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Abstract1

Working memory involves the short-term maintenance of information and is critical in many tasks. The2

neural circuit dynamics underlying working memory remain poorly understood, with different aspects of3

prefrontal cortical (PFC) responses explained by different putative mechanisms. By mathematical analy-4

sis, numerical simulations, and using recordings from monkey PFC, we investigate a critical but hitherto5

ignored aspect of working memory dynamics: information loading. We find that, contrary to common6

assumptions, optimal loading of information into working memory involves inputs that are largely or-7

thogonal, rather than similar, to the persistent activities observed during memory maintenance, naturally8

leading to the widely observed phenomenon of dynamic coding in PFC. Using a novel, theoretically prin-9

cipled metric, we show that PFC exhibits the hallmarks of optimal information loading. We also find that10

optimal loading emerges as a general dynamical strategy in task-optimized recurrent neural networks.11

Our theory unifies previous, seemingly conflicting theories of memory maintenance based on attractor12

or purely sequential dynamics, and reveals a normative principle underlying dynamic coding.13

Working memory requires the ability to temporarily14

hold information in mind, and it is essential to perform-15

ing cognitively demanding tasks1,2. A widely observed16

neural correlate of the maintenance of information in17

working memory is selective persistent activity. For18

example, in the paradigmatic memory-guided saccade19

task3–13, subjects must maintain the location of one20

out of several cues during a delay period after which21

they must respond with a saccade to the correct lo-22

cation (Fig. 1a). Cells in the lateral prefrontal cortex23

(lPFC) show elevated levels of activity that persist dur-24

ing the delay period and that is selective to the location25

of the now-absent cue3–5,9. However, neurons typi-26

cally only reach a steady, persistent level of activity27

late in the delay period of a trial6,8,10,11,14–20. In con-28

trast, during the cue and early delay period, neurons29

in lPFC often exhibit strong transient dynamics dur-30

ing a variety of working memory tasks3,8,10,11,14–24. It31

remains unknown what mechanism may underlie this32

combination of persistent and dynamically changing33

neural activities.34

Recent population-level analyses using the technique35

of ‘cross-temporal decoding’ place particularly strin-36

gent constraints on any candidate neural mechanism37

of working memory maintenance. Cross-temporal de-38

coding measures how well information about the cue39

location can be decoded from neural responses when40

a decoder is trained and tested on any pair of time41

points during a trial8,10,11,14,15,25 (Fig. 1b). These anal-42

yses reveal a consistent but somewhat puzzling set43

of results. First, when decoder training and testing44

times are identical, decodability is high (Fig. 1b, black45

along the diagonal), confirming that information about46

cue location is indeed present in the population at47

all times8,10,11,14,15,25. Decodability is also high when48

both training and testing occurs during the late delay49

period8,10,11,14,15,25, suggesting that even if there are50

changes in neural responses during this period, the51

coding of cue location remains stable6,8,10 (Fig. 1b,52

black inside cyan square). However, decoding perfor-53

mance remains low when a decoder is trained during54

the cue or early delay period and tested during the55

late delay period, and vice-versa8,10,11,14,15,25 (Fig. 1b,56

gray inside pink rectangles). This demonstrates that57

the neural code for cue location undergoes a sub-58

stantial change between these these two periods—59

a phenomenon that has been called ‘dynamic cod-60

ing’8,10,14–16,25.61

Classically, the neural mechanism of working memory62

maintenance is thought to rely on attractor network dy-63

namics5–7,12,27–31. In such networks, the stimulus cue64

acts as a transient external input, driving the network65

activity (Fig. 1c; left, pale purple line and arrow) into66

a suitable state (Fig. 1c; left, pale purple circle) from67

which its intrinsic dynamics (Fig. 1c; left, dark purple68

line), in the absence of the cue, are ‘attracted’ into a69

distinct cue-specific steady state maintained by recur-70

rent interaction between neurons (Fig. 1c; left, black71

cross). Thus, these models naturally account for se-72

lective persistent activity (Fig. 1c, center). However,73

because the external input drives network activity to a74

state that already has large overlap with (i.e. it is sim-75

ilar to) the desired attractor state5–7,29,31–35 (Fig. 1c;76

left, gray arrow), the ensuing dynamics then perform77
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Fig. 1 | Neural network dynamics of working memory maintenance. a, Illustration of the memory-guided saccade task. Time line of task
events in a trial (bottom), with the corresponding displays (top). Top: black circle and squares show fixation ring, and the arrangement of
visually cued saccade target locations, respectively (not to scale), red dots and line illustrate gaze positions during fixations and saccade,
respectively. Bottom: yellow ticks show timing of stimulus cue onset and offset, yellow bar shows interval within which the go cue can occur.
b, Schematic pattern of cross-temporal decoding when applied to neural recordings from the lPFC during working memory tasks 8,10,14–16,25.
Gray scale map shows accuracy of decoding cue identity (one out of 6) when the decoder is trained on neural activities recorded at a par-
ticular time in the trial (y-axis) and tested at another time (x-axis). Yellow lines indicate cue onset and offset times. Note poor generalization
between time points inside the pink rectangle (i.e. dynamic coding), but good generalization between time points inside the blue rectangle
(i.e. stable coding). The gray tick on the color bar indicates chance-level decoding. c, Schematic of neural network dynamics in an attractor
network performing the task shown in a 5,6 (see also Extended Data Fig. 1a–c). Left: trajectory in neural state space in a single cue condition
during the cue period (pale purple line, ending in pale purple circle) and delay period (dark purple line). Purple arrow heads indicate direction
of travel along the trajectory, black cross shows attractor state, gray arrow shows overlap between cue input and late delay activity. Center:
time course of relative (i.e. mean-centered) firing rates of one neuron (dim 1 from left panel) for two cue conditions (purple vs. blue, see also
inset). Yellow lines indicate cue onset and offset times. Right: cross-temporal decoding of neural activity produced by the network across all
6 cue conditions, shown as in b. d, Same as c, but for an effective feedforward network that generates sequential activities 21,26 (see also
Extended Data Fig. 1d). e, Same as c, but for a network optimized to perform the task shown in a (see also Extended Data Fig. 1e).

‘pattern completion’35, whereby this overlap is only78

slightly improved until it becomes perfect and the de-79

sired attractor is reached (Fig. 1c; left). As a result,80

neurons show limited transient activity during the delay81

period (Fig. 1c, center), and cross-temporal decoding82

reveals stable coding throughout the whole trial, lack-83

ing the characteristic dynamic coding seen in experi-84

mental data (compare Fig. 1b to c, right;8,10,14–16,25).85

This combination of results emerge across several86

variants of attractor networks, whether they express87

a continuum of persistent activity patterns (‘ring’ or88

‘bump’ attractor networks, Extended Data Fig. 1a) or89

a finite number of discrete patterns (Extended Data90

Fig. 1b). Critically, even when external inputs in attrac-91

tor, or closely related ‘integrator’, models were chosen92

such that neural activity showed longer transient dy-93

namics6,32 (Extended Data Fig. 1c, center), inputs still94

relied on a large overlap with the desired attractor (Ex-95

tended Data Fig. 1c, left). Therefore, these networks96

maintained a stable code over time without dynamic97

coding6 (Extended Data Fig. 1c, right).98

To capture transient dynamics more naturally, a very99

different class of models have been developed based100

on mechanisms that generate neural activity se-101

quences. These models typically rely either on effec-102

tively feedforward network connectivity21,26 or chaotic103

network dynamics24,36–38. The dynamics of such mod-104

els rapidly transition between orthogonal subspaces105

over time (Fig. 1d, left), thus cross-temporal decod-106

ing is high only between neighbouring time-points107

(Fig. 1d, right, black along diagonal). Although such108

models are ideally suited to capturing transient neural109

responses (Fig. 1d, center) and poor cross-temporal110

decoding between cue/early delay and late delay peri-111

ods (Fig. 1d, right, gray inside pink rectangle), they fail112

to exhibit persistent activities (Fig. 1d, center) and sta-113
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ble coding during the late delay period (Fig. 1d, right,114

