained the signatures of 452 

the data if asymmetric scaling factors (τ) derived from dopamine responses were indeed overall 453 

biased (Extended Data Fig. 5). As expected from the model’s fixed-point analysis (Methods 1.3), 454 

if we imposed a shift in the mean of the distribution of asymmetric scaling factors (i.e., 455 

𝜏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 > 0.5), the value predictors indeed exhibited optimistic biases (Extended Data Fig. 456 

5e,f). However, the model did not reproduce the optimistic bias in cue-induced TD errors 457 

observed in the data (Extended Data Fig.5g,h). This is due to an interaction of the biases in 458 

prediction at “baseline” (pre-cue) and the cue, together with the optimistic asymmetry in the 459 

scaling of the TD errors at cue themselves. Importantly, this was found in both versions of Model 460 

2, distributional and risk-sensitive RL (Extended Data Fig. 5a-d and e-h). The difficulty of 461 

explaining biased dopaminergic cue responses further makes the Model 2 an unlikely mechanism 462 

to explain the optimistic biases in the data. 463 
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 464 

Altogether the data supports a model in which the mechanisms of Model 1 and 2 play 465 

complementary roles in the encoding of asymmetric learning rates. The mechanism of Model 2 466 

explains the variability in single neuron responses, consistent with the expectile code in 467 

distributional RL. On the other hand, the mechanism of Model 1 at the population level, 468 

generating asymmetries in learning rates and biases in value expectations, which might require 469 

context-dependent regulation60.  470 

 471 

Taken together, the above results suggest that Model 1 and 2 coexist in the brain. This can be 472 

formalized as follows: 473 

 474 

𝑃𝑖 ← 𝑃𝑖 + �̂�𝑖
+ ⋅ 𝛿𝑖 … if 𝛿𝑖 ≤ 0 475 

𝑁𝑖 ← 𝑁𝑖 + �̂�𝑖
− ⋅ 𝛿𝑖 … if 𝛿𝑖 < 0 476 

where:  477 

�̂�𝑖
+ = 𝛼𝑃 ⋅ 𝛼𝑖

+ 478 

�̂�𝑖
− = 𝛼𝑁 ⋅ 𝛼𝑖

− 479 

 480 

where 𝛼𝑖
+ and 𝛼𝑖

− correspond to the asymmetric scaling of dopamine RPEs at the single-cell level 481 

(Model 2) and 𝛼𝑃 and 𝛼𝑁 correspond to the asymmetric scaling of synaptic plasticity in D1R and 482 

D2R at the population level (Model 1).  483 

 484 

Linking asymmetric learning and baseline dopamine levels in healthy subjects 485 

Cools et al., (2009)24.  486 

There have been very few studies that examined the relationship between baseline dopamine 487 

levels and asymmetry in learning from positive and negative outcomes. As a rare case for such 488 

examinations, Cools et al.24 provided intriguing data in humans. They compared the performance 489 

in reversal learning and the quantity called ‘dopamine synthesis capacity’. Dopamine synthesis 490 

capacity is estimated by injecting the positron emission tomography (PET) tracer 491 
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[18F]fluorometatyrosine (FMT) and is thought to be correlated with baseline dopamine levels61,62. 492 

This study found that higher dopamine synthesis capacity was correlated with better learning 493 

from gains but not with learning from losses (Fig. 7b). As a result, in reversal learning, subjects 494 

with higher dopamine synthesis capacity learned from gains than losses, reported as the ‘relative 495 

reversal learning (RRL)’ index in their study (Fig. 7b). This result, thus, provides direct evidence 496 

supporting our Model 1. 497 

 498 

In addition, they found that dopamine synthesis capacity predicts the effectiveness of 499 

bromocriptine (D2 partial agonist) in altering learning rate asymmetry: bromocriptine’s ability to 500 

bias learning from gains over losses (i.e., positive change in RRL) was negatively correlated with 501 

dopamine synthesis capacity (Fig. 7c). We found that this result can also be explained by Model 502 

1. For this, we simulated the effects of bromocriptine with the biophysical model used above, 503 

and derived the asymmetric learning rates from the slopes of the D2R occupancy (Fig. 7d, 504 

Extended Data Fig. 6a,b) or activation curves (Fig. 7d, Extended Data Fig. 6c,d). The RRL 505 

parameter reported by Cools et al. corresponds to the asymmetric scaling factor 𝜏, and is 506 

equivalent to (2𝜏 − 1) (as described in the Methods 4.1). We then computed what would be the 507 

change in this parameter Δ(2𝜏 − 1) induced by bromocriptine (Fig. 7e-f, Extended Data Fig. 6e-508 

l). 509 

 510 

This analysis revealed that by considering the asymmetries in learning rates induced by changes 511 

in the baseline occupancy of the receptors, our model can capture their results in a qualitative 512 

manner. Intuitively, the less dopamine there is at baseline, the lower the occupancy of D2R at 513 

placebo conditions. This leads to a larger increase in D2R occupancy induced by D2 agonist in 514 

low dopamine baseline conditions (Fig. 7d, Extended Data Fig. 6a) and, thus, a larger increase in 515 

asymmetry in learning form gains over losses, if D1R occupancy is kept fixed These effects still 516 

hold even if we consider, in addition to bromocriptine’s effects in postsynaptic receptors (D2 517 

long or D2l), its effect on inhibition of dopamine release via presynaptic (D2 short or D2s) 518 

autoreceptors63,64 (Fig. 7d, Extended Data Fig. 6b). This can be simulated as a decrease in 519 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.10.566580doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.10.566580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

dopamine level, which leads to a shift in the occupancy curves to the right. Finally, we can 520 

consider effect of the partial agonism of the drug, that leads to a lower activation level of 521 

receptors even if the occupancy is maximal (Fig. 7d, Extended Data Fig. 6c-d). Even after 522 

considering this last factor, the results remain qualitatively the same as those found in the 523 

original study. These results were robust to a relatively wide range of values in the simulation’s 524 

parameters (Extended Data Fig. 7, 8).  525 

 526 

Linking psychiatric conditions to baseline dopamine levels  527 

Timmer et al., 2018 528 

Various psychiatric disorders are characterized by abnormal future predictions or mood. Our 529 

Model 1 raise the possibility that an overall decrease in baseline dopamine level in the striatum 530 

would enhance learning from negative outcomes over learning from positive outcomes leading to 531 

persistent pessimistic future value expectations, a hallmark of depressive-like symptoms (Fig. 532 

3a,b). A piece of evidence supporting this in the human literature is the greater learning rates for 533 

losses over gains in patients with Parkinson’s disease (PD)22,25, its comorbidity with 534 

depression25,65 that can precede the PD diagnosis65–67, and the reports of decreased dopamine 535 

transporter binding in the ventral striatum in depressed PD patients compared to non-depressed 536 

PD patients68,69.   537 

 538 

In addition, the progression of dopaminergic axonal loss in PD is topographically unbalanced: 539 

the axonal loss is more prominent in the dorsal striatal regions70 than in the ventral ones. This 540 

leads to uneven dopamine baseline levels across the striatum that would interact with the global 541 

increases in dopamine induced by dopaminergic medications in PD patients. We hypothesize that 542 

a behavioral readout of the degree of this unevenness might be the presence or absence of 543 

depression as a comorbidity: patients with depression might have lower dopamine levels in the 544 

ventral striatum. Thus, if indeed baseline dopamine levels are correlated with depression, this 545 

comorbidity could be predictive of the effects of PD medication.  546 

 547 
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We examined a previous study that provided evidence for this hypothesis 71. Here, PD patients 548 

with and without depression history were tested in a gambling task, under presence or absence of 549 

medication (‘ON’ and ‘OFF’ medication states). The authors fitted a ‘loss aversion’ parameter to 550 

the behavioral performance, which is equivalent to 1 − 𝜏 in our model, under some assumptions 551 

(Methods). Their results were consistent with our model predictions. In the OFF-medication 552 

state, there was a (near-significant) main effect of depression group (with or without depression) 553 

on the learning rate asymmetry: patients with a depression history tended to be more loss averse 554 

than nondepressed patients (P = 0.052). This is consistent with a decrease of dopamine levels in 555 

the ventral striatum and thus a regime of 𝛼+ < 𝛼− in value learning. Importantly, in the ON-556 

medication state, the medication effects on the asymmetry in learning rates were predicted by the 557 

degree of severity of depression: patients with larger depression scores exhibited greater drug-558 

induced decreases in loss aversion (Fig. 7g), which would correspond to an increase in 𝜏 =559 

𝛼+

𝛼++𝛼− in our model This is consistent with our Model 1: higher degrees of depression might be 560 

correlated with lower levels of baseline dopamine, making the D1R sensitivity more susceptible 561 

to an artificial increase in baseline dopamine with L-DOPA medication (Fig. 7h; further details 562 

discussed in Methods). 563 

 564 

 565 

Discussion  566 

 567 

A hallmark of various psychiatric disorders is overly optimistic or pessimistic predictions about 568 

the future. Using RL models, we sought to identify potential biological mechanisms that give rise 569 

to biased value predictions, with a particular focus on the roles of phasic versus tonic dopamine. 570 

Our results demonstrate that variations in tonic dopamine levels can modulate the efficacy of 571 

synaptic plasticity induced by positive versus negative RPEs, thereby resulting in biased value 572 

learning (Model 1). This effect arises due to sigmoidal shapes of the dose-occupancy curves and 573 

different affinities of dopamine receptors (D1R and D2R); alterations in the tonic dopamine level 574 
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result in changes in the slope of the dose-occupancy curve (and thus, sensitivity) of dopamine 575 

receptors at the baseline dopamine concentration. We show that this mechanism offers a simple 576 

explanation for how changes in tonic dopamine levels can result in biased value learning in a few 577 

examples of value learning in mice and humans. Additionally, we show that this mechanism may 578 

underlie symptoms of various psychiatric and neurological disorders. Although altered phasic 579 

dopamine responses could have been a natural suspect as a candidate mechanism for biased 580 

value learning37,38, our study provides a novel mechanism; the interaction between tonic and 581 

phasic dopamine can give rise to biased value learning, even when phasic dopamine responses 582 

remain relatively unchanged.  583 

 584 

The impact of properties of dopamine receptors on reinforcement learning (RL) 585 

Our results highlight the importance of considering properties of dopamine receptors and neural 586 

circuit architecture (i.e., direct and indirect pathways) in RL models. Based on different affinities 587 

of dopamine D1 and D2 receptors, it has been proposed that D1- and D2-SPNs play predominant 588 

roles in learning from positive and negative dopamine responses32,72–75. In support of this idea, 589 

recent experiments have demonstrated that PKA signaling in D1- and D2-SPNs is primarily 590 

driven by a phasic increase and decrease of dopamine, respectively35. Furthermore, LTP-like 591 

changes in D1- and D2-SPNs are triggered by a phasic increase and decrease of dopamine, 592 

respectively33,34. These recent pieces of evidence suggest that these plasticity rules are a basic 593 

principle of the RL circuitry in the brain. Here we explored the properties of this RL model and 594 

found the impact of the shape (slope) of receptor occupancy curves and showed that the tonic 595 

dopamine levels can modulate the relative efficacy of learning from positive versus negative 596 

RPEs. 597 

 598 

One assumption in our model is that after a change in the tonic dopamine level, intracellular 599 

signaling reaches a steady inactive state, and it is the change in receptor occupancy that matters 600 

for inducing synaptic plasticity, rather than the absolute level of receptor occupancy reached 601 

during phasic dopamine responses. We note that absolute level might also contribute, yet it is 602 
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expected that an increase or decrease in absolute occupancy levels will cause effects in the same 603 

direction as the effects of relative change that we explored in this study. 604 

 605 

Additionally, our model, which incorporates the new plasticity rules, the opponent circuit 606 

architecture and properties of D1/D2 dopamine receptors, provides insights into the basic design 607 

principle of the brain’s RL circuit. It should be noted that the dose occupancy curves were 608 

plotted as a function of the logarithm of dopamine concentration, which makes the occupancy 609 

curves into sigmoidal shapes (Fig. 3, Extended Data Fig. 9). This logarithmic scaling is 610 

important in two ways. First, considering two sigmoidal curves for D1R and D2R together, the 611 

curves are approximately symmetric around the normal baseline dopamine level (Fig. 3a, 612 

Normal). Second, logarithmic scaling means that a fold-change in dopamine concentration will 613 

lead to the same leftward or rightward shift in these plots. It has long been argued that signaling 614 

of RPEs by dopamine neurons is curtailed by the fact that dopamine neurons have relatively low 615 

firing rates (2-8 spikes per second), and inhibitory responses of dopamine neurons tend to be 616 

smaller than excitatory responses76,77. Importantly, if we consider logarithmic scaling of 617 

dopamine concentration, the problem of this asymmetry is substantially mitigated (Extended 618 

Data Fig. 10). For example, with the baseline firing of 6 spikes per second, a phasic increase to 619 

18 spikes per second and a phasic decrease to 2 spikes per second will cause the identical fold-620 

changes in spiking (i.e., 3-fold changes in both directions), which would lead to a similar fold-621 

changes in dopamine levels (Extended Data Fig. 11) and similar percent increase and decrease in 622 

receptor occupancy in D1R and D2R, respectively (Fig. 3a). Consequently, the system achieves 623 

symmetry in its response to positive and negative dopamine responses of observed magnitudes.  624 

 625 

This may help understand why the basal ganglia circuit employs the opponent circuit architecture 626 

in the first place. In the model used in the present study, the value is encoded as the difference 627 

between the activity of D1- and D2-SPNs (𝑉 = 𝑃 − 𝑁)32. We propose that this opponent circuit 628 

architecture, together with the logarithmic scaling of dopamine concentration, allows the system 629 

to effectively learn and encode both positive and negative values, which are contributed by the 630 
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increase of firing in D1- and D2-SPNs, respectively. This would allow to expand the dynamic 631 

range of value coding, without requiring high baseline firing rates. Thus, at the normal dopamine 632 

baseline, learning from positive and negative dopamine responses is well balanced. When the 633 

tonic dopamine level deviates from the normal level, however, then the symmetry is broken and 634 

value learning becomes biased, as explored in the present study. 635 

 636 

The role of tonic dopamine levels in psychiatric disorders 637 

As mentioned above, our modeling results provide an account for biased value predictions 638 

observed in various psychiatric and neurological conditions. For one, our model provides a link 639 

between findings in depressive-like states in animal models and the value learning biases 640 

exhibited by humans.  641 

 642 

In a rodent model of depression, it has been reported that spontaneous activity of dopamine 643 

neurons is decreased78 (but see79,80). In addition, decreased spontaneous firing of dopamine 644 

neurons has been observed as a result of chronic pain-induced adaptations that correlate with 645 

anhedonia-like behavior81. Furthermore, maternal deprivation, which increases susceptibility to 646 

anhedonia, led to an upregulation of D2R expression in the VTA82, which is expected to decrease 647 

the excitability of dopamine neurons via its autoreceptor function. Finally, chronic 648 

administration of corticosteroids, a method to mimic anxiety and anhedonia-like states, results in 649 

an increase in somatodendritic dopamine concentration which then decreases dopamine 650 

excitability via D2R hyper-activation83. These results of decreased dopamine excitability 651 

correlated with anhedonia-like states are consistent with findings of increased burst firing of 652 

lateral habenula (LHb) neurons56 and potentiation of glutamatergic inputs onto the habenula57  in 653 

depression models. This is further supported by reports that depressive-like behavioral 654 

phenotypes can be ameliorated by optogenetic activation of dopamine neurons84 and the anti-655 

depressant effects of ketamine might be mediated by the inhibition of bursting in the LHb58 656 

 657 
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The mechanism by which a broad change in dopamine excitability could lead to depressive-like 658 

states remains to be revealed. Just by assuming that a decrease in spontaneous firing leads to a 659 

decrease in baseline dopamine level in the striatum, our model readily predicts that learning from 660 

negative outcomes will be emphasized over learning from positive outcomes (Fig. 3a,b), as has 661 

been reported in some studies of patients with major depressive disorder (MDD)1. In addition, 662 

RL agents learning in these conditions exhibit enhanced risk-aversive behavior, pessimistic 663 

outcome expectations, and increased sensitivity to losses compared to gains, all of which are 664 

signatures of depressive-like conditions1,5,21,85,86.  This contrasts with findings of increased 665 

dopamine synthesis capacity in pathological gambling patients87, who show the opposite 666 

behavioral signatures3.  667 

 668 

An additional line of research relevant to our proposal is PD patients and pathological gambling 669 

as a comorbidity. Previous work has emphasized the interaction between the degree of 670 

dopaminergic loss and the effects of PD medications88–90, which can sometimes result in the 671 

development of addictive disorders such as pathological gambling. As mentioned, the loss of 672 

dopaminergic axons in PD patients has been reported to happen predominantly in the dorsal 673 

regions of the striatum70. Thus, at the onset of the motor impairment symptoms, which is when 674 

L-DOPA medication tends to be prescribed, dopamine level is expected to be low in the dorsal 675 

striatum while it might be relatively intact in the ventral striatum. This can lead to ‘overdose’ of 676 

dopamine by medication: while L-DOPA might take dopamine levels in the dorsal striatum back 677 

to its original set-point, it might cause an ‘overdose’ in the ventral striatum89,91. Our model 678 

predicts that this overdose would lead to decreases in D2R sensitivity relative to D1R. Assuming 679 

that the ventral striatal regions have a dominant role in value learning, this would result in 680 

excessive optimistic expectations and risk seeking, two key behavioral features of pathological 681 

gambling and addictive disorders. We provided indirect evidence for this hypothesis; future work 682 

should directly test these predictions. 683 

 684 
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It should be noted that we did not consider changes in dopamine receptors density, which have 685 

also been related to value learning biases92 and psychiatric conditions93. Future studies should 686 

explore the influence of this additional factor in the encoding of asymmetric learning rates (i.e., 687 

(�̂�𝑖
+, �̂�𝑖

−). 688 

 689 

Tonic dopamine as a modulator of ‘mood’ 690 

Mood refers to a person’s emotional state as it relates to their overall sense of well-being. 691 

Although the exact neural substrate of mood remains unknown, recent studies have indicated that 692 

mood reflects not the absolute goodness of outcomes but rather on the discrepancy between 693 

actual and expected outcomes in recent history13,14. That is, mood depends on the cumulative 694 

sum of RPEs that occurred recently13. It has also been proposed that mood, in turn, affects the 695 

way we perceive and learn from positive and negative outcomes (RPEs)13.  696 

 697 

Our model provides a unified mechanism for these two aspects of mood; both subjective feeling 698 

of mood and biased learning from positive versus negative outcomes can arise from changes in 699 

baseline dopamine levels which can be modulated by recent history of phasic dopamine 700 

responses. It was proposed that this history dependent modulation of learning is an adaptive 701 

mechanism that allows organisms to adapt quickly to slow changes in environments based on the 702 

“momentum” of whether the situation is changing in a better or worse direction on a slow 703 

timescale (e.g. seasonal change)13,14. The models presented in the present study may provide 704 

mechanistic insights into such mood-dependent modulation of learning and perception. 705 

 706 

Neural circuits for distributional reinforcement learning (RL) 707 

We examined the possibility that optimistic biases in reward seeking behavior and dopamine cue 708 

responses observed in habenula-lesioned mice can be explained by Model 2, either based on risk-709 

sensitive RL (the average response) or distributional RL (responses of a diverse set of individual 710 

dopamine neurons). We did not find evidence supporting this possibility. However, the present 711 

study makes two important contributions with respect to distributional RL. First, we can show 712 
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that our model, which incorporated direct and indirect pathway architecture, can support 713 

distributional RL (Extended Data Fig. 12, 13). It would be interesting to examine what additional 714 

features and functions could be gained by having this opponent architecture. Second, we largely 715 

replicated the previous results36  using an independent data set. That is, the signatures of 716 

distributional RL were present in this data set (Extended Data Fig. 3-4), and dopamine cue-717 

evoked responses did show an optimistic bias. This provides further evidence for a distributional 718 

code in dopamine neurons, and shows that there is an overall elevated distributional 719 

representation in dopamine cue responses in habenula lesioned animals.  720 

 721 

Concluding remarks 722 

Taken together, our biologically inspired RL model provides a foundation to link findings in the 723 

brain and formal models of RL. Our work highlights a causal impact of baseline dopamine on 724 

biasing future value predictions, which may underlie mood and some abnormalities observed in 725 

psychiatric patients and could be used to regulate risk sensitive behavior.   726 

 727 

  728 
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Methods  729 

1. Reinforcement learning model 730 

Here we provide formal definitions and the framework of reinforcement learning used in this study. We 731 

have focused our model formulations to the problem of prediction, in which an agent learns to predict the 732 

value function11. The problem of control (the problem of how an agent selects and executes actions) is not 733 

considered. In RL, an agent’s objective is to maximize the total cumulative rewards. It does so by learning 734 

the value associated with each state in an environment. For now, we will develop the model dropping the 735 

dependency on time within each episode. Here, the target to learn is the value function as defined by  736 

𝑉(𝑠𝑖) ≔  𝚬[𝑟(𝑛)|𝑠(𝑛) = 𝑠𝑖] 737 

Where 𝑟(𝑛) is the reward experienced in the episode 𝑛 (i.e., trial) of visiting state 𝑠𝑖. Learning of 𝑉(𝑠) is 738 

driven by reward prediction errors (RPEs, 𝛿), the discrepancy between the actual and expected reward:  739 

𝛿(𝑛) = 𝑟(𝑛) − 𝑉(𝑠𝑖) 740 

The value is updated for the experienced state according to:  741 

𝑉(𝑛+1)(𝑠𝑖) ← 𝑉(𝑛)(𝑠𝑖) + 𝛼 ∙ 𝛿(𝑛) 742 

This is also known as the Rescorla-Wagner (RW) delta rule94. The reward in each trial is sampled from a 743 

reward distribution specific to a given state: 𝑟(𝑛)~𝑅(𝑠𝑖). With the learning rule above, the value 744 

converges on the expected value of this reward distribution. This can be shown with a stochastic fixed-745 

point approach; the convergence point is derived by obtaining the value of 𝑉(𝑠𝑖) at which the change in  746 

𝑉(𝑠𝑖) from trial 𝑛 to trial (𝑛 + 1) is expected to be zero (i.e., is zero on average): 747 

𝚬[𝑉(𝑛+1)(𝑠𝑖) − 𝑉(𝑛)(𝑠𝑖)] = 0 748 

𝚬[𝛼 ⋅ 𝛿(𝑛)] = 0 749 

𝚬[𝛼 ⋅ (𝑟(𝑛) − 𝑉(𝑠𝑖)] = 0 750 

𝛼 ⋅ 𝚬[𝑟] − 𝛼 ⋅ 𝚬[𝑉(𝑠𝑖)] = 0 751 

𝚬[𝑉(𝑠𝑖)] = 𝚬[𝑟𝑡] 752 

𝑽∗(𝑠𝑖) = 𝚬[𝑟𝑡] 753 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.10.566580doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.10.566580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Where 𝑽∗(𝑠𝑖) is the stochastic fixed-point: the value around which 𝑉(𝑠𝑖) is expected to fluctuate after 754 

learning and corresponds to the learning target above.  755 

1.1. Temporal difference learning  756 

Now we will consider time and extend the models to the temporal difference (TD) learning framework11.  757 

Dopamine responses have been shown to present key signatures of TD errors95. Therefore, TD learning 758 

models allow us to directly link the model variables to dopamine neural responses. 759 

We can derive TD learning by defining a different environmental structure and learning objective. We 760 

start by considering arbitrary states (𝑠𝑡), which transition at each time step following a Markov process, 761 

and at each time step the agent samples a random reward from a probability distribution 𝑟𝑡~𝑅(𝑠𝑡).  762 

The learning objective is now the value of a given state 𝑉(𝑠𝑡) defined as the expected cumulative sum of 763 

all future rewards starting from state 𝑠. Rewards are discounted by a constant discounting factor (𝛾, with 764 

0 ≤ 𝛾 ≤ 1) each time step. The expectation is taken over stochastic state transitions and sampled rewards:  765 

𝑉(𝑠𝑡) ≔  𝚬[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +  𝛾3𝑟𝑡+3 … |𝑠𝑡 = 𝑆}] 766 

Where 𝑠𝑡 is the state at time 𝑡, 𝑟𝑡 is the reward sampled at time 𝑡 and 𝑉(𝑠𝑡) is the value of the state 𝑠𝑡. 767 

Since the environment and transitions are assumed to follow a Markov process, the equation above can be 768 

rewritten in a recursive manner. This is known as the Bellman equation11 : 769 

𝑉(𝑠𝑡) ≔  𝚬[𝑟𝑡 + 𝛾 ⋅ 𝑉(𝑠𝑡+1)|𝑠𝑡 = 𝑆] 770 

The agent approximates the true value 𝑉(𝑠𝑡) with a learned estimate  �̂�(𝑠𝑡). With this approximation, 771 

before learning converges, the estimates for the left- and right-hand sides are not equal. Thus, after 772 

sampling a reward 𝑟𝑡~𝑅(𝑠𝑡) from the environment, the difference between the two terms in the Bellman 773 

equation represents the error in value prediction, called the temporal difference reward prediction error 774 

(TD RPE, 𝛿 below), 775 

𝛿𝑡 = 𝑟𝑡 + 𝛾 ⋅ �̂�(𝑠𝑡+1) − �̂�(𝑠𝑡) 776 

With 𝛼 as the learning rate, the updates for the value estimates are:  777 

�̂�(𝑠𝑡) ← �̂�(𝑠𝑡) + 𝛼 ⋅ 𝛿𝑡 778 

With this definition, the TD RPE contains the difference between the estimated value of states evaluated 779 

at consecutive time points. If we fix the discounting factor to be 𝛾 = 1, then 𝛾 ⋅ �̂�(𝑠𝑡+1) − �̂�(𝑠𝑡) is the 780 
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temporal derivative of the value function. As a result of this property, unexpected increases and decreases 781 

in value result in positive and negative transient changes in TD RPE, respectively95.  782 

If dopamine responses encode TD RPEs, then cue-evoked responses can be formulated as:   783 

𝛿𝑐𝑢𝑒 = 𝛾 ⋅ �̂�(𝑠𝑐𝑢𝑒) − �̂�(𝑠𝑏) 784 

Where 𝛿𝑐𝑢𝑒 is the TD RPE induced by the cue, �̂�(𝑠𝑏) is the value prediction at baseline and �̂�(𝑠𝑐𝑢𝑒) is 785 

the value prediction elicited by the cue (which reflects the expected value predicted by each trial type). As 786 

the �̂�(𝑠𝑏) is the same across all trial types and represents the average value predictions across them, then 787 

𝛿𝑐𝑢𝑒 is dominated by the expected value of each trial type. This is a useful feature that we used in our 788 

simulations for the habenula lesion experiment.  789 

1.2.  Distributional TD learning  790 

In Results, we used a distributional TD learning model to test whether the subtle changes in the 791 

distribution of asymmetric scaling factors observed after lesions could lead to the observed changes in cue 792 

responses after learning.  793 

In distributional TD learning, our learning objective is the entire distribution over cumulative discounted 794 

future rewards, instead of the value defined above36,37,39. We will call this the return distribution, 𝑍(𝑠𝑡). 795 

We can thus write an analogue of the Bellman equation, the ‘distributional Bellman equation’:  796 

𝑍(𝑠𝑡) ≔ 𝑅(𝑠𝑡) + 𝛾 ⋅ 𝑍(𝑠𝑡+1) 797 

The target to learn in distributional TD is now 𝑉𝑖(𝑠𝑡) that minimizes for the expectile regression loss:  798 

𝑉𝑖(𝑠𝑡) ≔ argmin
𝑣

Ε[(𝑍(𝑠𝑡) − 𝑣)2 ⋅ (𝜏𝑖 − 𝟏(𝑍(𝑠𝑡)−𝑣)<0)]  799 

Where 𝑍(𝑠𝑡) is a random variable, representing the return distribution, and 1𝑓 is the indicator functions 800 

that is equal to 1 if the condition in the subscript {𝑓 ≔  (𝑍(𝑠𝑡) − 𝑣) < 0} is met, and 0 otherwise. 801 

Minimizing the expectile regression loss makes 𝑉𝑖(𝑠𝑡) to converge on the 𝜏𝑖
𝑡ℎ expectile of the return 802 

distribution39. 803 

The target is learned by taking samples from the estimated return distribution39 �̃�(𝑠𝑡+1 )~𝑍(𝑠𝑡+1) and 804 

from the reward distribution 𝑟𝑡~𝑅(𝑠𝑡), to compute the TD error: 805 

𝛿𝑖,𝑡 ≔ 𝑟𝑡 + 𝛾 ⋅ �̃�(𝑠𝑡+1) − 𝑉𝑖(𝑠𝑡) 806 
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Note that �̃�(𝑠𝑡+1 ) is random so the TD error is also random, and 𝛿𝑖,𝑡 ≠ 𝑟𝑡 + 𝛾 ⋅ 𝑉𝑖(𝑠𝑡+1) − 𝑉𝑖(𝑠𝑡). For 807 

more information regarding the sampling method employed in the simulations see Methods Section 3.3. 808 

In addition, the updates are performed with different learning rates (𝛼𝑖
+, 𝛼𝑖

−) for positive and negative 𝛿𝑖. 809 

This asymmetry in the weighting of the errors used to update 𝑉𝑖(𝑠𝑡) is essential to minimize the expectile 810 

regression loss.  811 

𝛿𝑖,𝑡 =  𝛼𝑖
+ ⋅ 𝛿𝑖,𝑡 …  if 𝛿𝑖,𝑡 > 0 812 

𝛿𝑖,𝑡 =  𝛼𝑖
− ⋅ 𝛿𝑖,𝑡 …  if 𝛿𝑖,𝑡 < 0 813 

The reliance on a single sample for �̃�(𝑠𝑡+1 ) suffers from high variance. Therefore, for performing the 814 

updates we average across a set of 𝑀 updates, each depending on a single sample 𝛿𝑖,𝑡.  815 

𝚬[Δ𝑉𝑖(𝑠𝑡)] =
1

𝑀
∑ 𝛼𝑖

− ⋅ 𝛿𝑖,𝑗 ⋅ 𝟏𝛿𝑖,𝑗<0 + 𝛼𝑖
+ ⋅ 𝛿𝑖,𝑗 ⋅ 𝟏𝛿𝑖,𝑗>0

𝑀

𝑗

 816 

Vi(𝑠𝑡) ← 𝑉𝑖(𝑠𝑡) + 𝚬[Δ𝑉𝑖(𝑠𝑡)] 817 

This learning rule will asymptotically converge to the 𝜏𝑖-th expectile of the return distribution39. 818 

1.3.  TD learning with D1 and D2 populations 819 

It is straightforward to extend the TD learning algorithm to have separate populations for D1 and D2 820 

SPNs32. We employed this model to derive dopamine cue responses with Model 1 (Fig. 6i). In this model, 821 

the same computation of TD RPE of standard TD learning is still used. Yet, this model differs in the 822 

updates and computation of �̂�(𝑠𝑡). 823 

As mentioned previously, the updates in the 𝑃𝑖 and 𝑁𝑖 populations happen exclusively with positive or 824 

negative TD RPEs, respectively: 825 

𝑃(𝑠𝑡) ← 𝑃(𝑠𝑡) + 𝛼+ ⋅ |𝛿𝑡| − 𝛽 ⋅ 𝑃(𝑠𝑡) …  if 𝛿𝑡 > 0 826 

𝑁(𝑠𝑡) ← 𝑁(𝑠𝑡) + 𝛼− ⋅ |𝛿𝑡| − 𝛽 ⋅ 𝑁(𝑠𝑡) … if 𝛿𝑡 < 0 827 

Where 𝛼+ and 𝛼− are the learning rates for the 𝑃 and 𝑁 populations, that we postulate is modulated by 828 

baseline dopamine levels. The variable 𝛽 ∈ (0,1) is the decay factor, which we keep constant throughout 829 

the simulations and serves to stabilize 𝑃(𝑠𝑡), 𝑁(𝑠𝑡). 830 

The computation of value estimate �̂�(𝑠𝑡) is given by:  831 
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�̂�(𝑠𝑡) = 𝑃(𝑠𝑡) − 𝑁(𝑠𝑡) 832 

1.3.1. Convergence of risk sensitive TD learning  833 

We now discuss the convergence of the proposed TD learning algorithm with D1 and D2 populations. 834 

This analysis builds on the work in risk-sensitive reinforcement learning 40 and the already established 835 

results of convergence for stochastic iterative algorithms (e.g., TD learning) (Bertsekas & Tsitsiklis, 836 

199696, Proposition 4.4, p. 156) . 837 

Theorem: The results by Bertsekas & Tsitsiklis (1996)96 establish that, given a sequence 𝑟𝑡 ∈838 

ℝ𝑚 generated by the iterative algorithm:  839 

𝑎𝑛+1(𝑠) = (1 − 𝜎𝑛(𝑠))𝑎𝑛(𝑠) + 𝜎𝑛(𝑠)((𝐻𝑎𝑛)(𝑠) + 𝜔𝑛(𝑠))         ∀ 𝑠 ∈ 1, … , 𝑚  Eq. I 840 

The variable 𝑎𝑛 converges to the unique solution 𝑎∗ of the equation: 𝐻𝑎∗ =  𝑎∗ with probability = 1, 841 

assuming the following conditions are fulfilled:  842 

1. The step sizes 𝜎𝑖(𝑖) are non-negative and satisfy:  843 

∑ 𝜎𝑛(𝑠)

∞

𝑛=0

= ∞ ∀ 𝑠 ∈ 1, … , 𝑚 844 

∑ 𝜎𝑛(𝑠)2 

∞

𝑛=0

< ∞  ∀ 𝑠 ∈ 1, … , 𝑚 845 

2. The noise term 𝜔𝑛(𝑠) satisfies: 846 

- Ε[𝜔𝑛(𝑠)|ℱ𝑛] = 0 ∀ 𝑠, 𝑛, where ℱ𝑛  denotes the history of the process up to and including time 847 

step 𝑛 848 

- Given any norm ‖⋅‖  on ℝ𝑚  there exist constants A and B such that: Ε[𝜔𝑛
2(𝑠)|ℱ𝑛] ≤ 𝐴 +849 

𝐵‖𝑟𝑛‖2    ∀ 𝑠, 𝑛 850 

3. The mapping H is a maximum norm contraction (see below for definition)   851 

To prove convergence, we will first discuss the case of risk-sensitive TD learning following 40 and then 852 

discuss TD learning with D1 and D2 populations.  853 

We define the risk sensitive TD-learning rule as: 854 

�̂�𝑛(𝑠) ← �̂�𝑛−1(𝑠) + 𝜎 ⋅ 𝒳𝜏(𝛿𝑠𝑛−1,𝑠𝑛
) 855 
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Where:  856 

- 𝛿𝑠𝑛−1,𝑠𝑛
= 𝑟𝑛−1,𝑛 + 𝛾 ⋅ �̂�𝑛−1(𝑠𝑛) − �̂�𝑛(𝑠𝑛−1) 857 

- The step index is 𝑛 ∈ 0, … , ∞ 858 

- The step size 𝜎 is kept constant across iterations. 859 

- For simplicity in calculations we follow 40 and make use of the operator 𝒳𝐾 with 𝐾 ∈ (−1,1) 860 

𝒳𝐾(𝑥) = (1 − 𝐾) ⋅ 𝑥        … if  𝑥 > 0 861 

𝒳𝐾(𝑥) = (1 + 𝐾) ⋅ 𝑥        … if  𝑥 ≤ 0  862 

It is simple to show that the asymmetric scaling factor used in this paper is a scaled version of 863 

the operator. That is:    𝜏 = 0.5(1 − 𝐾)  and 1 − 𝜏 = 0.5(1 + 𝐾).  864 

- In addition, as in 40, given that the function 𝒳𝜏(𝑥) is piece-wise differentiable we can apply 865 

the mean value theorem to show that for each pair of numbers (𝑎, 𝑏) there exists a  ℰ𝑎,𝑏,𝐾 ∈866 

[1 − |𝐾|, 1 + |𝐾|], such that: ℰ𝑎,𝑏,𝐾 =
𝒳𝜏(𝑎)−𝒳𝜏(𝑏)

𝑎−𝑏
  . This relationship will become useful in 867 

the future. 868 

We will re-format the update rule to better match the iterative algorithm above: 869 

Adding and subtracting 
𝜎 ⋅ �̂�𝑛−1(𝑠)