gray inside blue square, except for diagonal). There-115

fore, previous work leaves open two interrelated key116

questions: how can a neural circuit exhibit strong tran-117

sient dynamics before its activity ultimately settles in118

an orthogonal persistent state, and why would it use119

such a counterintuitive dynamical regime?120

In order to study the dynamical principles underly-121

ing the combination of persistent and dynamic neu-122

ral activities during working memory, we built on re-123

cent advances in using task-optimized neural net-124

works to study network mechanisms13,17,20,24,36,39–41.125

Thus, instead of starting from strong prior assump-126

tions about either attractor or sequential dynamics un-127

derlying working memory, we trained networks for the128

task of working memory maintenance, and analysed129

their dynamical behaviour. We found that the be-130

haviour of such task-optimized networks unifies attrac-131

tor and sequential activity models, showing both per-132

sistent activities and orthogonal transient dynamics,133

giving rise to dynamic coding (Fig. 1e).134

To understand the mechanism and functional signifi-135

cance of dynamic coding, we focused on a hitherto136

ignored aspect of the operation of attractor networks:137

optimal information loading. In particular, we show138

that inputs that most efficiently drive the network ac-139

tivity into a desired attractor state tend to be orthogo-140

nal to the attractor state itself which results in an initial141

period of strong transient dynamics. Thus, transient142

dynamics and dynamic coding are fundamental and143

functionally useful features of attractor networks. In144

order to gain an analytical understanding of this phe-145

nomenon, we developed a mathematical theory for the146

efficiency of information loading in attractor networks147

by analysing a simplified class of neural network mod-148

els with linear dynamics. Crucially, our theory also149

suggested a specific neural data analysis approach for150

assessing whether a network uses optimal information151

loading. Using this theoretically-principled approach,152

we demonstrate key signatures of optimal information153

loading in neural recordings from lPFC. Finally, we as-154

sess how different cost functions affect the dynamics155

of task-optimized networks. We show that dynamic156

coding always emerges after training in a wide variety157

of models including linear integrators, as well as non-158

linear discrete and bump attractor models, unless the159

cost function explicitly requires stable coding. Our re-160

sults offer a novel, normative perspective on a core161

component of the operation of attractor networks—162

information loading—which has so far received little163

attention, and challenge long-held assumptions about164

pattern completion-like mechanisms in neural circuits.165

166

Results167

Pattern completion and optimal information load-168

ing in attractor networks169

Traditional approaches to studying attractor networks170

used models in which the connectivity between171

neurons was constrained to be effectively symmet-172

ric5,7,31,33–35,42–46, making the analysis of their dynam-173

ics mathematically more convenient34,35,44,47,48. Thus,174

we first replicated results with such symmetric net-175

works that were optimized to perform the working176

memory task shown in Fig. 1a. (While here we show177

results with attractor networks generated by a particu-178

lar optimization procedure, we show below that these179

results do not depend on the details of this proce-180

dure, only on the presence of suitable attractors in181

the state space of the resulting networks.) For sim-182

plicity, we only modelled the intrinsic dynamics of the183

network during the delay period and the effect of the184

cue was captured by cue-specific initial neural activi-185

ties (i.e. neural activities at the beginning of the delay186

period35,42,43; Fig. 2b). To study optimal information187

loading, we optimized these initial activities in order188

to maximize the performance of the network, as de-189

termined by how well the cue could be decoded from190

neural activities at the end of the delay period (Meth-191

ods 1.3.1). In other words, we asked where (in neural192

state space) the dynamics of the network need to start193

from so as to consequently generate a robustly identi-194

fiable, cue-specific pattern of persistent activity.195

We found that optimal initial activities gave rise to clas-196

sical pattern completion dynamics in symmetric net-197

works. First, initial activities were noisy versions of198

(and in fact highly similar to) the desired persistent pat-199

terns (Fig. 2b inset, and Fig. 2c). Second, the ensu-200

ing dynamics were driven directly into the correspond-201

ing steady state resulting in only small and gradual202

changes in activities over the delay period (Fig. 2b).203

Further analysis of these dynamics showed that the204

optimal initial activities aligned well with directions in205

neural state space that best distinguished between the206

desired persistent activities (Fig. 2d, ‘persistent PC1’207

component of pale arrows and circles; Extended Data208

Fig. 2b), with only a comparably small component in209

orthogonal directions specific to these initial activities210

(Fig. 2d, ‘initial PC1 (orthogonalized)’) which subse-211

quently changed little over time (Fig. 2d, dark trajec-212

tories). As a result, cross-temporal decoding perfor-213

mance was high for all pairs of times (Fig. 2e), and—214

as a special case—a decoder based on templates of215

neural activity during the late delay period (i.e. dur-216

ing the steady state of the network), generalized well217

to all times and was able to decode the cue identity218

from neural activities with high accuracy throughout219

the delay period (Fig. 2f, black line). We found that220

the similarity between initial and persistent activities221

was critical for these networks. When constrained to222

use initial activities that were orthogonal in neural state223

space to persistent activities (i.e. lying in the ‘persis-224

tent nullspace’), these networks performed substan-225

tially more poorly at all times (Fig. 2f, red line) and ac-226

tivity often did not settle into the correct attractor state227

(Extended Data Fig. 2d). In contrast, explicitly enforc-228

ing these networks to use initial activities that were229

similar to persistent activities (i.e. lying in the ‘persis-230

tent subspace’) did not compromise their performance231

(Fig. 2f, green line; Extended Data Fig. 2c).232
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Fig. 2 | Pattern completion and optimal information loading in attractor networks. a, A network with symmetric connections. Left: net-
work schematic. Right: the recurrent weight matrix for 10 of the 50 neurons. b–f, Analysis of neural responses in symmetric attractor networks
(such as shown in a) with optimized initial conditions. b, Firing rate activity in a representative trial. Inset shows initial vs. final mean-centered
firing rates across neurons (gray dots) in this trial and the Pearson correlation (r; p < 0.001) between initial and final firing rates. Gray line is
the identity line. c, Distribution of Pearson correlations between initial and final mean-centered neural firing rates across all 6 cue conditions
and 10 networks. d, Sub-threshold activity for 2 cue conditions in an example network (color trajectories). Open circles (with arrows pointing
to them from the origin) show the optimized initial conditions, black crosses show stable fixed points, dashed gray line is the identity line.
Horizontal axis (persistent PC1) shows network activity projected on to the 1st principal component (PC1) of network activities at the end of
the delay period (across the 2 conditions shown), vertical axis (initial PC1 (orthogonalized)) shows projection to PC1 of initial network activi-
ties orthogonalized to persistent PC1. e, Cross-temporal decoding of neural firing rate activity (cf. Fig. 1b). f, Performance of a delay-trained
decoder (black bar indicates decoding training time period) on neural firing rate activity over time starting from optimized initial conditions with
full optimization (black), or restricted to the 5-dimensional subspace spanning the 6 cue-specific attractors (persistent subspace, green), or
the subspace orthogonal to that (persistent nullspace, red). Solid lines and shading indicate mean±1 s.d. across all 6 cue conditions and 10
networks. Gray dotted line shows chance level decoding. Green and black lines are slightly offset vertically to aid visualization. g, Same as
b but for an attractor network with unconstrained connections. h–l, Same as c–f, for attractor networks with unconstrained connections. The
Pearson correlation in h (inset) is not significant (p > 0.4).

Attractor networks optimized without a symmetry con-233

straint exhibited dynamics distinctly unlike simple pat-234

tern completion (Fig. 2g–l). First, initial activities re-235

sembled persistent activity much less than in symmet-236

ric networks (Fig. 2i), such that their correlation could237

even be negative (Fig. 2h inset). Second, neural activ-238

ities often underwent substantial and non-monotonic239

changes before ultimately settling into an attractor240

state (Fig. 2h). This was also reflected in optimal initial241

activities (Fig. 2j, pale arrows) being strongly orthogo-242

nal to persistent activities (Fig. 2j, black crosses; Ex-243

tended Data Fig. 2f), with this orthogonality decaying244

over the delay period (Fig. 2j, dark trajectories). Third,245

a decoder trained on neural activity from the late de-246

lay period generalized poorly to early times (Fig. 2l,247

black line) and vice versa (Fig. 2k), thus exhibiting a248

fundamental signature of ‘dynamic coding’10,14–16 (cf.249

Fig. 1b). We found that the orthogonality of initial con-250

ditions in these networks was instrumental for high251

performance: in a double dissociation from symmet-252

rically constrained networks, restricting initial condi-253

tions to be in the persistent subspace (Fig. 2l, green254
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line; Extended Data Fig. 2g), but not in the persistent255

nullspace (Fig. 2l, red line; Extended Data Fig. 2h), di-256

minished decodability at the end of the delay period257

(cf. Fig. 2f).258

The above results were obtained with networks storing259

a small number of discrete attractors, corresponding to260

the six cue conditions. Previous work found that sev-261

eral aspects of working memory dynamics in lPFC are262

better captured by networks in which instead a large263

number (or even a continuum) of attractor states lie264

on a ring in state space5,7,45,46. Thus, we repeated265

our analyses on optimized networks while explicitly266

encouraging such a ring attractor to form during op-267

timization (Methods 1.3.4). We found a highly similar268

pattern of results in ring attractor networks as com-269

pared with discrete attractor networks (Extended Data270

Fig. 3).271

Dynamical analysis of optimal information loading272

To understand why optimal information loading in273

symmetric versus unconstrained attractor networks is274

so different, and in particular why inputs orthogo-275

nal to attractor states are optimal for unconstrained276

networks, we reduced these networks to a canoni-277

cal minimal model class consisting of only two neu-278

rons43,49,50. While attractor network dynamics in gen-279

eral rely on the activation functions (f-I curves) of neu-280

rons being nonlinear27,33,35,44, for analytical tractability,281

we considered networks with linear dynamics (i.e. in282

which neurons had linear activation functions). Crit-283

ically, with the appropriate set of synaptic connec-284

tions, even linear networks can exhibit persistent ac-285

tivity6,32,34,43,48,51—the key feature of working memory286

maintenance in attractor networks.287

For our analyses, we again distinguished between288

models with symmetric connectivity between neurons289

(Fig. 3a; top)34,43,50, and models without this constraint290

(Fig. 3a; bottom)6,32. In either case, the specific con-291

nection strengths were chosen to create illustrative ex-292

amples providing intuitions that—as we show below—293

also generalise to large networks with randomly sam-294

pled connection strengths (Fig. 3d–e, Fig. 4). The dy-295

namics of these networks are fully described in a two-296

dimensional state space spanned by the activities of297

the two neurons (Fig. 3b) and define a flow-field in this298

space determining how changes in neural activities299

depend on the network state (Fig. 3b; blue arrows).300

While the persistent subspace of nonlinear networks301

can consist of a number of discrete attractor states302

corresponding to distinct patterns of persistent activ-303

ity (Fig. 2 and Extended Data Fig. 2, Methods 1.3),304

linear attractor networks (or ‘integrators’43) express a305

continuum of persistent activity patterns6,32,34,43. In ei-306

ther case, attractor networks encode stimulus informa-307

tion in the location of the state of the network within308

the persistent subspace. In our two-neuron linear net-309

work, the persistent subspace simply corresponds to a310

line onto which the flow field converges (Fig. 3b; green311

lines). Therefore, the persistent mode of our network312

is its ‘coding direction’33, which allows it to distinguish313

between two stimuli depending on which side of the314

origin the state of the network is. The larger the mag-315

nitude of its activity along this mode at the end of the316

delay period, the more robustly the identity of the stim-317

ulus can be decoded (e.g. in the presence of noise).318

To understand the mechanisms of information load-319

ing, we considered three distinct stimulus directions320

in which inputs can offset the state of the network321

from the origin (i.e. the background state of the net-322

work before stimulus onset). We then analysed the323

time course of the network’s activity along the persis-324

tent mode6,32,33 after being initialised in each of these325

directions. First, we considered inputs aligned with the326

persistent mode, the input direction studied in classi-327

cal attractor networks6,32,34,43,50 (Fig. 3b; pale green328

arrows and open circles). Second, we considered the329

‘most amplifying mode’, which is defined as the stim-330

ulus direction that generates the most divergent and331

thus best discriminable activity over time52–56 (Meth-332

ods 1.7.1; Fig. 3b, red lines, and pale red arrows and333

open circles). Third, we considered a random input334

direction (Fig. 3b; gray lines/circles).335

In symmetric networks, the most amplifying mode336

is aligned with the most persistent mode (Fig. 3b;337

top)57,58, and thus does not generate activity tran-338

sients (Fig. 3c; top)—accounting for the simple pat-339

tern completion dynamics seen in classical attractor340

networks with symmetric connectivity5,7,31,33–35,42–44
341

(Fig. 2a–f). However, in unconstrained networks, the342

most amplifying mode is typically different from the343

most persistent mode (Fig. 3b; bottom). Intuitively,344

this is because effective feedforward connections exist345

in unconstrained networks21,26,49,55,59 (Fig. 3a, bottom;346

connection from neuron 2 to neuron 1). Feeding neu-347

ron 1 (the persistent mode) indirectly through this feed-348

forward connection from neuron 2 can increase its ac-349

tivity more than just feeding it directly21,26 (Fig. 3a,b;350

bottom). This means that activity evolving from the351

most amplifying mode exhibits a distinct transient be-352

haviour: its overlap with the most persistent mode353

is initially low and then increases over time (Fig. 3c;354

bottom, red line), accounting for the richer transients355

seen in unconstrained attractor networks (Fig. 2g–l).356

Thus, there is a form of ‘speed–accuracy’ trade-off be-357

tween whether inputs should use the most amplifying358

or persistent mode: if information is required imme-359

diately following stimulus offset, such as in a percep-360

tual decision-making task13,40,58, inputs need to use361

the persistent mode. However, if there is a time de-362

lay until the information is needed, as is the case in all363

working memory tasks2,60, then the most amplifying364

mode becomes the optimal input direction. Indeed, an365

analogous trade-off was already apparent between the366

persistent sub- vs. nullspace inputs in the non-linear367

attractor networks we analysed earlier (Fig. 2l, red vs.368

green).369

The insights obtained in the simple two-neuron net-370

work also generalised to large randomly connected371

linear integrator networks, with more than two neu-372

rons (Fig. 3d,e; see Methods 1.4.1). We were able to373
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neural activity. c, Time course of network activity along the persistent mode (i.e. projection onto the green line in b) when started from the
persistent (green), most amplifying (red), or random initial conditions (black) for the symmetric (top) and the unconstrained model (bottom). d,
Distributions of absolute overlap with the persistent mode for persistent (pale green), most amplifying (pale red), or random initial conditions
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models, the persistent and most amplifying initial conditions produce delta functions at 1 (arrows). Insets show illustration of large networks
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the unconstrained network (bottom). Lines and shaded areas show mean±1 s.d. over the 100 randomly sampled 1000-neuron networks from
d.

show mathematically that optimal information loading,374

in the sense of maximizing overlap with the persistent375

mode at long delays, is always achieved with inputs376

aligned with the most amplifying mode (Supplemen-377

tary Math Note S1). Equivalently, the most amplifying378

mode is the input direction that requires the smallest379

magnitude initial condition to achieve a desired level of380

persistent activity (i.e. a desired level of performance).381

More generally, we could also show both mathemat-382

ically and in simulations (Extended Data Fig. 4) that383

the most amplifying mode is near-optimal in achiev-384

ing a desired level of performance while minimizing385

total network activity over time (i.e. the total energy386

used by the network) for sufficiently long delay lengths.387

Moreover, as network size grows, in unconstrained388

(but not in symmetric) networks, the most amplifying389

direction becomes increasingly orthogonal to the most390

persistent mode61, further accentuating the advantage391

of amplifying over persistent mode inputs61 (Fig. 3d–392

e, Extended Data Fig. 5a–b; red vs. green). This is393

because in large unconstrained networks, there are394

many effectively feed-forward motifs embedded in the395

full recurrent connectivity of the circuit, which can all396

contribute to transient amplification21. Random ini-397

tial conditions become fully orthogonal in both net-398

works and result in poor overlap with the persistent399

mode (Fig. 3d–e, Extended Data Fig. 5a–b; black).400

Numerical simulations confirmed that these results401

also generalised to networks with noisy dynamics (Ex-402

tended Data Fig. 5c). Moreover, explicitly optimiz-403

ing a network’s initial condition in such networks so404

as to generate persistent activity also made it over-405

lap strongly with the most amplifying mode (Extended406

Data Fig. 5d).407

As our mathematical analyses only applied to linear408

dynamics, we used numerical simulations to study409

how they generalised to nonlinear dynamics. We410

found that the same principles applied to the dynamics411

of a canonical 2-dimensional nonlinear attractor sys-412

tem (analogous to the networks in Fig. 3a–c), when413

the persistent and most amplifying directions were de-414

fined locally around its ground state (Methods 1.6;415

Extended Data Fig. 6, see also Supplementary Math416

Note S2). Importantly, we also found that large opti-417

mized nonlinear neural networks (with discrete or ring418

attractors) also showed a similar pattern of results419

(Extended Data Fig. 3e, and Extended Data Fig. 7a–c,420

see also Supplementary Math Note S3).421

Neural signatures of optimal information loading422

Our dynamical analysis suggested that there should423

be clearly identifiable neural signatures of a network424

performing optimal information loading. To demon-425

strate this, and to allow a more direct comparison426

with data, we used the same large, randomly con-427

nected, noisy linear networks that we analysed ear-428

lier (Extended Data Fig. 5c–d) which could be ei-429

ther symmetric or unconstrained, with the cue period430

(Fig. 4, yellow ticks and lines) modelled using tempo-431

rally extended constant inputs, mimicking typical ex-432

periments3–5,10. We studied the three different infor-433

mation loading strategies that we identified earlier: in-434

puts aligned with either the persistent mode, the most435
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Fig. 4 | Neural signatures of optimal information loading. a, Performance of a delay-trained decoder (black bar indicates decoder training
time period; Methods 1.7.4) on neural activity over time. Two cue conditions were used with inputs that were identical but had opposite
signs. Lines show mean across 10 randomly connected 100-neuron linear symmetric networks (top) and unconstrained networks (bottom)
(Methods 1.4.1). Yellow ticks on horizontal axis indicate cue onset and offset times and the vertical gray bar indicates the cue epoch. We
show results for inputs aligned with the persistent mode (dark and pale green), the most amplifying mode (red), or a random direction (black
and gray). Light colors (pale green and gray, ‘noise-matched’) correspond to networks with the same level of noise as in the reference network
(red), while dark colors (dark green and black, ‘performance-matched’) correspond to networks with the same level of asymptotic decoding
performance as that in the reference network. Gray dotted line shows chance level decoding. Green, red, and black lines are slightly offset
vertically in the top panel to aid visualization. b, Cross-temporal decoding of neural activity for the 3 different information loading strategies
(persistent, most amplifying, and random respectively in left, center, and right panels) for a representative symmetric network (top) and un-
constrained network (bottom) for the performance-matched condition from a. Yellow lines indicate cue onset and offset times. Pink rectangles
indicate poor generalization between time points (i.e. dynamic coding) and cyan rectangles indicate examples of good generalization between
time points (i.e. stable coding). c, Percent variance explained by the subspace spanned by either the 25% most persistent (green) or 25%
most amplifying (red) modes as a function of time in the same symmetric (top) and unconstrained networks (bottom) analyzed in a. Lines
and error bars show mean±1 s.d. across networks. We show results for inputs aligned with the persistent mode (left), most amplifying mode
(center), or a random direction (right). Gray dotted line shows chance level overlap with a randomly chosen subspace occupying 25% of the
full space.