𝛼⁄  870 

�̂�𝑛(𝑠) ← (1 − 𝜎
𝛼⁄ )�̂�𝑛−1(𝑠) + 𝜎

𝛼⁄ (𝛼 ⋅ 𝒳𝜏(𝛿𝑛−1) + �̂�𝑛−1(𝑠)) 871 

Defining an operator that will become useful: 872 

𝒯𝛼𝐾[𝑉](𝑠) ≔ 𝑉(𝑠) + 𝛼 ⋅ ∑ 𝑝𝑖𝑗 ⋅ 𝒳𝐾 ⋅

𝑖,𝑗∈𝑆

𝛿𝑖𝑗 873 

Defining the noise term as:  874 

𝜔𝑛−1(𝑠) = �̂�𝑛−1(𝑠) + 𝛼 ⋅ 𝒳𝐾(𝛿𝑠𝑛−1,𝑠𝑛
) − 𝒯𝛼𝐾[�̂�𝑛−1](𝑠) 875 

Then our update rule above becomes:  876 

�̂�𝑛(𝑠) ← (1 − 𝜎
𝛼⁄ )�̂�𝑛−1(𝑠) + 𝜎

𝛼⁄ (𝒯𝛼𝐾[�̂�𝑛−1](𝑠) + 𝜔𝑛−1(𝑠)) 877 

The formulation above can be directly compared to the one of stochastic iterative algorithm theorem 878 

(Eq.I) , and now we can check whether the conditions for convergence are met.  879 
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1. The conditions for the learning rate, are a direct consequence of our choice of the parameter 880 

which is a constant in our model and 0 < 𝛼 < 1.  881 

2. It has been shown that showed that the conditions for the noise term 𝜔𝑛−1(𝑠) as formulated 882 

above are satisfied40. 883 

3. Finally, the operator 𝒯𝛼𝜏[𝑉](𝑠) is a contraction mapping as also shown in Bersekas (1996)40. 884 

Therefore, the variable 𝑉𝑛 converges to the unique solution 𝑉∗ for which: 885 

𝑉∗ = 𝒯𝛼𝐾[𝑉∗] = 𝑉∗ + 𝛼 ⋅ ∑ 𝑝𝑖𝑗 ⋅ 𝒳𝐾 ⋅

𝑖,𝑗∈𝑆

𝛿𝑖𝑗 886 

We elaborate now on the proof for the contraction mapping of the operator 𝒯𝛼𝜏[𝑉](𝑠), as this will be 887 

useful for the proof of the D1 D2 TD learning model.  888 

Definition of contraction mapping. Let  (𝑋, 𝑑) be a metric space (a set 𝑋, with a notion of distance, 𝑑, 889 

between points). A mapping  𝒯: 𝑋 → 𝑋 is a contraction mapping if there exists a constant 𝑐: 0 ≥ 𝑐 > 1 890 

such that for all 𝑥 ∈ 𝑋 : 891 

𝑑(𝒯[𝑥𝑖], 𝒯[𝑥𝑗]) ≤ 𝑐𝑑(𝑥𝑖, 𝑥𝑗) 892 

That is, a contraction mapping maps points closer together. 893 

Elaborating now on the operator 𝒯𝛼𝜏[𝑉](𝑠) and using |⋅| as our distance metric: 894 

| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)|895 

= |𝑉1(𝑖) + 𝛼 ⋅ ∑ 𝑝𝑖𝑗 ⋅ 𝒳𝐾 ⋅ (𝑟𝑖,𝑗 + 𝛾 𝑉1(𝑗) − 𝑉1(𝑖))

𝑖,𝑗∈𝑆

− 𝑉2(𝑖) + 𝛼896 

⋅ ∑ 𝑝𝑖𝑗 ⋅ 𝒳𝐾 ⋅ (𝑟𝑖,𝑗 + 𝛾 𝑉2(𝑗) − 𝑉2(𝑖))

𝑖,𝑗∈𝑆

| 897 
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| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)|898 

= |𝑉1(𝑖) − 𝑉2(𝑖)899 

+ 𝛼 ∑ 𝑝𝑖𝑗 ⋅ (𝒳𝜏 ⋅ (𝑟𝑖,𝑗 + 𝛾 𝑉1(𝑗) − 𝑉1(𝑖)) − 𝒳𝜏 ⋅ (𝑟𝑖,𝑗 + 𝛾 𝑉2(𝑗) − 𝑉2(𝑖)))

𝑖,𝑗∈𝑆

| 900 

Using the relation defined above ℰ𝑎,𝑏,𝐾 ⋅ (𝑎 − 𝑏) = 𝒳𝐾(𝑎) − 𝒳𝐾(𝑏) 901 

| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)|902 

= |𝑉1(𝑖) − 𝑉2(𝑖) + 𝛼 ∑ 𝑝𝑖𝑗 ⋅ ℰ𝑉1,𝑉2,𝐾 ⋅ (𝛾( 𝑉1(𝑗) − 𝑉2(𝑖)) − ( 𝑉1(𝑗) − 𝑉2(𝑖)))

𝑖,𝑗∈𝑆

| 903 

| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)|904 

= |(1 − 𝛼 ∑ 𝑝𝑖𝑗

𝑖,𝑗∈𝑆

⋅ ℰ𝑉1,𝑉2,𝐾) ⋅ (𝑉1(𝑗) − 𝑉2(𝑖))905 

+ ∑ 𝑝𝑖𝑗 ⋅ ℰ𝑉1,𝑉2,𝐾 ⋅ (𝛾( 𝑉1(𝑗) − 𝑉2(𝑖)))

𝑖,𝑗∈𝑆

| 906 

 907 

Given that ℰ𝑎,𝑏,𝐾 ∈ [1 − |𝐾|, 1 + |𝐾|] and assuming 𝛼 ∈ (0, (1 + |𝐾|)−1): 908 

1 − 𝛼 ⋅ ∑ 𝑝𝑖𝑗

𝑖,𝑗∈𝑆

⋅ ℰ𝑉1,𝑉2,𝐾 > 0 909 

Taking this term outside the | ⋅ |  and rearranging:  910 

| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)| = (1 − 𝛼 ⋅ (1 − 𝛾) ⋅  ∑ 𝑝𝑖𝑗

𝑖,𝑗∈𝑆

⋅ ℰ𝑉1,𝑉2,𝐾) |(𝑉1(𝑗) − 𝑉2(𝑖))| 911 

| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)| = 𝑐 ⋅ |(𝑉1(𝑗) − 𝑉2(𝑖))| 912 
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Where the term: 913 

𝑐 =  (1 − 𝛼 ⋅ (1 − 𝛾) ⋅  ∑ 𝑝𝑖𝑗

𝑖,𝑗∈𝑆

⋅ ℰ𝑉1,𝑉2,𝐾) 914 

To get the upper boundary of 𝑐 we use the minimum value for the sum, where ℰ𝑉1𝑉2𝐾 = 1 − |𝐾|  ∀𝑖, 𝑗 ∈915 

𝑆. And use the assumption that 𝛼 ∈ (0, (1 + |𝐾|)−1): 916 

𝑐 ≤  (1 − 𝛼 ⋅ (1 − 𝛾) ⋅ (1 − |𝐾|) 917 

lim
𝛼→0

𝑐 =  (1 − 𝛼 ⋅ (1 − 𝛾) ⋅ (1 − |𝐾|) = 1 918 

To get the lower boundary of 𝑐 we use the maximum value for the sum, where ℰ𝑉1𝑉2𝐾 = 1 + |𝐾|  ∀𝑖, 𝑗 ∈919 

𝑆. And use the assumption that 𝛼 ∈ (0, (1 + |𝐾|)−1): 920 

𝑐 ≥  (1 − 𝛼 ⋅ (1 − 𝛾) ⋅ (1 + |𝐾|) 921 

lim
𝛼→(1+|𝐾|)−1

𝑐 =  (1 − (1 + |𝐾|)−1 ⋅ (1 − 𝛾) ⋅ (1 + |𝐾|) = 𝛾 922 

Therefore: 𝛾 < 𝑐 < 1 923 

|𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)| ≤ 𝑐 ⋅ |(𝑉1(𝑗) − 𝑉2(𝑖))| 924 

And the operator 𝒯𝛼𝜏[𝑉](𝑠) is a contraction mapping, under the condition 𝛼 ∈  (0, (1 + |𝐾|)−1) 925 

1.3.2. Convergence of TD learning with D1 and D2 populations 926 

We define the D1-D2 TD-learning rule as: 927 

�̂�𝑛(𝑠) ← �̂�𝑛−1(𝑠) + 𝛼 ⋅ 𝒳𝜏(𝛿𝑠𝑛−1,𝑠𝑛
) − 𝛽�̂�𝑛−1(𝑠) 928 

Note this update rule is analogous to the risk sensitive TD learning rule except for the last term that 929 

emerges from the decay factor in the 𝑃, 𝑁 populations of our model. 930 

Performing the same re-arrangement as above we reach: 931 

�̂�𝑛(𝑠) ← (1 − 𝜎
𝛼⁄ )�̂�𝑛−1(𝑠) + 𝜎

𝛼⁄ (𝛼 ⋅ 𝒳𝜏(𝛿𝑛−1) + �̂�𝑛−1(𝑠) − 𝛼 ⋅ 𝛽�̂�𝑛−1(𝑠)) 932 

We define a new operator 𝒯′𝛼𝐾[𝑉](𝑠) :  933 

𝒯′𝛼𝐾[𝑉](𝑠) ≔ (1 − 𝛼 ⋅ 𝛽) ⋅ 𝑉(𝑠) + 𝛼 ⋅ ∑ 𝑝𝑖𝑗 ⋅ 𝒳𝐾 ⋅

𝑖,𝑗∈𝑆

𝛿𝑖𝑗 934 
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And the noise then is defined as:  935 

𝜔𝑛−1(𝑠) = 𝛼 ⋅ 𝒳𝐾(𝛿𝑠𝑛−1,𝑠𝑛
) + �̂�𝑛−1(𝑠) − 𝛼 ⋅ 𝛽 ⋅ �̂�𝑛−1(𝑠) − 𝒯′𝛼𝐾[�̂�𝑛−1](𝑠) 936 

The update becomes: 937 

�̂�𝑛(𝑠) ← (1 − 𝜎
𝛼⁄ )�̂�𝑛−1(𝑠) + 𝜎

𝛼⁄ (𝒯′𝛼𝐾[�̂�𝑛−1](𝑠) + 𝜔𝑛−1(𝑠)) 938 

The noise term reduces to the same expression as the one of TD learning, and so it fullfils the 939 

requirements for the theorem of stochastic iterative algorithms. We will now test whether the operator 940 

𝒯′𝛼𝐾[𝑉](𝑠) also represents a contraction map.  941 

| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)|942 

= |𝑉1(𝑖) + 𝛼 ⋅ ∑ 𝑝𝑖𝑗 ⋅ 𝒳𝐾 ⋅ (𝑟𝑖,𝑗 + 𝛾 𝑉1(𝑗) − 𝑉1(𝑖))

𝑖,𝑗∈𝑆

− 𝛼 ⋅ 𝛽 ⋅ 𝑉1(𝑖) + 𝑉2(𝑖) + 𝛼943 

⋅ ∑ 𝑝𝑖𝑗 ⋅ 𝒳𝐾 ⋅ (𝑟𝑖,𝑗 + 𝛾 𝑉2(𝑗) − 𝑉2(𝑖)) − 𝛼 ⋅ 𝛽 ⋅ 𝑉2(𝑖)

𝑖,𝑗∈𝑆

| 944 

| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)|945 

= |𝑉1(𝑖) − 𝑉2(𝑖) − 𝛼 ⋅ 𝛽(𝑉1(𝑖) − 𝑉2(𝑖))946 

+ 𝛼 ∑ 𝑝𝑖𝑗 ⋅ (𝒳𝜏 ⋅ (𝑟𝑖,𝑗 + 𝛾 𝑉1(𝑗) − 𝑉1(𝑖)) − 𝒳𝜏 ⋅ (𝑟𝑖,𝑗 + 𝛾 𝑉2(𝑗) − 𝑉2(𝑖)))

𝑖,𝑗∈𝑆

| 947 

Using the relation defined above ℰ𝑎,𝑏,𝐾 ⋅ (𝑎 − 𝑏) = 𝒳𝐾(𝑎) − 𝒳𝐾(𝑏) 948 

| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)|949 

= |(1 − 𝛼𝛽) ⋅ (𝑉1(𝑖) − 𝑉2(𝑖))950 

+ 𝛼 ∑ 𝑝𝑖𝑗 ⋅ ℰ𝑉1,𝑉2,𝐾 ⋅ (𝛾( 𝑉1(𝑗) − 𝑉2(𝑖)) − ( 𝑉1(𝑗) − 𝑉2(𝑖)))

𝑖,𝑗∈𝑆

| 951 
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| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)|952 

= |(1 − 𝛼 ⋅ 𝛽 − 𝛼 ∑ 𝑝𝑖𝑗

𝑖,𝑗∈𝑆

⋅ ℰ𝑉1,𝑉2,𝐾 + 𝛾𝛼 ∑ 𝑝𝑖𝑗

𝑖,𝑗∈𝑆

⋅ ℰ𝑉1,𝑉2,𝐾) ⋅ (𝑉1(𝑗) − 𝑉2(𝑖))| 953 

| 𝒯𝛼𝐾[𝑉1](𝑖) − 𝒯𝛼𝐾[𝑉2](𝑖)| = 𝑐 ⋅ |(𝑉1(𝑗) − 𝑉2(𝑖))| 954 

Where the term: 955 

𝑐 =  (1 − 𝛼 ⋅ 𝛽 − 𝛼 ⋅ (1 − 𝛾) ⋅  ∑ 𝑝𝑖𝑗

𝑖,𝑗∈𝑆

⋅ ℰ𝑉1,𝑉2,𝐾) 956 

To get the upper boundary of 𝑐 we use the minimum value for the sum, where ℰ𝑉1𝑉2𝐾 = 1 − |𝐾|  ∀𝑖, 𝑗 ∈957 

𝑆, and use the assumption that 𝛼 ∈ (0, (1 + |𝐾|)−1): 958 

𝑐 ≤ 1 − 𝛼 ⋅ 𝛽 − 𝛼 ⋅ (1 − 𝛾) ⋅ (1 − |𝐾|) 959 

lim
𝛼→0

𝑐 =  1 − 𝛼 ⋅ 𝛽 − 𝛼 ⋅ (1 − 𝛾) ⋅ (1 − |𝐾|) = 1 960 

To get the lower boundary of 𝑐 we use the maximum value for the sum, where ℰ𝑉1𝑉2𝐾 = 1 + |𝐾|  ∀𝑖, 𝑗 ∈961 

𝑆, and use the assumption that 𝛼 ∈ (0, (1 + |𝐾|)−1): 962 

𝑐 ≥  (1 − 𝛼 ⋅ 𝛽 − 𝛼 ⋅ (1 − 𝛾) ⋅ (1 + |𝐾|) 963 

lim
𝛼→(1+|𝐾|)−1

𝑐 =  (1 − (1 + |𝐾|)−1 ⋅ 𝛽 − (1 + |𝐾|)−1 ⋅ (1 − 𝛾) ⋅ (1 + |𝐾|) = 𝛾 − (1 + |𝐾|)−1 ⋅ 𝛽 964 

Given that we want 𝑐 ≥ 0 we can find the parameter ranges to achieve this: 965 

𝑐 = 𝛾 − (1 + |𝐾|)−1 ⋅ 𝛽 ≥ 0 966 

Given that: 𝐾 ∈ (−1,1), we use the minimum value of |𝐾| = 0 to find the limit of c: 967 

lim
|𝐾|→0

𝑐 =  𝛾 − 𝛽 968 

So the condition 𝛾 ≥ 𝛽 needs to be present to keep:  0 ≤ 𝑐 < 1.  969 

Under these conditions, the operator 𝒯′𝛼𝐾[𝑉](𝑠) also represents a contraction map.  970 

|𝒯′𝛼𝐾[𝑉1](𝑖) − 𝒯′𝛼𝐾[𝑉2](𝑖)| ≤ 𝑐 ⋅ |(𝑉1(𝑗) − 𝑉2(𝑖))| 971 

Stochastic fixed point for the value estimate:  972 
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Having shown convergence of the algorithm, we will now derive the convergent points for our algorithm 973 

using stochastic fixed points. For clarity, we estimate the stochastic fixed point dropping the dependency 974 

on time. 975 

If learning between 𝑃 and 𝑁 is symmetric 𝛼+ = 𝛼− = 𝛼. We derive the convergent estimate of 𝑉(𝑠𝑡) 976 

with a fixed-point approach. First, we subtract the 𝑃 and  𝑁 update equations, to arrive to the update in 977 

the  �̂�(𝑠𝑡) between the (𝑛) and the (𝑛 + 1) update: 978 

�̂�(𝑛+1)(𝑠𝑖) ← �̂�(𝑛)(𝑠𝑖) + 𝛼 ⋅ 𝛿(𝑛) − 𝛽 ⋅ �̂�(𝑛)(𝑠𝑖) 979 

Where the superscripts indicate the iteration number. We can now derive the stochastic fixed-point 980 

for  �̂�(𝑠𝑡) : 981 

𝚬[�̂�(𝑛+1)(𝑠𝑖) − �̂�(𝑛)(𝑠𝑖)] = 0 982 

𝚬[𝛼 ⋅ 𝛿(𝑛) − 𝛽 ⋅ �̂�(𝑛)(𝑠𝑖)] = 0 983 

𝚬 [𝛼 ⋅ (𝑟(𝑛) − �̂�(𝑠𝑖)) − 𝛽 ⋅ �̂�(𝑛)(𝑠𝑖)] = 0 984 

𝛼 ⋅ 𝚬[𝑟] − (𝛼 + 𝛽) ⋅ 𝚬[�̂�(𝑠𝑖)] = 0 985 

𝚬[�̂�(𝑠𝑖)] =
𝛼

𝛼 + 𝛽
𝚬[𝑟] 986 

𝑽∗ =
𝛼

𝛼 + 𝛽
𝚬[𝑟] 987 

Where 𝑽∗ = 𝚬[�̂�(𝒔𝒊)] is the value around which  �̂�(𝑠𝑖) is expected to fluctuate after convergence. 988 

Throughout this study, we have manipulated the learning rates between 𝑃 and 𝑁 to be asymmetric 𝛼+ ≠989 

𝛼− or, equivalently, 𝜏 ≠ 1 − 𝜏. We can find the stochastic fixed point for this more general case: 990 

𝚬[�̂�(𝑛+1)(𝑠𝑖) − �̂�(𝑛)(𝑠𝑖)] = 0 991 

𝚬[𝜏 ⋅ |𝛿(𝑛)| ⋅ 𝟏𝜹>𝟎 − (1 − 𝜏) ⋅ |𝛿(𝑛)| ⋅ 𝟏𝜹<𝟎 − 𝛽 ⋅ �̂�(𝑛)(𝑠𝑖)] = 0 992 

To take the expectation we use the definition: Ε[𝑋] = ∑ 𝑝(𝑥𝑖) ⋅ 𝑥𝑖𝑖 . For a Bernoulli distribution, 𝑝(𝑥𝑖) 993 

takes two values: 994 

• 𝑝(𝑥𝑖) = 𝑝 if reward is delivered and, thus 𝑟 = 1,  𝛿𝑡 > 0,  995 

• 𝑝(𝑥𝑖) = (1 − 𝑝) if reward is not delivered and, thus 𝑟 = 0,  𝛿𝑡 < 0,  996 
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Therefore, we can resolve the expectation and expand the RPEs:  997 

𝚬[𝜏 ⋅ |𝛿(𝑛)| ⋅ 𝟏𝜹>𝟎 − (1 − 𝜏) ⋅ |𝛿(𝑛)| ⋅ 𝟏𝜹<𝟎 − 𝛽 ⋅ �̂�(𝑛)(𝑠𝑖)] = 0 998 

𝜏 ⋅ 𝚬[|𝑟 − �̂�(𝑠𝑖)| ⋅ 𝟏𝜹>𝟎] − (1 − 𝜏) ⋅ 𝐄[|−�̂�(𝑠𝑖)| ⋅ 𝟏𝜹<𝟎] − 𝛽 ⋅ 𝚬[�̂�(𝑠𝑖)] = 0 999 

Taking the absolute values: 1000 

|𝑟 − �̂�(𝑠𝑖)| = 𝑟 − �̂�(𝑠𝑖) …   if  (𝑟 − �̂�(𝑠𝑖)) > 0 1001 

|−�̂�(𝑠𝑖)| = �̂�(𝑠𝑖) …    if  (−�̂�(𝑠𝑖)) < 0 1002 

𝜏 ⋅ 𝚬 [(𝑟 − �̂�(𝑠𝑖)) ⋅ 𝟏𝜹>𝟎] − (1 − 𝜏) ⋅ 𝐄[�̂�(𝑠𝑖) ⋅ 𝟏𝜹<𝟎] − 𝛽 ⋅ 𝚬[�̂�(𝑠𝑖)] = 0 1003 

Replacing stochastic fixed point:   E[�̂�(𝑠𝑡)] = 𝑉∗ and taking the expectations: 1004 

β ⋅ 𝑉∗ = 𝜏 ⋅ 𝑝 ⋅ (𝑟 − 𝑉∗) − (1 − 𝜏) ⋅ (1 − 𝑝) ⋅ 𝑉∗ 1005 

Rearranging and isolating 𝑉∗, we obtain: 1006 

𝑉∗ =

𝜏
1 − 𝜏 ⋅

𝑝
1 − 𝑝 ⋅ 𝑟

𝜏
1 − 𝜏

⋅
𝑝

1 − 𝑝
+ 1 +

𝛽
(1 − 𝜏) ⋅ (1 − 𝑝)

 1007 

Stochastic fixed point for P and N populations: 1008 

We have mentioned that the decay term (𝛽) in the update equations serves to stabilize the estimates of the 1009 

𝑃 and 𝑁 populations (i.e., avoid infinite increases). We can observe the influence of 𝛽 by computing the 1010 

stochastic fixed points for these variables. 1011 

For the 𝑃 population: 1012 

𝚬[𝑃(𝑛+1)(𝑠𝑡) − 𝑃(𝑛)(𝑠𝑡)] = 0 1013 

𝚬[𝜏 ⋅ |𝑟 − 𝑉(𝑛)(𝑠𝑡)| ⋅ 𝟏𝜹>𝟎 − 𝛽 ⋅ 𝑃(𝑛)(𝑠𝑡)] = 0 1014 

𝑝 ⋅ 𝜏 ⋅ (𝑟 − 𝑉∗) − 𝛽 ⋅ 𝑃∗ = 0 1015 

𝑃∗ =
𝑝 ⋅ 𝜏

𝛽
⋅ (𝑟 − 𝑉∗) 1016 

Similarly, for the 𝑁 population: 1017 
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𝚬[𝑁(𝑛+1)(𝑠𝑡) − 𝑁(𝑛)(𝑠𝑡)] = 0 1018 

𝚬[(1 − 𝜏) ⋅ |−𝑉(𝑛)| ⋅ 𝟏𝜹<𝟎 − 𝛽 ⋅ 𝑁(𝑛)(𝑠𝑡)] = 0 1019 

(1 − 𝑝) ⋅ (1 − 𝜏) ⋅ 𝑉∗ − 𝛽 ⋅ 𝑁∗ = 0 1020 

𝑁∗ =
(1 − 𝑝) ⋅ (1 − 𝜏)

𝛽
⋅ 𝑉∗ 1021 

As it can be seen in the stochastic fixed points 𝑃∗, 𝑁∗, the term 
1

𝛽
 is a proportionality constant. Therefore: 1022 

lim
𝛽→0

𝑃∗ = lim
𝛽→0

(
𝑝 ⋅ 𝜏

𝛽
⋅ (𝑟 − 𝑉∗)) = undefined 1023 

lim
𝛽→0

𝑁∗ = lim
𝛽→0

(
(1 − 𝑝) ⋅ (1 − 𝜏)

𝛽
⋅ 𝑉∗) = undefined 1024 

So, 𝛽 ≠ 0 needs to be met for the stochastic fixed points 𝑃∗, 𝑁∗ to exist. In Extended Data Fig. 1 we show 1025 

empirically that the convergence rate is slower as 𝛽 gets closer to 0, but it is always achieved. 1026 

1.3.3. Sensitivity of learned variables in D1-D2 model to parameters 1027 

The conditions for the D1-D2 model to reproduce the data from our habenula lesion experiment and some 1028 

of the previous studies are that:  1029 

1. The bias in  𝑉∗ induced by the asymmetric learning rates doesn’t change the monotonicity of the 1030 

learned values as a function of the true expected value of the return distribution 𝚬[𝑅(𝑠)]. In other 1031 

words, regardless of the level of ‘optimism’ or ‘pessimism’, 𝑉∗ monotonically increases with 1032 

𝚬[𝑅(𝑠)]. 1033 

2. Asymmetric learning rates change the concavity of 𝑉∗ as a function of 𝚬[𝑅(𝑠)] : ‘Optimistic’ or 1034 

‘pessimistic’ value functions are concave or convex with respect to 𝚬[𝑅(𝑠)], respectively. 1035 

 1036 

We will now analyze whether these conditions are met, considering the range of parameters of relevance:  1037 

0 < 𝜏 < 1, 𝑟 ≠ 0 and 0 <𝛽 < 1 1038 

For the condition 1 to be met, the first derivative of 𝑉∗ with respect to 𝚬[𝑅(𝑠)] should always be positive. 1039 

In the case of Bernoulli return distributions, the derivative of 𝑉∗ with respect to p(reward) is 1040 
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𝜕𝑉

𝜕𝑝

∗

=
𝜕

𝜕𝑝
(

𝜏
1 − 𝜏 ⋅

𝑝
1 − 𝑝 ⋅ 𝑟

𝜏
1 − 𝜏 ⋅

𝑝
1 − 𝑝 + 1 +

𝛽
(1 − 𝜏) ⋅ (1 − 𝑝)

) =
𝜏 ⋅ 𝑟 ⋅ (𝜏 − 𝛽 − 1)

(𝜏 ⋅ (2𝑝 − 1) + 𝛽 − 𝜏 + 1)2
 1041 

We can look at the fixed points of this expression, as they correspond to the value of 𝑝 at which the 1042 

derivative changes the sign. This expression has fixed points at: 𝜏 = 0, 𝑟 = 0, and 𝛽 = 𝜏 − 1. Given our 1043 

parameters’ ranges:  0 < 𝜏 < 1, 𝑟 ≠ 0 and 0 <𝛽 < 1 , none of those fixed points are present within those 1044 

ranges. In addition, it can be seen that this (
𝜕𝑉∗

𝜕𝑝
) is positive for the parameter values within those ranges. 1045 

Therefore, knowing that the derivative won’t reach any fixed point, 𝑉∗ is always a growing monotonic 1046 

function with respect to 𝑝.  1047 

For the condition 2 to be met, we can analyze the second derivative of 𝑉∗ with respect to 𝚬[𝑅(𝑠)] as it 1048 

indicates the convexity of a function. The conditions to be mat are: 1049 

- 𝑉∗ is convex if it is ‘pessimistic’:   if  τ < 0.5 → 
𝜕2𝑉

𝜕𝑝2 > 0  1050 

- 𝑉∗ is concave if it is ‘optimistic:   if  τ > 0.5 → 
𝜕2𝑉

𝜕𝑝2 < 0  1051 

In the case of Bernoulli return distributions, we take the second derivative of 𝑉∗ with respect to 1052 

p(reward): 1053 

𝜕2𝑉

𝜕𝑝2

∗

=
𝜕2

𝜕𝑝2 (

𝜏
1 − 𝜏 ⋅

𝑝
1 − 𝑝 ⋅ 𝑟

𝜏
1 − 𝜏 ⋅

𝑝
1 − 𝑝 + 1 +

𝛽
(1 − 𝜏) ⋅ (1 − 𝑝)

) =
2𝜏 ⋅ (2𝜏 − 1) ⋅ 𝑟 ⋅ (𝜏 − 𝛽 − 1)

(𝜏 ⋅ (2𝑝 − 1) + 𝛽 − 𝑝 + 1)3
 1054 

We can again look at the fixed points of this expression. These happen at: 𝜏 = 0, 𝑟 = 0, and 𝛽 = 𝜏 − 1 1055 

and 𝜏 = 0.5. Among them, the only fixed point within our parameters range is the latter. In addition, by 1056 

replacing 𝜏 in the expression above, it is easily shown that it is positive if 𝜏 < 0.5 and negative if 𝜏 > 0.5. 1057 

Thus, given that the ranges for the parameters are such that the second derivative won’t reach any other 1058 

fixed point, condition 2 will always be met.  1059 
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1.4.  Distributional TD learning with D1 and D2 populations 1060 

The signatures of distributional RL were preserved in dopamine neurons firing rates after habenula 1061 

lesions (Extended Data Fig. 3-4). Therefore, we considered a third alternative to model 1 and 2, that 1062 

assigns different functions to each of the mechanisms for asymmetric learning rates. 1063 

In this model (Extended Data Fig. 13) the single cell asymmetric scaling factors (𝛼𝑖
+, 𝛼𝑖

−) give rise to a 1064 

distributional expectile code for value and are implemented at the level of the scaling of RPE-evoked 1065 

responses of dopamine neurons: 1066 

𝛿𝑖,𝑡 ≔ 𝑟𝑡 + 𝛾 ⋅ �̃�(𝑠𝑡+1) − 𝑉𝑖(𝑠𝑡) 1067 

𝛿𝑖,𝑡 =  𝛼𝑖
+ ⋅ 𝛿𝑖,𝑡 …  if 𝛿𝑖,𝑡 > 0 1068 

𝛿𝑖,𝑡 =  𝛼𝑖
− ⋅ 𝛿𝑖,𝑡 …  if 𝛿𝑖,𝑡 < 0 1069 

 1070 

The modulation of receptor sensitivities, carried out downstream at the SPN level, gives rise to the global 1071 

rescaling of the value updates (𝜂+, 𝜂−) (Extended Data Fig. 13A): 1072 

𝑃𝑖(𝑠𝑡) ← 𝑃𝑖(𝑠𝑡) + 𝜂+ ⋅ |𝛿𝑖(𝑡)| − 𝛽 ⋅ 𝑃𝑖(𝑠𝑡) …  if 𝛿𝑖(𝑡) > 0 1073 

𝑁𝑖(𝑠𝑡) ← 𝑁𝑖(𝑠𝑡) + 𝜂− ⋅ |𝛿𝑖,(𝑡)| − 𝛽 ⋅ 𝑁𝑖(𝑠𝑡) …  if 𝛿𝑖(𝑡) > 0 1074 

𝑉�̂�(𝑠𝑡) = 𝑃𝑖(𝑠𝑡) − 𝑁𝑖(𝑠𝑡) 1075 

These set of update equations are equivalent to a modified version of the update equation of distributional 1076 

RL: 1077 

[Δ𝑉𝑖(𝑠𝑡)] =
1

𝑁
∑ 𝜂+ ⋅ 𝛼𝑖

+ ⋅ 𝛿𝑖,𝑗 ⋅ 𝐼𝛿𝑖,𝑗>0 + 𝜂− ⋅  𝛼𝑖
− ⋅ 𝛿𝑖,𝑗 ⋅ 𝐼𝛿𝑖,𝑗>0

𝑁

𝑗

 1078 

Vi(𝑠𝑡) ← 𝑉𝑖(𝑠𝑡) + 𝚬[Δ𝑉𝑖(𝑠𝑡)] 1079 

Thus, this model can give rise to biases in value learning (Extended Data Fig. 13), while keeping intact 1080 

information about the value distribution. By employing the results from the biophysical model (Fig. 6), 1081 

we found that this distributional TD model can parsimoniously explain all aspects of the data in the 1082 

habenula lesion study (Extended Data Fig. 12B), including the features of a distributional code and the 1083 

optimistic biases observed in behavior and dopamine cue-evoked responses (Extended Data Fig. 12).   1084 
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1.5.  Dependency of model on assumption: Log vs. linear scaling of receptor occupancy curves  1085 

Through this work, we have used the dose-occupancy curves of D1 and D2 receptors to derive the 1086 

receptor sensitivities that result in the asymmetric scaling factors in Model 1. It is important to note that 1087 

the slopes of the receptor occupancy curve (= receptor sensitivity) were obtained from the receptor 1088 

occupancy curves plotted as a function of log of dopamine concentrations.  1089 

𝛼+ =
ΔOccD1

Δ log(C𝐷𝐴+)
 1090 

𝛼− =
ΔOccD2

Δ log(C𝐷𝐴−)
 1091 

 1092 

To show that this assumption is not essential, we now derive the receptors sensitivities assuming linear 1093 

changes in dopamine levels due to RPE-evoked responses.  1094 

𝛼+ =
ΔOccD1

Δ C𝐷𝐴+
 1095 

𝛼− =
ΔOccD2

Δ
 1096 

As shown in Extended Data Fig. 9, the choice of a linear versus log scale affects the absolute magnitude 1097 

of the derived receptor sensitivities, but the normalized metric  𝜏 =
𝛼+

𝛼−+𝛼+ holds the same relationship to 1098 

baseline dopamine levels with a small shift in the curve (Extended Data Fig.9, right panel). The 1099 

normalized metric is the factor determining the update asymmetries and, thus, the stochastic fixed points 1100 

at which the variables converge.  1101 

1.6.  Normative motivation for two-factor learning rule  1102 

We have used in the previous models a so-called two factor learning rule, where the value updates 1103 

depend only on the presynaptic activity (i.e., state input) and TD RPEs.  Here, we motivate this choice 1104 

from a normative approach based on previous work11.  1105 
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Consider a linear approximation for value, where the value function (𝑉 ̂) is the output of a single linear 1106 

neuron. Here, �̂� is a linear function of the input feature-vector representing the state 𝐱(𝑠) =1107 

(𝑥1(𝑠), … , 𝑥𝑛(𝑠)), parametrized with a weight vector 𝐰 = (𝑤1, … , 𝑤𝑛) . : 1108 

�̂�(𝑠, w) = w𝑇x(𝑠) 1109 

To put it into neural terms, we can think of 𝑥𝑖(𝑠) as the presynaptic activity onto the value neuron 𝑉 ̂, 1110 

with a synaptic efficacy 𝑤𝑖. 1111 

As before, the agent computes the TD error based on this linear approximation for value and the sampled 1112 

reward:  1113 

𝛿𝑡 = 𝑟𝑡 + 𝛾 ⋅ �̂�(𝑠𝑡+1, w) − �̂�(𝑠𝑡, w) 1114 

In the problem of value prediction, the agent aims to achieve the highest accuracy of prediction. One way 1115 

to achieve this is to perform stochastic gradient descent (SGD) with respect to the parameters (w) of the 1116 

value function to minimize the objective function such as the squared error (𝛿𝑡
2). We can define this 1117 

optimization problem as: argmin𝑤 (
1

2
δ2)  where we have deliberately chosen the constant 

1

2
 for clarity, 1118 

but it doesn’t change the end results. 1119 

To perform SGD in this minimization problem, the parameters (w) should be updated in the opposite 1120 

direction of the gradient of the loss with respect to the parameters (i.e., opposite to ∇w (½ δ2)) : 1121 

w ← w − 𝛼 ⋅  ∇w  (
1

2
𝛿2) 1122 

Where 𝛼 is the learning rate. To compute the gradient, we use the chain rule: 1123 

∇w  (
1

2
δ2) =

𝜕 (1/2 δ2)

𝜕 �̂�
⋅

𝜕�̂�

𝜕 w
=

𝜕 (1/2 (𝑟 − �̂�)2)

𝜕 �̂�
⋅

𝜕w𝑇𝑥(𝑠𝑡)

𝜕 w
=

−2(𝑟 − 𝑉)

2
⋅ 𝑥(𝑠𝑡) = −𝛿 ⋅ 𝑥(𝑠𝑡) 1124 

Therefore, the update for the parameters of the value function is:  1125 

w ← w + 𝛼 ⋅ 𝛿 ⋅ 𝑥(𝑠𝑡) 1126 

The term 𝛿 ⋅ x(𝑠𝑡) in the equation above is what we call a two-factor learning rule, dependent only on the 1127 

presynaptic activity and not contingent on the post-synaptic activity.  1128 

The development of the TD learning model with D1 and D2 populations (section 1.3) has respected this 1129 

learning rule, complying with what is required for SGD in the value prediction problem. Note that we 1130 
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have implicitly developed our models with a complete serial compound representation (CSC) of the 1131 

states11, where x(𝑠𝑡) = 1 in a single element 𝑥𝑖(𝑠𝑡)representing the current state and 0 otherwise. It can 1132 

be shown that with this representation, the update equation above is equivalent to:  1133 