amplifying mode, or a cue-specific random direction436

(Fig. 4).437

We began by conducting a decoding analysis using438

templates of late delay activity, as is often done for439

prefrontal cortical recordings6,8,10,14,15,25 (and also in440

Fig. 2f,l). We first verified that for a fixed level of neu-441

ronal noise, the most amplifying inputs were indeed442

optimal for achieving high decodability at the end of443

the delay period (Fig. 4a, red lines). More gener-444

ally, we were also able to show mathematically that445

the most amplifying inputs in noisy linear networks446

are optimal for maximizing average decodability dur-447

ing the delay period (Supplementary Math Note S1.7).448

In contrast, random inputs in both symmetric and un-449

constrained networks performed considerably more450

poorly (Fig. 4a, gray lines). Remarkably, persistent451

mode inputs achieved a similarly low level of decod-452

ability at late delay times in unconstrained networks453

(Fig. 4a, bottom; compare pale green and gray lines)—454

but not in symmetric networks in which they were iden-455

tical to the most amplifying input (Fig. 4a, top; overlap-456

ping green and red lines).457

The level of noise in the networks we have studied so458

far was not constrained by data, which typically shows459

high decodability6,8,10,14,15,25. This is important be-460

cause the sub-optimal input conditions could achieve461

high decoding performance by appropriately reducing462

the noise level in our simulations (Fig. 4a, asymptotic463

values of dark green and black lines). Thus, asymp-464

totic decoding performance alone cannot be used to465

identify the information loading strategy employed by466

a network. To address this, in subsequent analyses,467

we used networks in which the level of late-delay per-468

formance was matched between the three information469

loading strategies by appropriately changing the level470

of noise. Nevertheless, a critical difference emerged471

between the different information loading strategies472

even in these ‘performance-matched’ networks—at473

least in those with realistic, unconstrained connectivity.474

For both random and most amplifying input directions,475

the delay-trained decoder only performed well when476

tested late in the delay period (Fig. 4a, bottom; black477

and red lines), whereas for inputs aligned with the per-478

sistent direction this decoder performed near ceiling at479

all times after cue onset (Fig. 4a, bottom; dark green480

line).481

Next, in order to more fully characterise the differ-482

ences between persistent versus random or most am-483

plifying inputs, and for a comprehensive comparison484

with experimental data8,10,14,15,25, we also employed485

full cross-temporal decoding (Fig. 4b). This analysis486

showed that all information loading strategies led to487

dynamics in which stimulus information was present488

at all times after cue onset (Fig. 4b, diagonals are489

all black). Moreover, in symmetric networks, and for490

the persistent mode inputs in the unconstrained net-491

work, stimulus information was maintained using a492

‘stable code’10,11,14,16 (Fig. 4b, top, and bottom left, all493
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off-diagonals are black)—similar to previous integra-494

tor models of working memory6,32,34 (Extended Data495

Fig. 1c). In contrast, in the unconstrained network,496

random and most amplifying mode inputs led to poor497

decodability between early and late time points af-498

ter cue onset (Fig. 4b, bottom; center and right, off-499

diagonals indicated by pink rectangles are white/gray),500

suggesting sequential activities during the early-to-501

late delay transition21,26,36, and giving rise to the phe-502

nomenon of ‘dynamic coding’8,10,11,14–16. These activ-503

ities then stabilised during the late delay period as the504

network dynamics converged to a persistent pattern of505

activity (Fig. 4b, bottom; center and right, off-diagonals506

inside cyan squares are black). In sum, these decod-507

ing analyses were able to clearly distinguish between508

persistent mode and random or amplifying inputs, but509

not between the latter two.510

To construct a targeted measure for identifying net-511

works using most amplifying inputs, we exploited the512

fact that in large networks, random inputs are almost513

certainly guaranteed to have negligible overlap with514

any other direction in neural state space, including the515

most amplifying mode. Thus, we directly measured516

the time courses of the overlap of neural activities with517

the top 25% most amplifying modes. We quantified518

this overlap as the fraction of variance of neural activ-519

ities that these modes collectively explained (Fig. 4c,520

red lines; Methods 1.7.3). For a comparison, we also521

measured these time courses for the overlap with the522

top 25% most persistent modes (Fig. 4c, green lines).523

We used the top set of amplifying and persistent direc-524

tions, rather than just a single direction in each case,525

because large networks can harbor multiple directions526

that represent similarly persistent activity patterns and527

similarly efficient amplifying modes, respectively52,53.528

In fact, in the more general setting in which more than529

two cues need to be discriminated (as is the case in530

typical experiments; Fig. 1a) these higher dimensional531

subspaces will even be necessary so that they include532

the amplifying or persistent directions relevant for all533

cues.534

As expected, for symmetric networks, persistent and535

equivalent amplifying mode inputs resulted in both536

overlaps being high immediately from stimulus onset537

(Fig. 4c, top; left and center). Random inputs started538

with chance overlap which increased over time to ceil-539

ing as the network settled into its persistent (or, equiv-540

alently, most amplifying) mode (Fig. 4c, top right). In541

unconstrained networks, persistent mode inputs led to542

constant high and moderate overlaps with the persis-543

tent and most amplifying modes, respectively (Fig. 4c,544

bottom left). Random inputs again started with chance545

overlap for both modes, which then increased to the546

same levels that resulted from persistent mode inputs547

(Fig. 4c, bottom right). In contrast, most amplifying in-548

puts were uniquely characterised by a cross-over be-549

tween the time courses of the two overlap measures.550

Initially, neural activities overlapped strongly with the551

most amplifying mode (by construction), but showed552

only chance overlap with the persistent mode (Fig. 4c,553

bottom middle). Over time, these overlap measures554

changed in opposite directions, such that by the end555

of the delay period overlap was high with the persis-556

tent mode and lower with the most amplifying mode557

(Fig. 4c, bottom middle). Therefore, the cross-over of558

these overlap measures can be used as a signature of559

optimal information loading utilizing inputs aligned with560

the most amplifying modes. For example, modifying561

an earlier integrator model of working memory6 (Ex-562

tended Data Fig. 1c) so that inputs lie in a purely ran-563

domly oriented subspace can result in cross-temporal564

decoding matrices that look similar to that achieved by565

the most amplifying mode (Extended Data Fig. 8b), but566

the overlap measures that we developed here clearly567

reveal the lack of optimal information loading, even in568

that modified model (Extended Data Fig. 8e). In ad-569

dition, we confirmed in numerical simulations that the570

same signature of optimal information loading remains571

detectable even under the practical constraints of ex-572

perimental data analysis: when the underlying net-573

work dynamics is nonlinear, and only accessible in-574

directly by fitting linear dynamical models to the neu-575

ral responses they generate (Extended Data Fig. 7d,576

Methods 1.4.3 and Supplementary Math Note S3.4).577

Signatures of optimal information loading in mon-578

key lPFC579

To study whether the PFC shows the dynamical sig-580

natures of optimal information loading that our theo-581

retical analyses identified, we analysed a data set62
582

of multi-channel recordings of the lateral prefrontal583

cortex (lPFC) in two monkeys during a variable-delay584

memory-guided saccade task (Fig. 1a). These record-585

ings yielded 438 and 625 neurons (for monkeys K and586

T, respectively; Extended Data Fig. 9, Methods 1.1).587

We analysed the population dynamics of all recorded588

neurons in each monkey and applied the same metrics589

to this dataset that we applied to our models. Pop-590

ulation dynamics appeared to show rich transient dy-591

namics during the cue and early delay period, followed592

by relatively stable dynamics during the late delay pe-593

riod (Fig. 5a). This was reminiscent of the dynamics594

we found in unconstrained attractor networks following595

optimal information loading (Fig. 2h).596

To further quantify this behaviour, we conducted de-597

coding analyses. First, in line with previous stud-598

ies10,14,15, we found that a delay-trained decoder did599

not generalise to times outside of the delay period and600

in particular showed near-chance performance during601

the cue period (Fig. 5b). This was distinct from the602

pattern completion dynamics seen in classical attrac-603

tor network models of working memory (Fig. 2f,l green604

and Fig. 4a green), but similar to that expected from605

random or optimal inputs in unconstrained networks606

(Fig. 2l black and red; Fig. 4a bottom, black and red).607

Full cross-temporal decoding reinforced these results:608

decoders trained during the delay epoch did not gen-609

eralise to the cue or go epochs and vice versa (Fig. 5c610

and Extended Data Fig. 10a, pink rectangles). Thus,611

neural activity exhibited dynamic coding14,15 rather612

than the stable coding characteristic of simple pat-613
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most amplifying (red) modes as a function of time for the 20-dimensional linear dynamical systems fitted to data from monkey K (top) and
monkey T (bottom). Gray lines show chance level overlap defined as the expected overlap with a randomly chosen subspace occupying 25%
of the full space (median and 95% C.I. across 200 random subspaces). Comparisons shown in d and f use two-sided permutation tests (*,
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tern completion (Fig. 1c right; Fig. 4b top, and bot-614

tom left; and Extended Data Fig. 1a–c right). Impor-615

tantly, same-time decoding performance was close to616

1 throughout the cue and delay epochs (Fig. 5c and617

Extended Data Fig. 10a, orange arrow). This con-618

firmed that the poor cross-temporal generalisation be-619

tween early and late periods of a trial was not be-620

cause the cue information had not yet reached PFC, or621

was maintained by activity-silent mechanisms as pre-622

viously suggested11,41,46. At the same time, also in623

line with previous studies8,10,14–16, we found relatively624

stable coding during the late delay period (Fig. 5c and625

Extended Data Fig. 10a, cyan square). This ruled out626

purely sequential activity-based dynamics21,26,37,38,63
627

(Fig. 1d and Extended Data Fig. 1d).628

Quantifying the relative alignment of the subspaces629

occupied by neural dynamics across time6,64 using630

PCA confirmed the orthogonality of neural activi-631

ties between different task epochs (Extended Data632

Fig. 10b–c). Further analyses showed that this orthog-633

onality was not simply due to distinct sub-populations634

of neurons being active in different task epochs, but635

was instead largely due to changes in population-wide636

activities patterns10,65 (Extended Data Fig. 10d–e).637

These results, in line with previous findings8,10,15,16,638

clearly indicated that activities during the cue period639

were largely orthogonal from those during the delay640

period. However, these analyses alone were unable641

to distinguish between two fundamentally different in-642

formation loading strategies PFC could employ: ran-643

dom input directions, or optimal information loading644

using specifically amplifying directions. Thus, in order645

to clearly identify the information loading strategy un-646

derlying the combination of dynamic and stable cod-647

ing that we found, we applied our overlap measure648

(Fig. 4c) to these PFC recordings. For this, we first fit-649

ted a 20-dimensional linear dynamical system model650

to the cue and early delay epochs of our recordings651
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(0–1 s after cue onset, Methods 1.4.3). We confirmed652

that linear dynamics provided a reasonably accurate653

cross-validated fit to the data compared to a time shuf-654

fled control (which destroyed the lawful dynamics of655

the data; Fig. 5d, dark gray, see also Methods 1.4.3),656

and model-free train vs. test performance (which indi-657

cated that cross-validated errors were mostly due to658

sampling noise differences between the train and test659

data; Fig. 5d, light gray) and recapitulated the most im-660

portant aspects of the trial-average dynamics in each661

condition (Fig. 5e).662

We then performed the same overlap analysis on the663

fitted linear dynamics of the data that we used on664

our simulated networks with linear dynamics (Fig. 4c;665

Methods 1.7.3). As expected from our decoding anal-666

yses (Fig. 5b,c), the overlap of neural activities with667

the most persistent modes was at chance initially and668

gradually increased (Fig. 5f, green and Extended Data669

Fig. 10i). Critically however, the overlap of neural ac-670

tivities with the most amplifying modes was high ini-671

tially and decreased with time (Fig. 5f, red and Ex-672

tended Data Fig. 10i).673

We also noted that the overlap with the most amplify-674

ing directions became significantly lower than chance675

over time. This suggests that PFC circuits may be676

more mathematically ‘non-normal’21,26,55,56,59 than the677

networks with randomly chosen weights that we used678

in Fig. 4. For example, Extended Data Fig. 8f shows679

this phenomenon in a highly non-normal (purely feed-680

forward) network using optimal information loading681

(see also Discussion).682

As a control, repeating the same analyses on time-683

shuffled data, or on data taken from the late delay684

period (when the network should already be near an685

attractor state) did not result in the same cross-over686

pattern. In particular, there was a high initial over-687

lap with the most persistent modes and a chance (or688

below chance) initial overlap with the most amplify-689

ing modes (Extended Data Fig. 10f,g,i). Consistent690

with these results, we found that at early times, stimu-691

lus information was at least as well (and even slightly692

better) decodable within the amplifying subspace than693

in the persistent subspace (Extended Data Fig. 10h,694

t = 0), but became significantly better decodable in695

the persistent subspace at later times (Extended Data696

Fig. 10h, t > 0).697

Therefore, these analyses provide strong experimen-698

tal evidence that PFC circuit dynamics utilize optimal699

information loading with inputs aligning with the most700

amplifying modes (compare to Fig. 4c; bottom middle701

and Extended Data Fig. 10i, third vs. fourth row) rather702

than simply using random input directions (compare to703

Fig. 4c; bottom right and Extended Data Fig. 10i, first704

vs. fourth row).705

Information loading in task-optimized non-linear706

networks707

Our definition of optimal information loading relied on708

full access to the algebraic form of the dynamics of709

a network, something that the brain will not have ex-710

plicitly when performing a working memory task. In711

addition, the formal equivalence of optimal information712

loading to using the most amplifying direction as an in-713

put could only be demonstrated for networks with lin-714

ear dynamics receiving instantaneous inputs, while fix-715

ing the magnitude of those inputs. Thus, an important716

question is whether optimizing simple task-relevant717

cost functions13,17,20,39,40,66, under only a generic en-718

ergy constraint13,39,40,66, without explicitly encourag-719

ing optimal information loading, or fixing input mag-720

nitudes, can be sufficient for the underlying circuits to721

adopt an optimal information loading strategy.722

We trained nonlinear recurrent neural networks (with-723

out connectivity constraints Fig. 6a; Methods 1.3.2) on724

the same memory-guided saccade task as that which725

our animals performed (Fig. 1a). Specifically, during726

the cue epoch, these networks received temporally ex-727

tended input from one of six input channels on any728

given trial depending on the cue condition (Fig. 6a,729

left). Similarly, network activity was decoded into one730

of six possible behavioural responses via six read-731

out channels (Fig. 6a, right). Following previous ap-732

proaches13,39,40, all recurrent weights in the network,733

as well as weights associated with the input and read-734

out channels, were optimized, while only penalising735

the average magnitude of neural responses over the736

course of the whole trial (Methods 1.3.3).737

To study the generality of optimal information loading,738

we first implemented two standard cost functions that739

have been widely used in previous work13,17,24,39,40.740

These cost functions required networks to stably main-741

tain cue information either immediately after cue on-742

set (cue-delay; Fig. 6b, left), or only at response time743

(after-go; Fig. 6b, center). However, we reasoned that744

neither of these standard cost functions may be ap-745

propriate for understanding PFC function. The cue-746

delay cost is well justified when stimuli need to be de-747

coded potentially instantaneously after cue onset, and748

as such it is most relevant for sensory areas58. Con-749

versely, the after-go-time cost may be most directly750

relevant for motor areas, by only requiring stable cod-751

ing during the short response period66. Therefore, we752

also considered a third cost function that required sta-753

ble coding just in time before the go cue appeared,754

i.e. during a period that was divorced from the stimu-755

lus or response time windows, and as such was more756

consistent with the putative role of PFC in cognitive757

flexibility2,25,60 (just-in-time; Fig. 6b, right).758

All trained networks achieved high performance, as759

measured by a late-delay decoder, in line with what760

their respective cost functions required: already by the761

end of the cue epoch for the cue-delay cost (Fig. 6c762

and Extended Data Fig. 11a, green), only after cue763

offset but for most of the delay period for the just-in-764

time cost (Fig. 6c and Extended Data Fig. 11a, red),765

or only shortly before go time for the after-go-time cost766

(Fig. 6c orange and Extended Data Fig. 12b).767

We then further analyzed the dynamics with which768

these networks achieved competent performance.769
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Fig. 6 | Information loading in task-optimized non-linear networks. a, Illustration of a recurrent neural network model with unconstrained
connectivity (middle). During the cue epoch, networks received input from one of six input channels on any given trial depending on the cue
condition (left). Network activity was decoded into one of six possible behavioural responses via six readout channels (right). All recurrent
weights in the network (50 neurons), as well as weights associated with the input and readout channels, were optimized (Methods 1.3.2). b,
Illustration of cost functions used for training. Yellow ticks indicate cue onset and offset times, yellow bars indicate range of go times in the
variable delay task. Boxcars show intervals over which stable decoding performance was required in three example trials with different delays
for each of the cost functions considered (Methods 1.3.3): cue-delay (left), after-go-time (center), or just-in-time (right). c, Performance of a
delay-trained decoder (black bar indicates decoder training time period; Methods 1.7.4) on model neural activity over time in trials with a 1.75 s
delay. Yellow ticks show stimulus cue onset, offset, and go times, and the vertical gray bar indicates the cue epoch. Neural activities were
generated by networks optimized for the cue-delay (green), after-go-time (orange), or just-in-time (red) costs. Solid lines and shading indicate
mean±1 s.d. across 10 networks. Gray dotted line shows chance level decoding. d, Cross-temporal decoding of model neural activity for
cue-delay (left), after-go-time (center), and just-in-time (right) trained models. Yellow lines indicate stimulus cue onset, offset, and go times.
The black vertical bar on the right indicates the delay-trained decoder training time period from c. e, Percent variance explained by the sub-
space spanned by either the 25% most persistent (green) or 25% most amplifying (red) modes as a function of time for 20-dimensional linear
dynamical systems fitted to the model neural activities of networks optimized for the cue-delay (left), after-go-time (center), or just-in-time cost
(right). Gray lines show chance level overlap defined as the expected overlap with a randomly chosen subspace occupying 25% of the full
space. Lines and error bars show mean±1 s.d. over 10 networks.

The cue-delay network showed signatures of attrac-770

tor dynamics with simple pattern completion: cross-771

temporal decoding was high at all times, including772

between the cue and delay epochs (Fig. 6d, left;773

cf. Fig. 1c, Extended Data Fig. 1a–c; see also Ex-774

tended Data Fig. 11d for state-space plots). Although775

there was a cross-over of our overlap measures, criti-776

cally, neural activities were already aligned well above777

chance with the most persistent modes immediately778

following cue onset (Fig. 6e, left). This was consistent779

with these networks being explicitly required to exhibit780

stable coding at all times by the cue-delay cost. We781

also found similar dynamics for networks that optimize782

a ‘full-delay’ cost, in which cue information must be783

stably maintained only after cue offset (Extended Data784

Fig. 13, Methods 1.3.3).785

At the other extreme, the after-go-time network did not786

make particular use of attractor dynamics. Instead,787

it generated largely sequential activities, i.e. pure dy-788

namic coding akin to the dynamics of a feedforward789

network: cross-temporal decoding was only high at790

the very end of the delay period (Fig. 6d, center; cf.791

Fig. 1d and Extended Data Fig. 1d, right; see also Ex-792

tended Data Fig. 12e for state space plots), and the793

overlap with the most persistent modes never signifi-794

cantly exceeded that with the most amplifying modes795

(Fig. 6e, center). This was particularly the case for796

a fixed delay task, for which this cost function yielded797

purely sequential dynamics (Extended Data Fig. 12c–798

e, right). Again, the apparent lack of attractor dynam-799

ics was well explained by the cost function not re-800

quiring any stable coding during the delay period. In801

summary, network dynamics trained for standard cost802

functions recovered classical network models of work-803

ing memory (Fig. 1c,d and Extended Data Fig. 1a–804

d), but were different from those seen in experimental805

recordings8,10,14–16,25 (Fig. 5b,c,f).806

In contrast to both standard training costs, just-in-807

time networks showed the signatures of attractor dy-808

namics with dynamic coding: cross-temporal decod-809

ing was poor between early and late periods of a trial,810

but high during the late delay period (Fig. 6d, right;811

Extended Data Fig. 11b; cf. Fig. 4b, bottom center,812

Fig. 5c, Extended Data Fig. 10a; see also Extended813

Data Fig. 11d for state-space plots), and the overlap814

of neural activities with the most amplifying and per-815

sistent modes showed the characteristic cross-over816

that we predicted theoretically and found experimen-817

tally (Fig. 6e, right; cf. Fig. 4c, bottom center, Fig. 5f,818

Extended Data Fig. 7d, bottom right). Note that the819

main difference from the dynamics of cue-delay net-820

works was that the overlap with persistent modes was821

lower initially, and increased more slowly afterwards.822

This was consistent with the speed-accuracy trade-off823

we saw earlier in unconstrained linear integrator net-824

works (Fig. 3e), whereby achieving high overlap with825

the persistent mode early during the trial (analogous826

to the early decodability requirement of the cue-delay827
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cost) is achieved by inputs aligned with the persistent828