�̂� ← �̂� + 𝛼 ⋅ 𝛿 1134 

 1135 

2. Computational model of dopamine release and receptor occupancy  1136 

To predict changes in dopamine concentrations and receptor occupancies (Fig. 6), we employed a 1137 

biophysical model developed elsehwhere59. It presents two interacting dynamical systems. The first 1138 

system models the change in receptor occupancies while the second the change in dopamine levels per 1139 

unit time.  1140 

In the first system, the occupancy of receptors is modelled as a binding reaction between dopamine (𝐷𝐴) 1141 

and D1 or D2 receptors (𝑅), using the constants for forward and backward reactions (𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓).  1142 

𝐷𝐴 + 𝑅  𝑘𝑜𝑓𝑓
⇄𝑘𝑜𝑛  𝐷𝐴: 𝑅 1143 

This formulation results in the following equation for the change in receptor occupancy 𝑂𝑐𝑐(𝑡) per unit 1144 

time:  1145 

𝑑Occ(t)

𝑑𝑡
= (1 − Occ(𝑡)) × 𝑘𝑜𝑛 × C𝐷𝐴(𝑡) − Occ(𝑡) × 𝑘𝑜𝑓𝑓 1146 

The values used for the association and dissociation constants for each receptor type (𝑘𝑜𝑛 and 𝑘𝑜𝑓𝑓, 1147 

respectively) are detailed in Table 1. 1148 

In the second system, the change in dopamine concentration (𝐶𝐷𝐴(𝑡)) is a function of both dopamine 1149 

release and uptake. 1150 

dC𝐷𝐴(𝑡)

dt
= DArelease(t) − DAuptake(t)  1151 

Dopamine release is a product of firing rate (𝜈(𝑡)) and release capacity (𝛾(𝑡)) 1152 

DArelease(t) = 𝛾(𝑡) ⋅ 𝜈(𝑡) 1154 

Where: 1153 
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1. 𝜈(𝑡) is the firing rate of dopamine neurons, provided by the neural data.  1155 

2. 𝛾(𝑡) = 𝛾𝑝𝑟𝑛
⋅ 𝑃𝑟 ⋅ G𝐷2(𝑡) is defined as the increase in 𝐶𝐷𝐴(𝑡) by a single synchronized action 1156 

potential: 1157 

a. 𝑃𝑟 = 1 release probability in the absence of presynaptic D2-autorreceptors,  1158 

b. 𝛾𝑝𝑟𝑛
= 2 release capacity in the absence of presynaptic D2-autorreceptors. This value was set 1159 

to be deliberately high and anticipates a ~50% reduction by terminal feedback. 1160 

c. G𝐷2(𝑡) is a multiplicative gain that represents the modulation of dopamine release by D2-1161 

autorreceptors. This is a decaying function of the occupancy of D2-autorreceptors 1162 

(Occ𝐷2𝑎
(𝑡)) which is modelled by the same binding reaction explained above. The gain is 1163 

parametrized by the autoreceptor efficacy, α = 3. The smaller the α the less the decay in 1164 

release with receptor occupancy.  1165 

𝐺𝐷2(𝑡) =
1

1 + α ⋅ Occ𝐷2𝑎
(𝑡)

 1166 

Dopamine uptake is a function of the uptake of dopamine by the dopamine transporter (DAT) and other 1167 

non-DAT sources 1168 

DAuptake(t) =  𝑑𝑡 ⋅ (
𝑉𝑚𝑎𝑥

𝑝𝑟𝑛 ⋅   𝐶𝐷𝐴(𝑡)

𝐾𝑚 + 𝐶𝐷𝐴(𝑡)
 – 𝐾𝑛𝑜𝑛𝐷𝐴𝑇) 1169 

Where: 1170 

- 𝑉𝑚𝑎𝑥
𝑝𝑟𝑛 = 1500

𝑛𝑀

𝑠𝑒𝑐
s the maximal uptake capacity assuming approximately 100 terminals in the 1171 

near surroundings.  1172 

- 𝐾𝑚 = 160 𝑛𝑀, is the Michaelis-Menten parameter for uptake mediated by DAT 1173 

- 𝐾𝑛𝑜𝑛𝐷𝐴𝑇 = 0.04 𝑛𝑀 is a constant for the dopamine removal not mediated by DAT. For 1174 

example, monoamine oxidase (MAO) and noepinephrine transporter (NET) mediated uptake. 1175 

The variables of the model reported in Fig. 6 correspond to: Occ𝐷1(𝑡), Occ𝐷2(𝑡), C𝐷𝐴(𝑡). We used as 1176 

input to the model the firing rates derived from the electrophysiological recording of optogenetically 1177 

identified dopamine neurons conducted in Tian and Uchida (2015)55. This modeling, while considering 1178 

major processes, does not take into account all of the complexity of the biological environment in the 1179 
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brain, yet we used this model to obtain an approximate estimate of the order of changes in dopamine 1180 

concentrations and receptor occupancies. 1181 

3. Simulation details of habenula lesion data  1182 

3.1.  Biophysical model simulations  1183 

We used the computational model described previously (methods section 2) 59 to calculate the 1184 

extracellular dopamine levels and estimate the occupancy of postsynaptic receptors from the habenula 1185 

lesion dataset. The model was driven by the average spike rate of dopamine neurons recorded from 1186 

control or lesioned animals. For each recorded dopamine neuron, the simulations were carried on a trial 1187 

by trial basis that consisted of a time window [-15, 20] sec with respect to cue onset. A relatively large 1188 

window was used to allow for the relevant variables to stabilize in its baseline, as the simulations were 1189 

initialized at zero.  1190 

For each trial, spikes were first binned with 10-ms windows and then smoothed by a Gaussian kernel 1191 

(𝜎 = 0.3 × (𝐼𝑆𝐼𝑚𝑒𝑎𝑛)). All trials were then averaged across trials, to determine the mean single-cell 1192 

response for dopamine release and D1 and D2 receptor activation. Final average dopamine concentrations 1193 

and receptor occupancies were obtained from the average of all mean single-cell responses. 1194 

Computation of receptors sensitivities from the model results  1195 

We computed the receptor sensitivity from the occupancies Occ𝐷1, Occ𝐷2 and their theoretical dose-1196 

occupancy curves. Starting from the occupancy at baseline, we derived the change in occupancy as a 1197 

function of the transients in dopamine concentration C𝐷𝐴 elicited by RPE-evoked dopamine responses, at 1198 

the level of the population average. 1199 

The ratio between these quantities corresponds to the receptors’ sensitives. These are transferred as 𝛼+ 1200 

and 𝛼− to our reinforcement learning model (model 1): 1201 

𝛼+ =
ΔOccD1

Δ𝐶𝐷𝐴
 …   if Δ𝐶𝐷𝐴 > 0 1202 

𝛼− =
ΔOccD2

Δ𝐶𝐷𝐴
…  if Δ𝐶𝐷𝐴 < 0 1203 

Where Δ𝐶𝐷𝐴, Δ𝑂𝑐𝑐𝐷1, Δ𝑂𝑐𝑐𝐷2 are the changes computed with respect to baseline, as: Δ𝑥 =1204 

�̅�𝑜𝑢𝑡𝑐𝑜𝑚𝑒−�̅�𝑏, for each variable 𝑥 = {𝐶𝐷𝐴, Occ𝐷1, Occ𝐷2}. Where �̅� denotes the population average 1205 
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response for each group. The outcome responses were taken as the average from [0,1] sec after outcome 1206 

onset, while the baseline was taken as the average from [-1, 0] sec with respect to cue onset.  1207 

3.2.  Model 1 simulations  1208 

The simulations for Model 1 were carried out with a TD learning model with D1 and D2 populations 1209 

(methods section 1.3). We ran the simulations using the resultant receptor sensitivities from the 1210 

biophysical model as the population-level asymmetric learning rates in Model 1 (i.e., the learning rates 1211 

𝛼+, 𝛼− for 𝑃 and 𝑁 updates). The simulations were run for 3,000 trials on the Pavlovian conditioning task 1212 

used in the study55. We assumed a uniform distribution of trial types across the session. Each trial 1213 

consisted of 4 states (baseline, cue, delay, reward), assuming Markovian dynamics between them. All 1214 

variables were initialized at zero. The model had as hyper-parameters a discounting factor of 𝛾 = 0.99 1215 

and a decay term 𝛽 = 0.002. We report in Fig. 4, Model 1 results assuming a uniform scaling of TD 1216 

RPEs across the neuronal population. In Extended Data Fig. 12 we show that this model reproduces key 1217 

signatures of the data irrespective of the choice of the decay factor 𝛽. 1218 

The results are not dependent on a uniform scaling of TD RPEs. Given that distributional RL signatures 1219 

were preserved in the data even after habenula lesions, we also considered Model 1 under the 1220 

distributional TD learning framework (Extended Data Fig. 13). For this, we used the distribution of single 1221 

cell asymmetric scaling factors (𝛼𝑖
+, 𝛼𝑖

−) derived from the dopamine neurons firing rates. This model also 1222 

reproduced key signatures of the data irrespective of the choice of the decay factor 𝛽 (Extended Data Fig. 1223 

12). 1224 

3.3.  Model 2 simulations  1225 

The simulations for Model 2 were carried out with a TD learning model. As with Model 1, simulations 1226 

were run for 3,000 trials on the Pavlovian conditioning task55. We assumed a uniform distribution of trial 1227 

types across the session. Each trial consisted of 4 states (baseline, cue, delay, reward), assuming 1228 

Markovian dynamics between them. All variables were initialized at zero. The model had as parameters a 1229 

discounting factor of 𝛾 = 0.99. 1230 

We used the distribution of single cell asymmetric scaling factors derived from the firing rates of 1231 

dopamine neurons as 𝛼𝑖
+, 𝛼𝑖

− . In section 1.2 we emphasized that in order to accurately compute the TD 1232 

RPE in distributional TD, we require taking samples from the estimated return distribution 1233 

�̃�𝑖(𝑠𝑡+1 )~𝑍(𝑠𝑡+1). We did this by running an optimization process where we minimize for the expectile 1234 
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loss between the taken samples �̃�𝑖(𝑠𝑡+1 ), 𝑉𝑖(𝑠𝑡+1 )  from the model, and 𝜏𝑖 as estimated from the data. 1235 

The problem was defined as argmin𝑠𝑖…𝑠𝑚
ℒ(𝑠, 𝑉, 𝜏) where: 1236 

ℒ(𝑠, 𝑉, 𝜏) =
1

𝑀
∑ ∑ |𝜏𝑖 − 𝚰sm<𝑉𝑛

|𝑁
𝑖=1

𝑀
𝑚=1 (�̂�m − 𝑉𝑖)2, for N neurons and M samples 1237 

In the simulations, we took M samples where M equals the number of neurons (N) and performed an 1238 

update taking the expectation across all samples as described in the methods section 1.3.  1239 

4. Simulations details for replications of previous experimental results  1240 

4.1.  Cools et al. (2009) 1241 

We simulate the results from Cools et al. (2009) (Fig. 7, Extended Data Fig. 6-7) in which they tested the 1242 

effects of bromocriptine in altering learning rate asymmetry24. In their study, they performed a reversal 1243 

learning task and reported a parameter called ‘relative reversal learning (RRL)’, equivalent to the 1244 

difference between the positive and negative learning rates in our model. We computed this as:  𝛼+𝛼 +1245 

+𝛼— 𝛼 − 𝛼 + +𝛼−= 𝜏 − 1 − 𝜏 = 2𝜏 − 1, reported in Fig. 7 E,F, where the parameters 𝛼+, 𝛼− were 1246 

computed from the slopes of the D2l (postsynaptic D2 receptors) and D1 occupancy curves (2𝜏 − 1)𝑜𝑐𝑐 1247 

or activation curves (2𝜏 − 1)𝑎𝑐𝑡  The change in relative reversal learning in Fig. 7 H-I was calculated as 1248 

taking the difference between drug and the ‘control’ condition as:  1249 

Δ(2𝜏 − 1) = (2𝜏 − 1)𝑑𝑟𝑢𝑔 − (2𝜏 − 1)𝑐𝑜𝑛𝑡𝑟𝑜𝑙. 1250 

We simulated the effect of bromocriptine using the biophysical model for dopamine release and receptor 1251 

occupancy (Section 2, Methods). We added an additional ligand for D2 receptors to the update equations 1252 

for occupancy:  1253 

𝑑𝑂𝑐𝑐𝐷𝐴,𝑟𝑗

 (t)

𝑑𝑡
= (1 − 𝑂𝑐𝑐𝐷𝐴,𝑟𝑗

(t)) × 𝑘𝑜𝑛

𝐷𝐴,𝑟𝑗 × C𝐷𝐴(𝑡) − 𝑘
𝑜𝑓𝑓

𝐷𝐴,𝑟𝑗
 1254 

𝑑𝑂𝑐𝑐𝐷𝑟𝑢𝑔,𝑟𝑗

 (t)

𝑑𝑡
= (1 − 𝑂𝑐𝑐𝐷𝑟𝑢𝑔,𝑟𝑗

(t)) × 𝑘𝑜𝑛

𝐷𝑟𝑢𝑔,𝑟𝑗 × C𝐷𝑟𝑢𝑔(𝑡) − 𝑘
𝑜𝑓𝑓

𝐷𝑟𝑢𝑔,𝑟𝑗
 1255 

Where 𝑟𝑗: {𝐷1, 𝐷2𝑠, 𝐷2𝑙}, and 𝑘𝑜𝑛
𝐷𝑟𝑢𝑔,𝐷2𝑠

= 0.02083, 𝑘𝑜𝑓𝑓
𝐷𝑟𝑢𝑔,𝐷2𝑠

= 0.1, 𝑘𝑜𝑛
𝐷𝑟𝑢𝑔,𝐷2𝑙

= 0.04, 𝑘𝑜𝑓𝑓
𝐷𝑟𝑢𝑔,𝐷2𝑙

= 0.1  1256 

are reported in Table 1 97.  1257 

To calculate the effects of efficiency of the drug, we calculated the activation of D2l and D2s receptors in 1258 

the following way:  1259 
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𝐴𝑐𝑡𝑟𝑗
(𝑡) = 𝐸𝐷𝐴,𝑟𝑗

⋅ 𝑂𝑐𝑐𝐷𝐴,𝑟𝑗
(𝑡) + 𝐸𝐷𝑟𝑢𝑔, 𝑟𝑗

⋅ 𝑂𝑐𝑐𝐷𝑟𝑢𝑔,𝑟𝑗
(𝑡) 1260 

Where 𝐸𝐷𝐴,𝑟𝑗
= 1 is the efficiency of dopamine on the receptors activation, and  𝐸𝐷𝑟𝑢𝑔, 𝑟𝑗

< 1 the 1261 

efficiency of the drug, for 𝑟𝑗: {𝐷1, 𝐷2𝑠, 𝐷2𝑙}. The parameter for D1 receptors was kept at  𝐸𝐷𝑟𝑢𝑔,𝐷1 = 0 1262 

for all simulations. 1263 

To simulate the effects of D2s activation by the drug in D2l occupancy in Fig. 7b,e,h we report the effects 1264 

of  𝐸𝐷𝑟𝑢𝑔,𝐷2𝑠 = 0 (solid lines) and 𝐸𝐷𝑟𝑢𝑔,𝐷2𝑠 = 0.6 (dashed lines). To simulate the effect of the drug in 1265 

D2s and D2l activation in Fig. 7c,f,i we report the effects of  𝐸𝐷𝑟𝑢𝑔,𝐷2𝑠 = 0.6, 𝐸𝐷𝑟𝑢𝑔,𝐷2𝑙 = 0.6.  1266 

We show how the qualitative nature of the effects of the drug in relative reversal learning still hold 1267 

regardless of whether the parameter 𝜏 is computed from the occupancy curves (Extended Data Fig. 7, Fig. 1268 

7n,e,h) or the activation curves (Extended Data Fig. 8, Fig. 7c,f,i). In addition, in Supplementary Figure 1269 

8-9 we show that the qualitative results still hold regardless of the choice of the efficiency parameters 1270 

𝐸𝐷𝑟𝑢𝑔,𝐷2𝑠 and 𝐸𝐷𝑟𝑢𝑔,𝐷2𝑙.  1271 

4.2. Timmer et al. (2018) 1272 

In this study25 they reported a ‘loss aversion’ parameter (𝜆 in their results).  1273 

SUG =  (1 − λ) ⋅ 𝑝𝑔𝑎𝑖𝑛 ⋅  Gain + 𝜆 ⋅ 𝑝𝑙𝑜𝑠𝑠 ⋅  Los𝑠  1274 

Where SUG is the ‘subjective utility’ for a given option, and 𝑝𝑔𝑎𝑖𝑛 = 𝑝𝑙𝑜𝑠𝑠. 1275 

In our formulation, we assume that the task in the study is performed under steady state conditions after 1276 

having learned with a learning rate (𝜏). With this assumption, the SUG at task performance is equivalent to 1277 

the convergent 𝑉 estimate after learning. We will show that at these steady state conditions (1 − 𝜏) is 1278 

equivalent to (𝜆). 1279 

Starting with the solution for 𝑉: 1280 

𝑆𝑈𝐺 = 𝑉 =
𝜏 ⋅ 𝑝𝑔𝑎𝑖𝑛 ⋅ 𝑟𝑔𝑎𝑖𝑛 + (1 − 𝜏) ⋅ (1 − 𝑝𝑔𝑎𝑖𝑛) ⋅ 𝑟𝑙𝑜𝑠𝑠 

𝜏 ⋅ 𝑝𝑔𝑎𝑖𝑛 + (1 − 𝜏) ⋅ (1 − 𝑝𝑔𝑎𝑖𝑛)
 1281 

Replacing for 𝑝𝑔𝑎𝑖𝑛 = 0.5: 1282 

𝑆𝑈𝐺 =
𝜏 ⋅ 𝑟𝑔𝑎𝑖𝑛 + (1 − 𝜏) ⋅ 𝑟𝑙𝑜𝑠𝑠 

𝜏 + (1 − 𝜏)
 1283 

Given that: 𝜏 + (1 − 𝜏) = 1 1284 
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𝐒𝐔𝐆 = 𝝉 ⋅ 𝒓𝒈𝒂𝒊𝒏 + (𝟏 − 𝝉) ⋅ 𝒓𝒍𝒐𝒔𝒔 1285 

Therefore, our model, applied to their task, gives rise to the same SUG computation, with 𝝀 equivalent to 1286 