mode, while a late overlap (analogous to the require-829

ments of the just-in-time cost) is optimized by the most830

amplifying mode.831

In summary, all task-optimized networks exhibited a832

key feature of optimal information loading: they made833

use of most amplifying modes early during the trial834

(Fig. 6e, all red lines start high at 0 s). The extent to835

which they showed the complete cross-over of ampli-836

fying and persistent overlaps predicted by our earlier837

analyses (Fig. 4c, bottom center), and characteristic838

of the experimental data (Fig. 5f), was consistent with839

how much they were required to exhibit stable cod-840

ing8,10,11,14–16. These results suggest that optimal in-841

formation loading emerges naturally as a dynamical842

strategy in task-optimized networks, without explicit re-843

quirements on their inputs.844

Discussion845

While attractor networks have been proposed846

to underlie a number of core cognitive func-847

tions12,17,17,27,29,30,33–35,43,44,50,67–69, prominently in-848

cluding working memory5–7,27–32, their operation was849

almost exclusively analyzed in terms of how their850

intrinsic connectivity supports information mainte-851

nance5,7,12,27,30,33,34,43,70,71 (but see Refs. 6,32, dis-852

cussed below). We instead studied information853

loading by external inputs in attractor networks and854

showed that optimal information loading provides a855

normative account of the widely observed and puz-856

zling phenomenon of dynamic coding8,10,14–16. We857

predict that these results should also generalise to858

more cognitively demanding working memory tasks in859

which, unlike in the simple memory-guided saccade860

task we studied here, the correct response is unknown861

during the delay period, thus requiring the mainte-862

nance of stimulus information before a response can863

be prepared14,15,23,72,73. Indeed, strongly dynamic864

population activity, similar to those that we identified865

here, has been observed in monkey PFC10,14–16,23,24,73
866

and in neural networks20,24,39 trained on such tasks.867

For understanding the dynamics of optimal informa-868

tion loading, we used networks whose connectiv-869

ity was constrained to be symmetric as a pedagog-870

ical stepping stone. Such networks are among the871

most influential and best understood models of at-872

tractor dynamics in general35,44, and of working mem-873

ory more specifically5,7,12,29,31,33,34,42–46, and they con-874

tinue to form the basis of many recent models in the875

field5,33,45,46. We showed that such networks show876

limited (if any) dynamic coding, and essentially none877

with optimal information loading. There are also mod-878

els whose connectivity is not strictly symmetric at the879

microscopic level of cell-to-cell connections, but their880

macroscopic connectivity (at the level of connections881

between groups of similarly tuned cells) is strongly882

symmetric71,74. In other models, excitatory cells are883

connected symmetrically, but total symmetry is bro-884

ken by the introduction of effectively a single inhibitory885

neuron providing a uniform, global level of inhibition5,7.886

We expect all these weakly nonsymmetric networks to887

exhibit largely stable coding. Instead, we showed that888

dynamic coding naturally arises in networks whose889

connectivity is not constrained to be symmetric, and890

especially so under optimal information loading.891

Our dynamical analysis revealed a novel, theoretically-892

grounded aspect of dynamic coding: not only should893

neural activities during the cue and early delay period894

be orthogonal to those during the late delay period,895

but they should be orthogonal in the specific direc-896

tions that are aligned with the (locally) most amplify-897

ing directions. We found strong evidence for these898

predictions of optimal information loading in PFC dur-899

ing a memory-guided saccade task. These results900

unify previous, seemingly conflicting models of work-901

ing memory maintenance that typically either use at-902

tractor dynamics5,6,27 or rely on sequential activities903

often generated by non-normal dynamics21,26,36,37.904

We found that although both classes of models can905

capture select aspects of neural data (e.g. sequen-906

tial models can capture early delay activity whereas907

attractors are better suited to capturing late delay ac-908

tivity), no model could capture the experimentally ob-909

served rich combination of sequential and persistent910

dynamics72 (Fig. 1; see also39). We showed that op-911

timal information loading in attractor models with re-912

alistic, unconstrained connectivity, leads to the spe-913

cific combination of sequential and persistent dynam-914

ics that has been observed in experiments. We found915

that this was true across a range of different specific916

network architectures: either hand-set (Figs. 3 and 4917

and Extended Data Fig. 5a,b) or optimized stimulus918

inputs (Extended Data Fig. 5c,d); nonlinear discrete919

attractors models (Figs. 2 and 6 and Extended Data920

Figs. 2, 7 and 11–13); and a nonlinear ring/bump at-921

tractor model (Extended Data Fig. 3).922

In contrast to our optimal information loading-based923

account, previous attempts to reconcile transient and924

persistent dynamics specifically proposed that tran-925

sient dynamics do not affect the coding of the stimulus926

information6,32. These ‘stable coding’ dynamics are927

very different from dynamic coding as observed in ex-928

periments3,8,10,11,14–24, and as predicted by our theory929

of optimal information loading. Put simply, in previous930

models, the stimulus input drives network activity to-931

wards the desired persistent state. In real data, and in932

models that exhibit optimal information loading, stimu-933

lus inputs drive network activity orthogonal to the de-934

sired persistent state (and instead specifically in a di-935

rection that is aligned with the most amplifying mode)936

before activity ultimately settles into the correct state.937

There are aspects of the data that were not repro-938

duced accurately by any of the specific models we im-939

plemented. First, the overlap with the most amplify-940

ing directions became significantly lower than chance941

over time in the data. This suggests that PFC cir-942

cuits may be more mathematically ‘non-normal’ (i.e. in-943

clude stronger feedforward loops21,26,56, or excitatory-944

inhibitory interactions52,55) than the networks with ran-945

domly chosen or initialised weights we used here59,61.946
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(For example, we found that networks with strong feed-947

forward connectivity reproduced this phenomenon;948

Extended Data Fig. 8f.) Second, the time evolution of949

the overlaps with the most persistent and most am-950

plifying modes seemed to obey different time con-951

stants, with the persistent overlap evolving substan-952

tially slower than the amplifying overlap. This may953

be a result of high dimensional, graded dynamical954

transitions between multiple amplifying and persistent955

modes compared to the less complex dynamical tran-956

sitions that we observed in our models.957

There have been multiple mechanisms proposed to958

account for some of the features of the data that959

seem to be at odds with basic attractor network dy-960

namics, most prominently dynamic coding14,15. These961

hypothetical mechanisms include short-term plastic-962

ity11,23,39,41,46,75, specific changes in the strength of963

input and recurrent connections45,76, and separate964

stimulus- and delay-responsive cells3,10. We showed965

that the core phenomenon of dynamic coding emerges966

naturally, without any of these additional mechanisms,967

from the same ultimate principle that explains per-968

sistent activities (robust memory maintenance imple-969

mented by attractor dynamics). Moreover, the high970

initial overlap with the most amplifying modes, which971

was a core prediction of our theory confirmed by the972

data, is not specifically predicted by any of these alter-973

native mechanisms. Nevertheless, these mechanisms974

are not mutually exclusive with ours. In fact, they might975

help explain the more nuanced aspects of the data that976

our specific network implementations did not capture977

(see above), as well as aspects of the data that lie978

outside the scope of our theory (e.g. activity silent in-979

formation maintenance during inter-trial intervals46).980

A number of recent studies of neural network dynam-981

ics have analysed the relationship between the direc-982

tion of inputs and the magnitude of responses they983

evoke52,56,61. However, these studies have typically984

focused on networks with transient dynamics, such as985

those relevant for perception58, or motor control52,61.986

In particular, Ref. 61 found that optimal inputs (result-987

ing in the largest transients) are typically orthogonal to988

the activity patterns that the network expresses in re-989

sponse to them, providing a normative account for the990

experimentally observed orthogonality of preparation991

and execution subspaces in motor cortex64,77. Our992

work suggests that the use of optimal inputs to drive993

network dynamics, and the orthogonality of those in-994

puts to network responses, is a more general principle995

of cortical circuits, extending beyond the motor cortex.996

In particular, our results demonstrate the importance997

of optimal initialization even when the transients fol-998

lowing initialization themselves may be irrelevant, as999

information is ultimately maintained by stable attractor1000

states.1001

In line with our results, previous studies optimizing net-1002

works on related tasks requiring persistent, rather than1003

transient, responses also exhibited key features of dy-1004

namic coding: neural activities initially pointed strongly1005

orthogonal to the ultimate attractor location in state1006

space17; the dynamics during the stimulus period had1007

0 correlation with the late delay activity24; and cross-1008

temporal decoding of time revealed strongly sequen-1009

tial dynamics in a variety of tasks20 (see also39,41).1010

In fact, these features of model activities were also1011

shown to be reflected in the corresponding experimen-1012

tal data in each case17,20,24. Nevertheless, it remained1013

unclear whether these features were epiphenomenal1014

or an integral part of the functioning of these networks.1015

Our results suggest that optimal information loading1016

could provide a unifying principle for these observa-1017

tions.1018
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1 Methods1376

1.1 Experimental materials and methods1377

Experimental methods have been described before62 and largely followed those used in our previous publica-1378

tions10,78,79. We briefly summarize the methods below.1379

1.1.1 Subjects and apparatus1380

We used two female macaques (monkey T, Macaca mulatta, 5 kg; monkey K, Macaca fuscata, 8 kg). Both1381

monkeys were housed individually. The light/dark cycle was 12/12 hr. (light, from 8:30 a.m. to 8:30 p.m.). The1382

monkeys sat quietly in a primate chair in a dark, sound-attenuated shield room. During both training and neural1383

recording sessions, we restrained the monkeys’ head movement non-invasively using a thermoplastic head cap1384

as described in80. This head cap is made of a standard thermoplastic splint material (MT-APU, 3.2 mm thick,1385