(𝟏 − 𝝉). 1287 

To generate Fig. 8F, we performed the following steps:  1288 

1. We first estimated the theoretical change in baseline DA elicited by the medication. For this, we 1289 

computed the equivalent 𝜏 for the 𝜆 they report in the OFF and ON medication conditions 1290 

(𝜆𝑂𝐹𝐹 = 1.51, 𝜆𝑂𝑁 = 1.19), using the relationship: (1 − 𝜏) = 𝜆. We then computed the baseline 1291 

DA levels that would give rise to the 𝜏𝑂𝑁  and 𝜏𝑂𝐹𝐹. With this, we computed the change in 1292 

baseline DA (Δ𝐷𝐴) equivalent to the change Δ𝜏 = 𝜏𝑂𝑁 − 𝜏𝑂𝐹𝐹 . This Δ𝐷𝐴 is the theoretical 1293 

change in baseline DA elicited by the medication (Fig. 8F). 1294 

2. To generate Fig. 8F, we sampled a set of 𝜆 from a Gaussian distribution centered at a mean of 1295 

𝜇𝜆 = 1.51 and a standard deviation of 𝜎𝜆
2 = 3, to emulate the distribution of 𝜆𝑂𝐹𝐹  they report in 1296 

the OFF condition.  We then computed the equivalent 𝜏 for that set of 𝜆 with the relationship 1297 

above. We will call this the distribution of 𝜏′
𝑂𝐹𝐹. 1298 

3. We used the derived 𝜏′
𝑂𝐹𝐹 distribution to compute the equivalent dopamine levels. We imposed a 1299 

change in baseline DA equal to the Δ𝐷𝐴 computed in the first step and computed the new set of 𝜏 1300 

for that set of new baseline DA levels (𝜏′
𝑂𝑁). The ‘drug effect in loss aversion’ reported in Fig. 1301 

8F is the 𝜏′
𝑂𝑁 − 𝜏′

𝑂𝐹𝐹 for each sample.  1302 

5. Details on habenula lesion data 1303 

5.1 Animals, surgery and lesions.  1304 

The rodent data we re-analyzed here were first reported in Tian and Uchida (2015)55. Below we provide a 1305 

brief description of the methods. Further methodological details can be found in the original paper. !2 1306 

mice were used. Bilateral habenula lesions were performed in five animals. Seven animals were in the 1307 

control group including two with sham-lesion operation, one with only small contra-lateral side lesion of 1308 

the medial habenula, and four animals without operations in the habenula. During surgery, a head plate 1309 

was implanted on the skull, and adeno-associated virus (AAV) that express channelrhodopsin-2 (ChR2) 1310 

in a Cre-dependent manner was injected into the VTA (from bregma: 3.1 mm posterior, 0.7 mm lateral, 1311 

4–4.2 mm ventral). After recovery from surgery, mice were trained on the conditioning task, after which 1312 

mice were randomly selected to be in lesion or sham-lesion group. Electrolytic lesions were made 1313 

bilaterally using a stainless-steel electrode (15 kU, MicroProbes, MS301G) with a cathodal current of 150 1314 
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mA. Each side of the brain was lesioned at two locations (from bregma: 1.6 mm/1.9 mm posterior, 1.15 1315 

mm lateral, 2.93 mm depth, with a 14 angle). For sham-lesion operations, no current was applied. In the 1316 

same surgery, a microdrive containing electrodes and an optical fiber was implanted in the VTA (from 1317 

bregma: 3.1 mm posterior, 0.7 mm lateral, 3.8–4.0 mm ventral)98.  1318 

5.2 Behavioral task 1319 

Twelve mice were trained on a probabilistic Pavlovian task. Each trial the animal experienced one of four 1320 

odor cues for 1 s, followed by a 1-s pause, followed by a reward (3.75 μl water), an aversive air puff or 1321 

nothing. Odor 1 to 3 signaled a 90%, 50% and 10% probability of reward, respectively. Odor 4 signaled a 1322 

90% probability of air puff. Odor identities were randomized across trials and included: isoamyl acetate, 1323 

eugenol, 1-hexanol, p-cymene, ethyl butyrate, 1-butanol, and carvone (1/10 dilution in paraffin oil). Inter-1324 

trial intervals were exponentially distributed. An infrared beam was positioned in front of the water 1325 

delivery spout and each beam break was recorded as one lick event. We report the average lick rate over 1326 

the interval 500–2,000 ms after cue onset. 1327 

5.3 Electrophysiology 1328 

Recordings were made using a custom-built microdrive equipped with 200-m-fiber optic-coupled with 1329 

eight tetrodes.  DA neurons were identified optogenetically98. A stimulus-associated spike latency test 1330 

(SALT) algorithm99 was used to determine whether light pulses significantly changed a neuron’s spike 1331 

timing.  1332 

5.4 Neural data analysis  1333 

Data analyses were performed using MATLAB R2021b (Mathworks). To measure firing rates, 1334 

peristimulus time histograms (PSTHs) were constructed using 1-ms bins. These histograms were then 1335 

smoothed by convolving with the function 𝑓(𝑡) = (1 − 𝑒−𝑡) ⋅ 𝑒−
𝑡

𝜏 where 𝜏 was a time constant set to 20 1336 

ms as in 18. 44 dopamine neurons were recorded from lesioned animals (5 animals, 30 sessions), and 45 1337 

dopamine neurons were recorded from control animals (7 animals, 35 sessions). We pooled all the cells 1338 

across animals in each group for analysis. Cue-evoked responses were defined as the average activity 1339 

from 0 to 400 ms after cue onset.  Outcome-evoked responses were defined as the average activity from 1340 

2000 to 2600 ms after cue onset.  1341 

The normalization of cue response shown in Fig. 4 was carried out following a previous work36 on a per-1342 

cell basis as: 𝑐50
𝑛𝑜𝑟𝑚 =

𝑐50−𝑐10̅̅ ̅̅ ̅

𝑐90̅̅ ̅̅ ̅−𝑐10̅̅ ̅̅ ̅
, where 𝑐90̅̅ ̅̅ , 𝑐10̅̅ ̅̅  correspond to the mean across trials within a cell for the 1343 
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90% and 10% probability cure responses. To derive the t-statistics in Fig. 4d, we performed a two-tailed t-1344 

test of the cell’s normalized responses to the 50% cue against the average midway point between 1345 

responses to the 10% cue and responses to the 90% cue. 1346 

The derivation of asymmetric scaling factors from outcome responses (𝜏𝑖), was carried out following 36, 1347 

with some modifications to adapt it to the task. The procedure is illustrated in Extended Data Fig. 3. 1348 

• To compute the reversal points, outcome responses were first aligned to the RPE for each trial 1349 

type, computed with the true expected value of each reward distribution. Assuming a fixed reward 1350 

value of 1 (arbitrary units), the expected value for the 90%, 50%, 10% reward probability trials 1351 

corresponded to 0.1, 0.5, 0.9, respectively. Given this, omission responses from the 90%, 50%, 1352 

10% reward probability trials correspond to RPEs of -0.9, -0.5 and -0.1. The rewarded responses 1353 

from the 90%, 50%, 10% reward probability trials correspond to RPEs of 0.1, 0.5 and 0.9. The 1354 

reward value is arbitrary and doesn’t have an effect in this computation as it only shifts the RPE 1355 

axis by a fixed amount. The reversal point for each cell (𝑍𝑖) was defined as the RPE that 1356 

maximized the number of positive responses to RPEs greater than 𝑍𝑖 plus the number of negative 1357 

responses to RPEs less than 𝑍𝑖. The distribution of reversal points is reported in Extended Data 1358 

Fig. 4. To obtain statistics for reliability of the computed reversal points, we partitioned the data 1359 

into random halves and estimated the reversal point for each cell separately in each half. We 1360 

repeated this procedure 1000 times with different random partitions, and we report the 1361 

distribution of Pearson’s correlation across these 1000 folds (Extended Data Fig. 4). 1362 

• After measuring reversal points, we fit linear functions separately to the positive and negative 1363 

domains. Given that dopamine’s responses are non-linear in the reward space but present a 1364 

putative utility function100, we approximated the underlying utility function from the dopamine 1365 

responses to RPEs of varying magnitudes. We used these empirical utilities instead of raw RPEs 1366 

for computing the slopes that correspond to 𝛼𝑖
+, 𝛼𝑖

−. We then computed the asymmetric scaling 1367 

factors as 𝜏𝑖 =
𝛼𝑖

+

𝛼𝑖
++𝛼𝑖

−.  We performed the same cross-validation procedure used for the reversal 1368 

points. The distribution of R value across the 1000 folds are reported in Extended Data Fig. 4. 1369 

A key prediction of distributional RL36 is the presence of a correlation (across cells) between reversal 1370 

points 𝑍𝑖  and asymmetric scaling factors 𝜏𝑖. To elucidate whether signatures of distributional RL were 1371 

still present after lesions, we followed the procedure given by Dabney et al. (2020)36 to compute this 1372 

correlation. We first randomly split the data into two disjoint halves of trials. In one half, we first 1373 
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calculated reversal points 𝑍𝑖
1 and used them to calculate 𝛼𝑖

+, 𝛼𝑖
−. In the other half, we again calculated the 1374 

reversal points 𝑍𝑖
2. The correlation we report in Extended Data Fig. 4 is between 𝑍𝑖

2 and 𝜏𝑖 =
𝛼𝑖

+

𝛼𝑖
++𝛼𝑖

−. 1375 

5.5 Model fitting to the anticipatory licking responses 1376 

For each trial we computed the average lick rate over the interval 500–2,000 ms after cue onset. For each 1377 

model, we fit the free parameters to the lick rates using maximum likelihood estimation. The optimization 1378 

was performed using the SciPy optimization toolbox (Python) that minimized the difference between the 1379 

predicted lick rates and the ground truth ones, with a uniform prior distribution over the parameters. The 1380 

fits were done considering three RL models that had between 2 and 3 parameters. The models, parameters 1381 

and bounds used for each of them are detailed in table 2.  1382 

 1383 

  1384 
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Tables 1385 

Table 1 – Biophysical model parameters 1386 

 1387 

Parameter Abbreviation Value 

DA association constant to D2 autorreceptors 𝑘𝑜𝑛
𝐷2𝑡𝑒𝑟𝑚  0.3 𝑀−1𝑠−1 

DA dissociation constant to D2 autorreceptors 𝑘𝑜𝑓𝑓
𝐷2𝑡𝑒𝑟𝑚  0.003 𝑠−1 

DA association constant to D1 receptors 𝑘𝑜𝑛
𝐷1 0.01 𝑀−1𝑠−1 

DA dissociation constant to D1 receptors 𝑘𝑜𝑓𝑓
𝐷1  10 𝑠−1 

DA association constant to D2 receptors 𝑘𝑜𝑛
𝐷2 0.2 𝑀−1𝑠−1 

DA dissociation constant to D2 receptors 𝑘𝑜𝑓𝑓
𝐷2  2 𝑠−1 

Release probability from terminals 𝑃𝑟 1 𝑎. 𝑢. 

Release capacity from terminals 𝛾𝑝𝑟𝑛
 2 𝑎. 𝑢. 

D2 autorreceptor efficacy 𝛼 3 𝑎. 𝑢. 

DAT maximal uptake capacity 𝑉𝑚𝑎𝑥
𝑝𝑟𝑛  1500 𝑛𝑀𝑠−1 

Michaelis-Menten parameter DAT-mediated DA uptake  𝐾𝑚 160 𝑛𝑀 

Constant for dopamine removal not mediated by DAT's 𝐾𝑛𝑜𝑛𝐷𝐴𝑇 0.04 𝑛𝑀 

Bromocriptine association constant to D2 autorreceptors 𝑘𝑜𝑛
𝐷𝑟𝑢𝑔,𝐷2𝑠

 0.02083 𝑀−1𝑠−1 

Bromocriptine dissociation constant to D2 

autorreceptors 
𝑘𝑜𝑓𝑓

𝐷𝑟𝑢𝑔,𝐷2𝑠
 0.1 𝑠−1 

Bromocriptine association constant to D2 receptors 𝑘𝑜𝑛
𝐷𝑟𝑢𝑔,𝐷2𝑙

  0.04 𝑀−1𝑠−1 

Bromocriptine dissociation constant to D2 receptors 𝑘𝑜𝑓𝑓
𝐷𝑟𝑢𝑔,𝐷2𝑙

 0.1 𝑠−1 

a.u. = arbitrary units 1388 

M = mols 1389 

s = seconds  1390 

 1391 

 1392 
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Table 2- Reinforcement learning models fit to the behavioral data from Tian & Uchida 1393 

Model Formulation Parameters Parameter bounds 

TD learning 𝛿 = 𝑟 − 𝑉 

𝑉 ← 𝑉 + 𝛼 ⋅ 𝛿 

𝐿𝑖𝑐𝑘𝑖𝑛𝑔 = 𝛽 ⋅ 𝑉 

𝛼, 𝛽 

 

𝛼 ∈ [. 001,1] 

𝛽 ∈ [.1,10] 

TD learning 

with reward 

sensitivity 

𝛿 = 𝜌 ⋅ 𝑟 − 𝑉 

𝑉 ← 𝑉 + 𝛼 ⋅ 𝛿 

𝐿𝑖𝑐𝑘𝑖𝑛𝑔 = 𝛽 ⋅ 𝑉 

𝛼, 𝜌, 𝛽 

 

𝛼 ∈ [. 001,1] 

𝜌 ∈ [. 001,10] 

𝛽 ∈ [.1,10] 

Risk sensitive 

TD learning 
𝛿 = 𝑟 − 𝑉 

𝑉 ← 𝑉 + 𝛼+ ⋅ 𝛿    if 𝛿 > 0  

𝑉 ← 𝑉 + 𝛼− ⋅ 𝛿    if 𝛿 < 0  

𝐿𝑖𝑐𝑘𝑖𝑛𝑔 = 𝛽 ⋅ 𝑉 

𝛼+, 𝛼−, 𝛽 

 

𝛼+ ∈ [. 001,1] 

𝛼− ∈ [. 001,1] 

𝛽 ∈ [.1,10] 

 1394 

 1395 

Data availability 1396 

The neural data and simulation results reported in this article have been shared in a public 1397 

deposit source in: https://osf.io/cr5mv/?view_only=bd13a2d2de1947699b56ce70610b0e9b 1398 

 1399 

Code availability 1400 

The accession codes for the data as well as the code for analysis and simulations are available at: 1401 

https://github.com/sandraromerop/D1D2_Dopamine 1402 

 1403 

  1404 
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Figures 1700 

 1701 

Figure 1 | Reinforcement learning models. 1702 

a. Traditional reinforcement learning with a single learning rate (𝛼) for both positive and 1703 

negative RPEs (𝛿) for the value updates (left). This update rule makes value estimate (𝑉) 1704 

converge on the expected value of the reward distribution (middle). When the reward probability 1705 

is varied (i.e., for Bernoulli distributions), the 𝑉 at convergence scales linearly with the reward 1706 

probability (right).  1707 

b. Risk-sensitive reinforcement learning with different learning rates (𝛼+, 𝛼−) for positive and 1708 

negative RPEs, respectively (left). This update rule makes value estimate (𝑉) converge on the 1709 

quantities that are higher or lower than the expected value of the reward distribution (middle). As 1710 

the reward probabilities are varied, the convexity of the convergent value 𝑉 changes depending 1711 

on the asymmetry between 𝛼+ and 𝛼− (Methods 1.3.3). The level of the bias is determined by 1712 

the asymmetric learning rate parameter 𝜏 (right).  1713 

c. Distributional reinforcement learning contains a set of value predictors (𝑉𝑖) each with a given 1714 

learning rate for positive and negative RPEs (𝛼𝑖
+, 𝛼𝑖

−, respectively) (left). This makes each value 1715 
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predictor converge on the quantity equal to the 𝜏𝑖-th expectile of the reward distribution. Thus, 1716 

each value 𝑉𝑖 represents an expectile, and together the set of 𝑉𝑖 represents the entire distribution 1717 

(Methods 1.2) (right). 1718 

 1719 

1720 
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 1721 

Figure 2 | Biologically inspired reinforcement learning model. 1722 

a. Schematic of the basal ganglia circuitry. Dopaminergic neurons in the VTA modulate 1723 

plasticity at the level of the cortico-striatal synapses on SPNs in the NAc. The SPNs are 1724 

subdivided depending on the dopamine receptor type they express (D1R or D2R). 1725 

b. Dose-occupancy curves for the D1R and D2R describing receptor occupancies as a function of 1726 

dopamine concentrations. The curves are shifted between each other due to the different 1727 

affinities of the receptors. The arrows represent 3-fold increase (“burst”) and decrease (“pause)” 1728 

in dopamine concentrations, which causes left-ward or right-ward shifts of the same magnitudes 1729 

in the log-scale.  1730 

c. Schematic of the plasticity rules of VTA-NAc circuitry33–35. Transient increases in dopamine, 1731 

caused by bursts in firing rate of dopamine neurons, generates increases in PKA activity in D1R-1732 

expressing SPNs, leading to LTP in the cortico-striatal synapses. Transient decreases in 1733 

dopamine, caused by pauses in firing rate of dopamine neurons, generates increases in PKA 1734 

activity in D2R-expressing SPNs, leading to LTP in the cortico-striatal synapses. 1735 

d. Schematic and equations of biologically inspired reinforcement learning model32 1736 

VTA, ventral tegmental area; NAc, nucleus accumbens; SPN, spiny projection neurons; D1R, 1737 

D1-type dopamine receptor; D2R, D2-type dopamine receptor; PKA, protein kinase A; LTP, 1738 

long-term potentiation. 1739 
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 1740 

Figure 3 | Potential mechanisms for asymmetric learning. 1741 

a. Schematic of the mechanism by which increases or decreases in baseline dopamine modulates 1742 

the degree to which bursts and pauses in dopamine causes changes in D1R and D2R occupancy. 1743 

Increases in baseline dopamine makes dopamine pauses to cause greater decreases in D2R 1744 

occupancy than the increases in D1R occupancy caused by dopamine bursts. Conversely, 1745 

decreases in dopamine, makes dopamine bursts to cause smaller increases in D1R occupancy 1746 

than the decreases in D2R occupancy caused by dopamine pauses. 1747 
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b. Schematic of the change in receptor occupancies in D1R and D2R, for a given transient 1748 

increase (‘burst’) or decrease (‘pause’) in dopamine, receptively. A pause and a burst in 1749 

dopamine correspond to 𝛿 < 0 and 𝛿 > 0 in the model. The slope is modulated by the baseline 1750 

dopamine (colormap) and corresponds to the receptor’s sensitivity to dopamine transients. 1751 

c. Receptor sensitivity for D1R and D2R as a function of baseline dopamine. In Model 1, we 1752 

assume that the receptor sensitivity acts as a scaling factor on the PKA activity induced by burst 1753 

and pauses. That is, PKAD1 ∝ 𝛼+ ⋅ 𝛿 ⋅ 𝟏𝛿>0 and PKAD2 ∝ 𝛼− ⋅ 𝛿 ⋅ 𝟏𝛿<0.  1754 

d. Asymmetric scaling factor (𝜏) as a function of baseline dopamine. Colors depict how 1755 

‘optimistic’ or ‘pessimistic’ the convergent value estimate will be when learning with a given 𝜏.  1756 

e. Model 2. Left, the relationship between dopamine reward responses (spikes/s) and RPEs. The 1757 

slopes of these response functions correspond to the asymmetric learning rates (𝛼+, 𝛼−) for 1758 

positive and negative RPEs, respectively. Colors depict how ‘optimistic’ or ‘pessimistic’ the 1759 

convergent value estimate will be when learning with a given asymmetric scaling factor.  1760 

 1761 

  1762 
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 1763 

Figure 4 | Habenula lesions leads to optimistic reward-seeking behavior and cue-evoked 1764 

responses in dopamine neurons. 1765 

a. Schematic of the experiment performed by Tian and Uchida (2015)55. Animals were trained in 1766 

a classical conditioning task in which 3 odor cues predicted rewards of different probabilities 1767 

(10%, 50%, 90%) and one odor cue predicted 80% probability of an air puff. Animals then 1768 

underwent habenula (n = 5) or sham (n = 7) lesions and trained on the task again. The neural 1769 

recordings were performed from optotagged VTA dopamine neurons once behavior stabilized. 1770 

b. Anticipatory licking across sessions after lesions (left,). There was a significant increase in 1771 

anticipatory licking to the 10% (U-statistic = –2.895, P = 0.003792, two-sided Mann-Whitney U-1772 

test),  50% (U-statistic = –5.579, P < 1 x 10-9, two-sided Mann-Whitney U-test) and 90% (U-1773 
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statistic = –3.487, P =0.00048, two-sided Mann-Whitney U-test) cues (n = 31 for control n = 30 1774 

for lesion) that results from progressive changes across sessions. The anticipatory licking curves 1775 

show a linear scaling with reward probability in the control group, and a convex curve for the 1776 

lesion group (mean ± s.e.m across animals, U-statistic = –6.444, P< 1 x 10-, two-sided Mann-1777 

Whitney U-test for the 50% cue normalized response). These curves are predicted by RL agents 1778 

with symmetric and asymmetric (𝛼+ > 𝛼−) learning rates for the control and lesion groups, 1779 

respectively, assuming a linear mapping between anticipatory licking and value prediction. 1780 

c. RL model fits to the anticipatory licking on a trial-by-trial basis using a risk-sensitive RL 1781 

models that allows for separate learning rates of positive and negative RPEs. Each dot represents 1782 

a session (n = 35 control, n = 30 lesion) and each color a mouse (n = 7 control, n = 5 lesion). The 1783 

fits show a significant difference in the learning rates between control and lesion groups (U-1784 

statistic =  –4.679, P < 1.0 x 10-5, pooling sessions across mice in each group).  1785 

d. Cue-evoked dopamine responses from opto-tagged VTA dopamine neurons (mean ± s.e.m 1786 

across neurons, n = 45 control group, n = 44 lesion group). There was a decrease in the absolute 1787 

magnitude of responses to the 90% cue (U-statistic = 3.249, P = 0.0011, two-sided Mann-1788 

Whitney U-test) after habenula lesions (left). The normalized cue-evoked responses show the 1789 

similar pattern as the normalized anticipatory-licking with a linear and convex function for the 1790 

control and lesion groups, respectively, with a significant increase in normalized response to the 1791 

50% cue after lesions (U-statistic = –3.824, P = 0.000131, two-sided Mann-Whitney U-test) 1792 

These curves are predicted by agents with symmetric and asymmetric learning rates for control 1793 

and lesion groups, respectively. 1794 

e. Distribution of t-statistics comparing the cue-evoked response to the linear interpolation point 1795 

between the 90% and 10% cue-evoked responses for each dopamine neuron. The distribution of 1796 

t-statistics for the control and lesion cases was wider than what is expected from random noise 1797 

(Monte Carlo test for standard deviation different from zero:  P = 0.0222 control, P = 0.0217 1798 

lesion, 1000 batches). The distribution was shifted to values larger than 0 in the lesion case 1799 

(Monte Carlo test for mean larger than zero: P = 1 control, P = 0.022 lesion, 1000 batches) 1800 

indicative of an optimistic bias in the distribution. The lesion group distribution was also 1801 

significantly shifted to higher values with respect to the control group distribution (U-statistic = 1802 

–2.815, P = 0.0024, single-sided Mann-Whitney U-test). Arrow heads: the mean of the t-1803 

statistics.  1804 
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f. Example of t-statistics calculations for dopamine neurons taken from the control group (mean 1805 

± s.e.m across trials). A t-statistic value close to 0 indicates linear scaling of cue-evoked 1806 

responses with reward probability; a t-statistics value lower or greater than 0 indicates a concave 1807 

or convex function of cue-evoked responses against reward probability, indicative of a 1808 

pessimistic or an optimistic bias, respectively. 1809 

 1810 

  1811 
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 1812 

Figure 5 | Model 2 cannot explain optimistic biases in behavior and cue-evoked dopamine 1813 

responses of habenula lesioned animals. 1814 

a. Possible changes in habenula lesion mice that could explain optimistic biases based on Model 1815 

2. At the level of the population dopamine responses, an optimistic bias can be caused by an 1816 

increase in the slope of the average reward responses to positive RPEs and/or a decrease in the 1817 

slope of the average reward responses to negative RPEs.  1818 

b. At the level of the distribution of individual dopamine neuron responses, an optimistic bias 1819 

can be caused by an overall increase in the mean of the distribution of asymmetric scaling factors 1820 

(𝜏𝑖), computed from each individual neuron response function.  1821 
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c. Observed reward responses as a function of RPEs, averaged across the population of dopamine 1822 

neurons for the control and lesion groups (left, mean ± s.e.m across neurons, n = 45 control 1823 

group, n = 44 lesion group). There was a significant decrease in the reward responses for the 1824 

50% cue (U-statistic = 3.726, P = 0.000195, two-sided Mann-Whitney U-test)  and 90% cue (U-1825 

statistic = 2.987, P = 0.00281, two-sided Mann-Whitney U-test), and for the omission responses 1826 

for the 90% cue (U-statistic = -4.940, P <10-4, two-sided Mann-Whitney U-test). Distribution of 1827 

asymmetric scaling factors (𝜏), computed from the average response function over the recorded 1828 

neurons for the control and lesion groups (right). The distributions are the result of bootstrapping 1829 

by randomly sampling neurons in 5,000 iterations. The distribution of differences between the 1830 

obtained asymmetric scaling factors (𝜏𝑙𝑒𝑠𝑖𝑜𝑛 − 𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙) was not significantly larger than zero (5th 1831 

percentile = –0.1605). 1832 

d. Distribution of asymmetric scaling factors (𝜏𝑖), computed from each individual neuron 1833 

response function for the control and lesion groups. Each dot represents a single neuron (n = 45 1834 

control group, n = 44 lesion group), and the neurons were sorted by asymmetric scaling factors 1835 

(𝜏𝑖). The means were not significantly different (right) (t-statistic = 0.3277, P = 0.627, t-test).  1836 

e. Value predictions based on a TD learning model trained using the assumptions of Model 2 and 1837 

the asymmetric scaling factors derived from the data. The model did not show any optimistic 1838 

bias in the value predictors of the model trained with the lesion-derived asymmetric scaling 1839 

factors.  1840 

f. TD errors at cue show no signs of an optimistic bias in the model trained with the lesion-1841 

derived asymmetric scaling factors.  1842 

Centre of box plot shows the median; edges are 25th and 75th percentiles; and whiskers are the 1843 

most extreme data points not considered as outliers. 1844 

 1845 

 1846 
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 1847 

Figure 6 | Model 1 can account for optimistic biases in reward-seeking behavior and cue-1848 

evoked dopamine responses. 1849 

a. Schematic of the analysis. A biophysical model was used to predict dopamine concentrations, 1850 

receptor occupancies, and value learning based on firing rates of dopamine neurons recorded in 1851 

Tian et al. (2015).  1852 

b. Average firing rates of dopamine neurons across the population for the control and lesion 1853 

groups (left, n= 45 control group, n= 44 lesion group). Baseline firing rates were significantly 1854 

greater in the lesion compared to the control group (right) (U-statistic = –2.429, P = 0.0151, 1855 

single-sided Mann-Whitney U-test). 1856 
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c. Dopamine concentrations predicted from the firing rates of dopamine neurons based on the 1857 

biophysical model of dopamine. Predictions for 90% reward trials are shown. 1858 

d. Receptor occupancies predicted by the same biophysical model. Predictions for rewarded 1859 

(left) and reward omission (right) trials in 90% reward trials are shown separately for D1R (left) 1860 

and D2R (right), respectively (n = 45 control group, n = 44 lesion group). 1861 

e. Mean dopamine concentrations at baseline predicted by the model (U-statistic = –2.109, P = 1862 

0.0175, single-sided Mann-Whitney U-test).  1863 

f. Mean receptor occupancies at baseline predicted by the model (n = 45 control group, n = 44 1864 

lesion group). There is a significant increase in occupancies for both the D1R and D2R in the 1865 

lesion compared to the control group (U-statistic = –2.1664, P = 0.0151, U-statistic = –2.1328, P 1866 

= 0.0165 for D1R and D2R respectively, single-sided Mann-Whitney U-test). 1867 

g. Schematic showing the model predicted changes in dopamine concentrations and receptor 1868 

occupancies for the control (black) and lesion (red) groups. The arrows depict the increase or 1869 

decrease in occupancy for a positive or negative dopamine transient of a fixed magnitude.  1870 

h. Changes in receptor occupancy as a function of dopamine transients predicted by the model. 1871 

The slope for the positive and negative domains correspond to the receptor sensitivities of D1R 1872 

and D2R (𝛼+, 𝛼−), respectively. 1873 

i. Asymmetric scaling factors derived from the receptors’ sensitivities for the control and lesion 1874 

groups (i.e., 𝜏 in model 1, n = 45 control group, n = 44 lesion group). There was a significant 1875 

increase in the lesion group with respect to controls (U-statistic = –12.205, P < 1.0 x 10-6, single-1876 

sided Mann-Whitney U-test). Note that the increase in the asymmetry was driven mainly due to 1877 

decreases in D2R sensitivity (panel h).  1878 

j. Value predictions at baseline in a TD learning model trained with the receptor sensitivities 1879 

derived from the biophysical. There was a significant increase in the value predictors at baseline 1880 

in the model using the lesion group’s derived parameters with respect to control. controls (t-1881 

statistic = –6.417, P < 1.0 x 10-6, t-test). 1882 

k. Value predictions at convergence of a TD learning model trained using the assumptions of 1883 

Model 1 and the asymmetric scaling factors derived from receptors’ sensitivities predicted by the 1884 

biophysical model. The model led to a significant increase in the value predictions for all cues 1885 

(U-statistic = –4.690, P < 1.0 x 10-4, U-statistic = –4.734, P < 1.0 x 10-4, U-statistic = –4.602, P < 1886 
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1.0 x 10-4, single-sided Mann-Whitney U-test, for the 10%, 50% and 90% reward probability 1887 

cues) and an optimistic bias in the normalized value prediction to the 50% reward probability cue 1888 

(t-statistic = –5.576, P < 1.0 x 10-4, t-test) in accordance with the anticipatory licking observed in 1889 

the data. 1890 

l. Predicted cue responses. There is an overall decrease in RPEs in lesioned animals (left) due to 1891 

an increase in the baseline (pre-cue) value prediction (U-statistic =4.932, P < 1.0 x 10-5, U-1892 

statistic = –3.658, P = 0.00025, U-statistic = 4.734, P < 1.0 x 10-4, single-sided Mann-Whitney 1893 

U-test for the 10%, 50% and 90% reward probability cues), which is consistent with the 1894 

decreases in the absolute magnitudes of dopamine cue-evoked responses in the lesion group (Fig. 1895 

4c). The normalized TD errors at for the 50% reward probability cue show signs of an optimistic 1896 

bias (U-statistic = –4.624, P < 1.0 x 10-4, single-sided Mann–Whitney U-test).  1897 

Centre of box plot shows the median; edges are 25th and 75th percentiles; and whiskers are the 1898 

most extreme data points not considered as outliers. 1899 

 1900 
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 1901 

Figure 7 | Model 1 predicts asymmetric learning rates in healthy humans given inter-1902 

individual differences in baseline dopamine, and in Parkinson’s disease patients given 1903 

inter-individual differences in depressive-like symptoms. 1904 

a. Schematic of the events occurring at dopaminergic axon terminal. Pre- and post-synaptic sites 1905 

predominantly express D2s (short) and D2l (long) subtypes, respectively.  1906 

b. “Relative reversal learning (RRL)” under placebo conditions as a function of dopamine striatal 1907 

synthesis capacity measured with PET radio imaging (black dots, left y-axis, bottom x-axis). 1908 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.10.566580doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.10.566580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 83 

Figure taken from Cools et al. (2009)24. Positive values of RRL indicate a bias favoring learning 1909 

from gains relative to losses, and vice versa for negative values of RRL. There was a positive 1910 

relationship between RRL and dopamine synthesis capacity. Model 1 predictions of RRL (2𝜏 −1911 

1 in Model 1) as a function of baseline dopamine using the receptors occupancy curve, 1912 

recapitulate the positive relationship shown in the results from Cools et al. (2009)24 (gray line, 1913 

right y-axis, top x-axis). 1914 

c. The change in RRL induced by bromocriptine was negatively correlated with striatal 1915 

dopamine synthesis capacity. Figure from Cools et al. (2009)24 (black dots, left y-axis, bottom x-1916 

axis). Model 1 recapitulates qualitatively the effect of bromocriptine in RRL, equivalent to 1917 

Δ(2𝜏 − 1). The solid light green line represents the Δ(2𝜏 − 1) when considering bromocriptine’s 1918 

effect on D2l occupancy only; the dashed line represents the Δ(2𝜏 − 1) when both D2l and D2s 1919 

occupancy was considered; and the dark green line represents the Δ(2𝜏 − 1) when both D2l and 1920 

D2s activation was considered (this includes the fact that bromocriptine is a partial agonist for 1921 

the D2l and D2s receptors). The curves were obtained by imposing a concentration of 100.8 nM 1922 

of bromocriptine in the biophysical model. 1923 

d.  Receptor occupancy curves for the D2l receptors at baseline (grey line) and in the presence of 1924 

100.8 nM of bromocriptine: Solid light green line corresponds to considering bromocriptine’s 1925 

effects on D2l receptors occupancy alone; dashed line, corresponds to considering 1926 

bromocriptine’s effects on both D2l and D2s receptors; solid dark green line corresponds to 1927 

considering bromocriptine’s effect on the activation curves of both D2l and D2s receptors. The 1928 

binding of the drug to the D2l receptors alone causes an increase in occupancy. This happens to a 1929 

larger extent when starting from a low dopamine level at baseline than in high dopamine levels. 1930 

The binding of the drug to D2s receptors in addition to D2l receptors causes a rightward shift in 1931 

the curves. The activation levels are lower than 1 even at the drug levels where occupancy is 1932 

close to 1, due to the lower efficiency of bromocriptine in receptor activation (Methos 4.1). See 1933 

Extended Figure 6 and 7 for the effect of changing bromocriptine’s concentration and efficiency 1934 

of activation.  1935 

e. Same as in panel d. but now reporting (2𝜏 − 1) calculated from the D2l receptor’s occupancy 1936 

and activation curves. An increase in 2𝜏 − 1 happens to a larger extent when starting from a low 1937 

dopamine level than from high dopamine level.  1938 
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f. Same as in panel d. but now reporting Δ(2𝜏 − 1) calculated from the D2l receptor’s occupancy 1939 

and activation curves. Model 1 recapitulates qualitatively the effect of bromocriptine on RRL. 1940 

g. The effect of PD medication (L-DOPA) on loss aversion is negatively correlated with their 1941 

off-medication depression score. Figure from Timmer et al. (2018)71. 1942 

h. Model 1 recapitulates qualitatively the effect of PD medication in loss aversion. We assumed 1943 

that the asymmetry in favor of learning from losses relative to gains (1 − 𝜏)𝑜𝑓𝑓  scales with the 1944 

baseline dopamine levels. Given this, we derived a distribution of off-medication baseline 1945 

dopamine levels centered around the mean (1 − 𝜏)𝑜𝑓𝑓 derived from the data of Timmer et al. 1946 

(2018)71 (see methods 0). We then imposed a fixed increase in baseline dopamine to simulate L-1947 

DOPA effects. We derived the new loss-aversion parameter (1 − 𝜏)𝑜𝑛 at the shifted baseline 1948 

dopamine levels. The y-axis shows the change in loss aversion for each sample of the 1949 

distribution of baseline dopamine levels. If the off-medication depression score is correlated with 1950 

(1 − 𝜏)𝑜𝑓𝑓 then model would predict the result in Timmer et al. (2018)71.  1951 

PD: Parkinson’s disease. 1952 

  1953 
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Extended data Figures 1954 

 1955 

Extended Data Fig. 1 | Variables of model 1 show convergence irrespective of the value of 1956 

the decay factor. 1957 

a. Value predictors 𝑉 (left), 𝑃 population (middle) and 𝑁 population (right) across trials of 1958 

training for an RL agent of model 1. Color of lines denotes the value of the decay factor (𝛽) in 1959 

the update rules for the 𝑃 and 𝑁 populations. Colormap is the same for all figures (left). All the 1960 

model variables show convergence for every value of the decay factor 𝛽. 1961 

b. Difference in the variables estimates between consecutive trials of training, for the value 1962 

predictors 𝑉 (left, ΔV), 𝑃 population (middle, ΔP) and 𝑁 population (right, ΔN). All the variables 1963 

show convergence for every value of the decay factor 𝛽 (shown as a ΔV, ΔP, ΔN equal to zero).  1964 
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 1965 