CIVCO Radiotherapy, IA., USA), and was molded out so that it conformed to the contours of the animals’ scalp,1386

cheek bone, and occipital ridge. Visual stimuli were presented on a 17 inch TFT monitor placed 50 cm from1387

the monkeys’ eyes. Eye movements were sampled at 120 Hz using an infrared eye tracking system (ETL-200,1388

ISCAN, MA.). Eye fixation was controlled within a 6.5◦ imaginary square window. TEMPO software (Reflective1389

Computing, WA.) was used to control behavioral tasks. All experimental procedures were approved by the Animal1390

Research Committee at the Graduate School of Frontier Biosciences, Osaka University, Japan and were in full1391

compliance with the guidelines of the National BioResource Project ‘Japanese Macaques’. Experimental work1392

performed in non-human primates that was not funded by Wellcome may not adhere to the principles outlined in1393

the NC3Rs guidance on Non-human Primate Accommodation, Care and Use.1394

1.1.2 Behavioral task1395

The monkeys were trained on a memory-guided saccade task requiring them to remember the location of a visual1396

stimulus cue on a screen and to make a correct eye movement after a delay period (Fig. 1a). Specifically, this1397

task required monkeys to fixate on a central ring for a period of 2.6–7.4 s followed by a stimulus cue (a white1398

square) appearing in one of six pre-determined locations for 0.25 s. After a variable delay period of 1.4–7.5 s,1399

the fixation ring was replaced by placeholders at all six possible stimulus cue locations (go cue). Monkeys were1400

required to make a saccade within 0.5 s to the placeholder where the original stimulus cue was presented and1401

maintain their gaze for 0.25 s for monkey T and either 0.25 s or 0.6 s for monkey K (these two gaze maintenance1402

times were switched in different blocks for monkey K) to receive a juice reward. The monkeys were extensively1403

trained, with close to perfect performance (monkey T, 96.1%; monkey K, 96.3%, mean across sessions). Fixation1404

break errors were excluded from the calculation of percent correct rate.1405

1.1.3 Recordings1406

After training was completed, we conducted an aseptic surgery under general anesthesia. We stereotypically1407

implanted a plastic recording chamber on the lateral surface of the prefrontal cortex, under the guidance of1408

structural MRI images (Extended Data Fig. 9). In monkey T, we implanted a cylindrical chamber (RC-T-S-P,1409

internal diameter 12.7 mm, Gray Matter Research, MT.) in the right hemisphere (AP = 33, ML = 14.5; AP, anterior-1410

posterior; ML, medio-lateral). A 32-channel semi-chronic microdrive system (SC-32, Gray Matter Research) was1411

mounted inside this chamber. In monkey K, we implanted a cuboid chamber (width 12 mm, depth 16 mm, height,1412

15 mm, S-company ltd., Tokyo, Japan) over the principal sulcus in the left hemisphere.1413

We collected neural data in a total of 48 daily sessions (21 in monkey T; 27 in monkey K). In monkey T, we used1414

the 32-ch microdrive (SC-32) that housed 32 single-contact tungsten electrodes with inter-electrode spacing of1415

1.5 mm. In monkey K, we used a 32-ch linear microelectrode array (Plexon U-Probe, Plexon, TX.) with an1416

interelectrode spacing of 150 µm along a single shaft. We positioned the U-Probe by using a custom-made grid1417

(width 12 mm, depth 16 mm, height, 10 mm) which had a total of 165 holes with 1 mm spacing. We advanced1418

the U-Probe by a custom-made hydraulic microdrive (S-company ltd.).1419

Raw extracellular neural signals were amplified and recorded in reference to a titanium bone screw at the vertex1420

(in monkey T) or the shaft of the linear array (monkey K) using a neural signal amplifier RZ2 Bioamp Processor1421

(Tucker-Davis Technologies, FL.). Behavioral data (task-event information and eye-movement information) were1422

also sent to the RZ2 Bioamp. Neural data acquisition was performed at a sampling frequency of 24414.08 Hz,1423

and behavioral data acquisition at 1017.25 Hz. For analysis of spiking activity, the raw neural signal was filtered1424

(300 Hz to 6 kHz) for offline sorting (Offline Sorter, Plexon). In monkey T, approximately three hours before1425

each recording session, we took the monkey to the testing room and advanced each electrode in the SC-321426
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by a minimum of 62.5 µm in order to ensure recording of new neurons. We then put the monkey back in the1427

home cage until we brought it out again for the recording session. In monkey K, we adopted the method of the1428

U-Probe insertion reported in81. We first punctuated the dura using a guide tube (a shortened 23 gauge needle),1429

and inserted the U-Probe array slowly, usually with a step of 500 µm. We kept monitoring electrocardiogram1430

(pulsatory fluctuation) on superficial electrodes to identify the point of cortical entry. We usually left 3–5 superficial1431

channels outside the cortex. After array insertion, we waited 1–1.5 hours until the recorded single-unit and1432

multiunit activities indicated that the electrode array was stably positioned in the cortex. While waiting, the monkey1433

watched nature and animal video clips and received a small snack on a monkey chair.1434

In monkey T only, to determine location of the frontal eye field (FEF), and confirm that our recording area was1435

outside it, intracortical microstimulations (22 biphasic pulses, 0.2 ms duration at 333 Hz, ≤ 150 µA) were applied1436

through microelectrodes. When eye movements were elicited below 50 µA, the site was considered to be in the1437

low-threshold FEF. In monkey T, our recording area did not include the low-threshold FEF.1438

1.1.4 Pre-processing1439

We excluded neurons that were recorded in fewer than 10 trials for any cue condition. For each monkey, we1440

pooled neurons from all recording sessions to create pseudopopulations of 438 neurons for Monkey K (after we1441

removed 1 neuron from monkey K’s dataset due to an insufficient number of trials) and 625 neurons for Monkey1442

T (no neurons were removed from monkey T’s dataset). To compute neural firing rates, we convolved spike trains1443

with a Gaussian kernel with a standard deviation of 25 ms. Trial-averaged trajectories of time-varying mean firing1444

rates were computed separately for each neuron and each cue condition. For analysis methods that used cross-1445

validation (see below), we split trials into separate train and test sets with a 1:1 train:test ratio, and computed1446

trial-averaged trajectories for each training and test set (using 1:1 splits). For non-cross validated analyses, we1447

either computed trial averages based on all the data, or on a subset of the data (see below). We aligned neural1448

activity to either stimulus or go cue onset (see also below in Methods 1.7) and shifted activity by -50 ms to allow1449

for the delay in time for information about these cues to enter PFC. For consistency with our simulations (see1450

below), we subsampled neural firing rates at a 1-ms time resolution.1451

1.2 Neural network models: overview1452

All our simulated networks (Figs. 2–4 and 6 and Extended Data Figs. 2–5, 7 and 11–13) evolved according to a
canonical model of stochastic recurrent neural circuit dynamics40,82:

τ
dx(c)(t)
dt

= −x(c)(t) +Wr(c)(t) +mh(t) h(c) +mg(t) g + b + σ η(c)(t) (1)

with r(c)(t) = f
(
x(c)(t)

)
(2)

where x(c)(t) = (x (c)1 (t), … , x (c)N (t))> corresponds to the vector of (unitless) ‘subthreshold’, i.e. coarse-grained (low-1453

pass filtered), trial-averaged raw somatic membrane potentials of the N neurons of the network82 in cue condition1454

c = 1, … ,C (initialised at x(c)(t0) at the beginning of the simulation t0, which could be at or before stimulus onset1455

at t = 0), r(c)(t) is their momentary (trial-averaged) firing rates, with f(x) being the activation function that converts1456

membrane potentials to firing rates, τ is the membrane time constant, W is the recurrent weight matrix (shown1457

e.g. in Fig. 2a and g), h(c) is the input given to the network depending on the stimulus cue, g is the stimulus-cue-1458

independent go cue that occurs at the go time tgo, mh(t) and mg(t) are box car ‘masking’ kernels such that the1459

stimulus and go cues are only effective within a limited period at the beginning and end of the trial, respectively, b1460

is a cue-independent bias, σ is the standard deviation of the noise process, and η(c)(t) is a sample from a standard1461

(mean 0 and variance 1) Gaussian white (temporally and spatially) noise process. Note that η(c)(t) represents the1462

effective noise corrupting trial-averaged trajectories (rather than the noise corrupting individual trials).1463

Networks shown in different figures corresponded to different special cases of Eqs. 1 and 2 (see Table 1). Specif-1464

ically, for linear networks (Figs. 3 and 4, Fig. 5d,e,f, Fig. 6e, Extended Data Fig. 7d, Extended Data Fig. 4,1465