 1966 

Extended Data Fig. 2 | RL model fits to the trial-by-trial anticipatory licking responses. 1967 

a. TD learning fits reveal no significant difference across groups in the learning rate (left, U-1968 

statistic = –4.954, P =0620, two-sided Mann-Whitney U-test) nor in the linear mapping between 1969 

value predictions and anticipatory licking responses (U-statistic = –1.445, P = 0.148, two-sided 1970 

Mann-Whitney U-test). 1971 

b. Model fits of TD learning with reward sensitivity reveal no difference across groups in the 1972 

learning rate (left, U-statistic = 0.206, P = 0.836, two-sided Mann-Whitney U-test) nor in the 1973 
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linear mapping between value predictions and anticipatory licking responses (middle, U-statistic 1974 

= –0.7844, P = 0.4327, two-sided Mann-Whitney U-test), nor in the reward sensitivity (right) (U-1975 

statistic 0.545, P = 0.605, two-sided Mann-Whitney U-test). 1976 

c. Model fits of TD learning with asymmetric learning rates for positive vs negative RPEs. This 1977 

model reveals a significant difference across groups in the asymmetry between 𝛼+ and 𝛼−  (U-1978 

statistic = –4.678, P < 1.0 x 10-5, two-sided Mann-Whitney U-test) and a small but significant 1979 

difference between the linear mapping between value predictions and anticipatory licking 1980 

responses (right, U-statistic = 2.33, P = 0.02, two-sided Mann-Whitney U-test). 1981 

 1982 

 1983 
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 1984 

Extended Data Fig. 3 | Signatures of distributional reinforcement learning model are 1985 

preserved after habenula lesions. 1986 

a. RPE -evoked responses at outcome as a function of the theoretical RPE for each trial type. The 1987 

figure shows the average response function across neurons from the control group. The 1988 
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computation of zero-crossing points and asymmetric scaling factors is carried out in the ‘utility 1989 

space’(the average response function ) as in 36 to account for response nonlinearities.  1990 

b. Example of the response function of 3 dopamine neurons from the control group ordered by 1991 

their asymmetric scaling factors: pessimistic, neutral and optimistic, from top to bottom.  1992 

c. Computation of zero-crossing points for the neurons in B. The reversal points for each cell (𝑍𝑖) 1993 

were defined as the point in utility space that maximized the number of positive responses to 1994 

points greater than 𝑍𝑖 plus the number of negative responses to points less than 𝑍𝑖. The y-axis 1995 

shows the sum of responses below and above each point in the utility space. The zero-crossing 1996 

point is shown as the maxima in this function.  1997 

d. Computation of asymmetric scaling factors for the neurons in c. Here, the responses functions 1998 

in b have been projected to the utility space in A and realigned according to their zero-crossing 1999 

points. The asymmetric learning rates (𝛼+, 𝛼−) are taken to be the slopes of these response 2000 

functions.  2001 

 2002 

  2003 
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 2004 

Extended Data Fig. 4 | Distributional reinforcement learning variables from the Habenula 2005 

lesion dataset. 2006 
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a. Distribution of asymmetric scaling factors for the dopamine neurons from the control (left) 2007 

and lesion (right) groups. The error bars were derived by randomly sampling trials to compute 2008 

the asymmetric scaling factors for 1000 iterations.  2009 

b. Distribution of zero crossing points for the control (left) and lesion(right) groups. The error 2010 

bars were derived as in a. 2011 

c. Correlation of asymmetric scaling factors (x-axis) and zero-crossing points (y-axis) computed 2012 

on disjoint halves of trials for an example partition.  2013 

d. Distribution of correlation coefficients between asymmetric scaling factors (x-axis) and zero-2014 

crossing points (y-axis) across disjoint halves of trials for 1000 partitions for the control and 2015 

lesion groups. 2016 

e. Correlation between zero-crossing points computed on disjoint halves of trials for an example 2017 

partition.  2018 

f. Distribution of correlation coefficients between zero-crossing points computed on disjoint 2019 

halves of trials for 1000 partitions for the control and lesion groups. 2020 

g. Correlation between asymmetric scaling factors computed on disjoint halves of trials for an 2021 

example partition.  2022 

h. Distribution of correlation coefficients between asymmetric scaling factors computed on 2023 

disjoint halves of trials for 1000 partitions for the control and lesion groups. 2024 

 2025 

  2026 
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 2027 

Extended Data Fig. 5 | Biases in cue-evoked responses in the Habenula lesion data cannot 2028 

be explained by asymmetric scaling of RPEs (Model 2). 2029 

a. Value predictors derived from model 1 with TD learning for a set of baseline dopamine levels 2030 

(colormap). The optimistic and pessimistic biases are present.  2031 
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b. Cue responses derived from model 1 with TD learning for a set of baseline dopamine levels 2032 

(colormap). The optimistic and pessimistic biases are revealed when the responses are 2033 

normalized.  2034 

c. Value predictors derived from model 2 with TD learning for a set of baseline dopamine levels 2035 

(colormap). The optimistic and pessimistic biases are present. 2036 

d. Cue responses derived from model 2 with TD learning for a set of baseline dopamine levels 2037 

(colormap). The optimistic and pessimistic biases are absent in both the normalized and the raw 2038 

TD errors. 2039 

e. Mean across the distribution of value predictors derived from model 1 with distributional TD 2040 

learning for a set of baseline dopamine levels (colormap). The optimistic and pessimistic biases 2041 

are present.  2042 

f. Mean across the distribution of cue responses derived from model 1 with distributional TD 2043 

learning for a set of baseline dopamine levels (colormap). The optimistic and pessimistic biases 2044 

are revealed when the responses are normalized.  2045 

g. Mean across the distribution of value predictors derived from model 2 with distributional TD 2046 

learning for a set of baseline dopamine levels (colormap). The optimistic and pessimistic biases 2047 

are present. 2048 

h. Mean across the distribution of cue responses derived from model 2 with distributional TD 2049 

learning for a set of baseline dopamine levels (colormap). The optimistic and pessimistic biases 2050 

are absent in both the normalized and the raw TD errors. 2051 

 2052 

  2053 
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2054 

Extended Data Fig. 6 | Model 1 predicts asymmetric learning rates and the effect of 2055 

bromocriptine in healthy humans given inter-individual differences in baseline dopamine. 2056 

a. Occupancy curves for the D2l receptors at baseline (grey line) and when considering 2057 

bromocriptine’s effects in D2l receptors alone. The binding of the drug to the D2l receptors alone 2058 

causes an increase in the occupancy. This happens to a larger extent when starting from a low 2059 

dopamine level at baseline than in high dopamine levels. 2060 

b. Occupancy curves for the D2l receptors at baseline (grey line) and when considering 2061 

bromocriptine’s effects in both D2l and D2s receptors. The binding of the drug to D2s receptors 2062 

causes a rightwards shifts in the curves.  2063 
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c. Activation curves for the D2l receptors at baseline (grey line) and when considering 2064 

bromocriptine’s effects in D2l receptors alone, including the partial quality of the agonism of 2065 

this drug on the receptor (i.e., efficiency <1). 2066 

d. Activation curves for the D2l receptors at baseline (grey line) and when considering 2067 

bromocriptine’s effects in both D2l and D2s receptors, including the partial quality of the 2068 

agonism.  2069 

e. Relative reversal learning (RRL) calculated as 2𝜏 − 1 in model 1, as a function of baseline 2070 

dopamine (x-axis) and drug concentration (color) using the receptors occupancy curve, 2071 

considering only bromocriptine’s effect in D2l receptors.  2072 

f. Relative reversal learning (RRL) calculated as 2𝜏 − 1 in model 1, as a function of baseline 2073 

dopamine (x-axis) and drug concentration (color) using the receptors occupancy curve, 2074 

considering bromocriptine’s effect in both D2l and D2s receptors.  2075 

g. 2𝜏 − 1 in model 1, as a function of baseline dopamine (x-axis) and drug concentration (color) 2076 

using the receptors activation curve, considering only bromocriptine’s effect in D2l receptors.  2077 

h. 2𝜏 − 1 in model 1, as a function of baseline dopamine (x-axis) and drug concentration (color) 2078 

using the receptors activation curve, considering bromocriptine’s effect in both D2l and D2s 2079 

receptors.  2080 

i. The change in 2𝜏 − 1 induced by the drug at different concentrations (color) with respect to 2081 

the baseline condition, as a function of baseline dopamine (x-axis). The curves represent the 2082 

change when calculating 2𝜏 − 1 from the occupancy curves considering only D2l binding. 2083 

j. The change in 2𝜏 − 1 induced by the drug at different concentrations (color) with respect to 2084 

the baseline condition, as a function of baseline dopamine (x-axis). The curves represent the 2085 

change when calculating 2𝜏 − 1 from the occupancy curves considering both D2l and D2s 2086 

binding 2087 

k. The change in 2𝜏 − 1 induced by the drug at different concentrations (color) with respect to 2088 

the baseline condition, as a function of baseline dopamine (x-axis). The curves represent the 2089 

change when calculating 2𝜏 − 1 from the activation curves considering only D2l activation. 2090 

l. The change in 2𝜏 − 1 induced by the drug at different concentrations (color) with respect to 2091 

the baseline condition, as a function of baseline dopamine (x-axis). The curves represent the 2092 
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change when calculating 2𝜏 − 1 from the activation curves considering both D2l and D2s 2093 

activation. 2094 

The parameters of efficiency of activation of D2 receptors by the drug (𝐷2𝑙𝑒𝑓𝑓 , 𝐷2𝑠𝑒𝑓𝑓) used in 2095 

each column are reported at the bottom of the figure.  2096 

 2097 

  2098 
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2099 

Extended Data Fig. 7 | Robustness of the effect of bromocriptine in the relative reversal 2100 

learning calculated from the occupancy curves to the choice of the drug efficiency 2101 

parameter. 2102 

Extended Data Figure 7

0.0

0.5

1.0

1.5

2.0

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5

0.0

0.5

1.0

1.5

2.0

-0.5

1
10

0 1
100 1

10
0 1

100

D2l
eff

=0.1,D2s
eff

=0.1 D2l
eff

=0.1,D2s
eff

=0.3 D2l
eff

=0.1,D2s
eff

=0.5 D2l
eff

=0.1,D2s
eff

=0.6

D2l
eff

=0.3,D2s
eff

=0.1 D2l
eff

=0.3,D2s
eff

=0.3 D2l
eff

=0.3,D2s
eff

=0.5 D2l
eff

=0.3,D2s
eff

=0.6

D2l
eff

=0.5,D2s
eff

=0.1 D2l
eff

=0.5,D2s
eff

=0.3 D2l
eff

=0.5,D2s
eff

=0.5 D2l
eff

=0.5,D2s
eff

=0.6

D2l
eff

=0.6,D2s
eff

=0.1 D2l
eff

=0.6,D2s
eff

=0.3 D2l
eff

=0.6,D2s
eff

=0.5 D2l
eff

=0.6,D2s
eff

=0.6

D2l
eff

=0.8,D2s
eff

=0.1 D2l
eff

=0.8,D2s
eff

=0.3 D2l
eff

=0.8,D2s
eff

=0.5 D2l
eff

=0.8,D2s
eff

=0.6

D2l
eff

=0.9, D2s
eff

=0.1 D2l
eff

=0.9, D2s
eff

=0.3 D2l
eff

=0.9, D2s
eff

=0.5 D2l
eff

=0.9, D2s
eff

=0.6

Extended Data Figure 7

Baseline dopamine (nM) Baseline dopamine (nM) Baseline dopamine (nM) Baseline dopamine (nM)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.10.566580doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.10.566580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 98 

The qualitative effects on bromocriptine in the change in relative reversal learning Δ(2𝜏 − 1) 2103 

calculated from the D2 occupancy curves. Results hold regardless of the choice of the efficiency 2104 

of the drug on D2l (rows) or D2s (columns) efficiency.  2105 

 2106 

 2107 
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 2108 

Extended Data Fig. 8 | Robustness of the effect of bromocriptine in the relative reversal 2109 

learning calculated from the activation curves to the choice of the drug efficiency 2110 

parameter. 2111 
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The qualitative effects on bromocriptine in the change in relative reversal learning Δ(2𝜏 − 1) 2112 

calculated from the D2 activation curves. Results hold regardless of the choice of the efficiency 2113 

of the drug on D2l (rows) or D2s (columns) efficiency.  2114 

  2115 
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 2116 

 2117 

Extended Data Fig. 9 | The qualitative aspects of Model 1 are preserved irrespective of the 2118 

assumption made about the changes in baseline dopamine caused by dopamine transients.   2119 

a. Computation of receptor sensitivities (i.e., slope of dose-occupancy curves, 𝛼+, 𝛼−) assuming 2120 

logarithmic (left) or linear (middle) changes in baseline dopamine induced by dopamine 2121 

transients (logΔDA, linΔDA, respectively). The absolute magnitude of the slopes differs 2122 

depending on the assumption made about the changes in baseline dopamine (logarithmic vs 2123 

linear) but the asymmetric scaling factor presents only a small shift in the curve as a function of 2124 

baseline dopamine (right). The qualitative aspects of the model (i.e., non-monotonic relationship 2125 

of the asymmetric scaling factor with baseline dopamine) is preserved regardless on this 2126 

assumption. 2127 

  2128 
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 2129 

Extended Data Fig. 10 | Change in dopamine firing rates, dopamine concentration and 2130 

receptor occupancy as a function of RPEs in the linear scale or logarithmic scale. 2131 

a. Distributions of the slopes of the change in firing rate derived as a function of RPEs in the 2132 

positive and negative domains, computed in the linear (left) or logarithmic (right) scale, 2133 
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calculated at a single neuron level. The slopes are asymmetric if considered in the linear scale, 2134 

with the negative transients presenting a shallower slope than the positive ones. The slopes are 2135 

symmetric if considered in the logarithmic scale. 2136 

b.  Distributions of the slopes of the change in dopamine levels derived from the biophysical 2137 

model as a function of RPEs in the positive and negative domains, computed in the linear (left) 2138 

or logarithmic (right) scale, calculated at a single neuron level. The slopes are again asymmetric 2139 

if considered in the linear scale but symmetric if considered in the logarithmic scale. 2140 

c. Slope of the change in receptor occupancy derived from the biophysical model for a given 2141 

RPE in the positive and negative domains, computed in the linear (left) or logarithmic (right) 2142 

scale, calculated at a single neuron level. The slopes are symmetric if considered in the linear 2143 

scale but asymmetric if considered in the logarithmic scale. 2144 
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 2146 

Extended Data Fig. 11 | Relationship between changes in firing rates and changes in 2147 

dopamine concentration derived from the biophysical model. 2148 

a. Linear fits to the relationship between changes in firing rates and changes in dopamine 2149 

concentration evoked by the TD error at outcome in the linear scale for the control group. The 2150 

fits are done separately for each trial type. 2151 
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b. Same as a, but fits are done in the logarithmic scale. 2152 

c. Same as a, but fits are done for the lesion group. 2153 

d. Same as c, but fits are done in the logarithmic scale. 2154 

e. Distribution of the Pearson correlation coefficients (top) and means squared error (MSE, 2155 

bottom) between the predicted change in dopamine concentration by the linear regression and the 2156 

ground truth derived from the biophysical model. The coefficients are derived from the fits in 2157 

figures a-e, done by pooling all trials for each trial type (each point each trial type, with black for 2158 

control and red for lesion group). There was a significant increase in the Pearson correlation 2159 

coefficient and a near significant decrease in the MSE if the changes are considered to happen in 2160 

the logarithmic scale.  2161 

f. Same as E, but the linear regression fits are done for each neuron separately by pooling all 2162 

trials. There was a significant increase in the single-cell distribution of Pearson correlation 2163 

coefficients (top) and a significant decrease in the MSE distribution (bottom) if the changes are 2164 

considered to happen in the logarithmic scale.  2165 

 2166 
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 2168 

Extended Data Fig. 12 | Model 1 captures signatures of the data irrespective of the choice of 2169 

the decay factor and is compatible with distributional RL. 2170 

a. Model 1 with standard TD learning. Simulations were run using the receptors sensitivities 2171 

from the biophysical models and data-derived asymmetric scaling factors (see Methods 3.3).  2172 

The model’s predictions capture the signatures in cue-evoked dopamine responses (left) and 2173 

value predictions (right) irrespective of the choice of the decay factor (𝛽).  2174 

b. Model 1 within the distributional RL framework (see Methods 3.3). The model’s predictions 2175 

also capture the signatures in cue-evoked dopamine responses (left) and value predictions (right) 2176 

irrespective of the choice of the decay factor (𝛽). Bottom row shows the distribution of value 2177 

predictors for each reward-predictive cue.  2178 
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Extended Data Figure 12. Model 1 captures signatures of the data irrespective of the choice 

of the decay factor (β) parameter and is compatible with distributional RL
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 2180 

Extended Data Fig. 13 | Distributional reinforcement learning with D1 and D2 populations 2181 

(Model 1). 2182 

a. Schematic of the distributional RL model with D1 and D2 populations. The schematic 2183 

represents three different value predictors (pessimistic, neutral and optimistic from left to right) 2184 

with their respective P and N neurons. The level of optimism of each individual value predictor 2185 

is determined by the scaling factors of the individual dopamine RPE-evoked responses (𝛼𝑖
+, 𝛼𝑖

−, 2186 

represented by the color in the colormap from purple to pink) and allows the model to encode 2187 

information about the distribution of rewards (bottom). The global level of ‘optimism’ or 2188 
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‘pessimism’ of the agent is given by the re-scaling of the RPEs by the P and N receptors 2189 

sensitivities in the model (𝜙+, 𝜙 −, represented with the color saturation).  2190 

b. Example of a Bernoulli distribution, equivalent to the reward distribution predicted by the 2191 

50% cue.  2192 

c. Distribution of expectiles learnt by the distributional RL model with D1 and D2 population for 2193 

the reward distribution in b. The expectiles are sorted based on the asymmetric scaling factor of 2194 

each individual dopamine neuron. Colormap represents the level of optimistic or pessimism of 2195 

each agent.  2196 

d. Samples from the decoded distributions for the set of expectiles in c. The probability density is 2197 

bimodal, in accordance with the distribution in b. As the agents goes from pessimism to 2198 

optimism, the probability density modes change in their relative magnitude.  2199 
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