Extended Data Fig. 5, and Extended Data Fig. 10f,g) f(x) = x was the identity function6,21,26,32,34,43. For nonlinear1466

networks (Figs. 2 and 6 and Extended Data Figs. 2 and 11–13) fi(x) = [xi]+ was the rectified linear (ReLU) acti-1467

vation function applied element-wise39,40,61 (except for the ring attractor networks where we used fi(x) = tanh(xi);1468

Extended Data Fig. 3). Given that the focus of our study was optimal information loading, stimulus inputs were1469

either optimized numerically (Fig. 2, Fig. 6, Extended Data Figs. 2 and 3, Extended Data Fig. 5c,d, and Extended1470

Data Figs. 11–13), or set to analytically computed values as dictated by our mathematical analysis (Figs. 3 and 4,1471

Extended Data Fig. 4c,d, and Extended Data Fig. 5a,b), or as a baseline, set to random (or quasi-random, see1472

below) values (Figs. 3 and 4, Extended Data Fig. 4a,b, and Extended Data Fig. 5a,b). For networks used to1473

study the effects of instantaneous initial conditions (Figs. 2 and 3 and Extended Data Figs. 2–5 and 7), the stim-1474

ulus masking kernel was zero and instead the initial condition was set to the stimulus input; for other networks1475

(Fig. 4, Fig. 5e–f, Fig. 6 and Extended Data Figs. 11–13) the stimulus masking kernel was a boxcar between 01476
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Symbol Fig. 2 Fig. 3a–c Fig. 3d–e Fig. 4 Units Description
N 50 2 1000 100 - number of neurons
t0 0 0 0 -0.5 s simulation start time
tgo - - - - s go cue time
tmax 2 2 2 2.5 s simulation end time
τ 0.05 0.05 0.05 0.2 s membrane time constant
x(c)(t0) h(c) h(c) h(c) 0 - initial condition
f(·) nonlineara lineara lineara lineara Hz neural activation function
W optimizedb setd iid.∼ N

(
0, 1

N

)e iid.∼ N
(
0, 1

N

)e s weight matrix
C 6 1 1 2 - number of stimuli
h(c) optimizedc1 setf setb setb - stimulus input
g - - - - - go cue
mh(t) 0 0 0 K (0, 0.25)g - stimulus masking kernel
mg(t) 0 0 0 0 - go cue masking kernel
b optimizedb 0 0 0 - cue-independent bias
σ 0.05 0 0 variableb - noise standard deviation
Symbol Fig. 5e–f Fig. 6a–d and

Extended Data
Fig. 1e

Fig. 6e Extended Data
Fig. 2

Units Description

N 20 50 20 50 - number of neurons
t0 0 -0.5 0 0 s simulation start time
tgo - 2 - - s go cue time
tmax 1 3 1 2 s simulation end time
τ 0.05 0.05 0.05 0.05 s membrane time constant
x(c)(t0) 0 0 0 h(c) - initial condition
f(·) lineara nonlineara lineara nonlineara Hz neural activation function
W �tb optimizedb �tb optimizedb s weight matrix
C 6 6 6 6 - number of stimuli
h(c) �tb optimizedc2 �tb optimizedc1 - stimulus input
g -

∑
c h

(c) - - - go cue
mh(t) K (0, 0.25)g K (0, 0.25)g K (0, 0.25)g 0 - stimulus masking kernel
mg(t) 0 K

(
tgo, tgo + 0.5

)g 0 0 - go cue masking kernel
b �tb optimizedb �tb optimizedb - cue-independent bias
σ 0 0.05 0 0 - noise standard deviation
Symbol Extended

Data Fig. 3
Extended Data
Fig. 7b

Extended Data
Fig. 7c

Extended Data
Fig. 7d

Units Description

N 50 50 50 20 - number of neurons
t0 0 0 0 0 s simulation start time
tgo - - - - s go cue time
tmax 2 2 2 2 s simulation end time
τ 0.05 0.05 0.05 0.05 s membrane time constant
x(c)(t0) h(c) h(c) h(c) h(c) - initial condition
f(·) nonlineara lineara nonlineara lineara Hz neural activation function
W optimizedb optimizedb optimizedb �tb s weight matrix
C 36 (6)h 6 6 6 - number of stimuli
h(c) optimizedc2 optimizedc1 optimizedc1 �tb - stimulus input
g - - - - - go cue
mh(t) 0 0 0 0 - stimulus masking kernel
mg(t) 0 0 0 0 - go cue masking kernel
b optimizedb optimizedb optimizedb �tb - cue-independent bias
σ 0.05 0 0.05 0 - noise standard deviation

Table 1 |Continued on text page.
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Symbol Extended Data
Fig. 4a,b

Extended Data
Fig. 4c,d

Extended Data
Fig. 5a,b

Units Description

N 100 100 10, 100, 1000 - number of neurons
t0 0 0 0 s simulation start time
tgo - - - s go cue time
tmax 2 2 2 s simulation end time
τ 0.05 0.05 0.05 s membrane time constant
x(c)(t0) h(c) h(c) h(c) - initial condition
f(·) lineara lineara lineara Hz neural activation function
W iid.∼ N

(
0, 1

N

)e iid.∼ N
(
0, 1

N

)e iid.∼ N
(
0, 1

N

)e s weight matrix
C 1 1 1 - number of stimuli
h(c) iid.∼ N

(
0, 1

N

)
optimizedc4 setb - stimulus input

g - - - - go cue
mh(t) 0 0 0 - stimulus masking kernel
mg(t) 0 0 0 - go cue masking kernel
b 0 0 0 - cue-independent bias
σ 0 0 0 - noise standard deviation
Symbol Extended

Data Fig. 5c,d
Extended Data
Fig. 10f

Extended
Data Fig. 10g

Extended Data
Figs. 11–13

Units Description

N 100 20 20 50 - number of neurons
t0 0 0 tgo − 1 -0.5 s simulation start time
tgo - - 1 2 s go cue time
tmax 2 1 1 3 s simulation end time
τ 0.05 0.05 0.05 0.05 s membrane time constant
x(c)(t0) h(c) 0 setb 0 - initial condition
f(·) lineara lineara lineara nonlineara Hz neural activation function
W iid.∼ N

(
0, 1

N

)e �tb �tb optimizedb s weight matrix
C 1 6 6 6 - number of stimuli
h(c) optimizedc3 �tb - optimizedc2 - stimulus input
g - - -

∑
c h

(c) - go cue
mh(t) 0 K (0, 0.25)g 0 K (0, 0.25)g - stimulus masking kernel
mg(t) 0 0 0 K

(
tgo, tgo + 0.5

)g - go cue masking kernel
b 0 �tb �tb optimizedb - cue-independent bias
σ 0.05 0 0 0.05 - noise standard deviation

Table 1 | Parameters used in the simulations of our models.
a For nonlinear networks, fi (x) = [xi]+ was the rectified linear (ReLU) activation function. For linear networks fi (x) = xi . The only exception to
this was when we created ring attractor networks (Extended Data Fig. 3) in which we used a tanh nonlinearity fi (x) = tanh(xi ). See also text.
b See text for details.
c Inputs were optimized either with both a norm constraint and an overall energy constraint (c1); only an overall energy constraint (c2); only
a norm constraint (c3); or so that the dynamics produced the mathematically minimal overall energy (c4, see Supplementary Math Note S1).
See text for more details.
d For the symmetric network, we used

(
0.375 0.625
0.625 0.375

)
; for the unconstrained network, we used

( 1 50
0 −11.5

)
.

e For the symmetric networks, we enforced W ← 1
2 (W + W>). For all networks we also shifted the obtained weight matrix by the identity

matrix multiplied by a constant so that the largest real part in the eigenvalues of W is exactly 1 (i.e., the largest eigenvalue of the associated
Jacobian would therefore be 0 due to the leak term), and we rejected any W’s for which the eigenvalue with largest real part had an imaginary
component. For Fig. 4, to provide a slightly better agreement between the model dynamics and the experimental recordings, we rejected any
W’s for which the inner product between the most amplifying mode and persistent mode was greater than 0.2 (i.e. we only kept W’s that were
relatively mathematically non-normal).
f We used 3 possible input directions (which all had a Euclidean norm of 1): inputs either aligned with the most persistent mode (xp), the
most amplifying mode (xa), or a random direction (xr). For the symmetric model, xp = xa = [0.707, 0.707]> and we used xr = [0.98, 0.18]>. For
the unconstrained model, xp = [1, 0]>, xa = [0.25, 0.97]> and we used xr = [0.9, 0.45]>.
g K (t1, t2) =

{
1 if t1 ≤ t ≤ t2 s,
0 otherwise. In the table, tgo refers to the timing of the go cue (see text).

h For training, we used C = 36 cue conditions. For our subsequent analyses (Extended Data Fig. 3), we used C = 6 cue conditions to be
consistent with the other models.
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and 0.25 s and the initial conditions were either set to zero (Fig. 4, Fig. 5e–f) or sampled randomly around zero1477

(Fig. 6 and Extended Data Figs. 11–13). For task-optimized networks (Fig. 6 and Extended Data Figs. 11–13),1478

the go cue masking kernel mg(t) was a boxcar starting at go cue onset, tgo (which could be fixed, Extended Data1479

Fig. 12, or variable, Fig. 6 and Extended Data Figs. 11–13) and lasting for 0.5 s, for all other networks it was set to1480

0 everywhere. The networks used to analyse the dynamics of information loading (Fig. 3, Extended Data Fig. 4,1481

and Extended Data Fig. 5a,b) were deterministic by setting σ = 0, all other networks used noisy dynamics (see1482

Table 1). All models used a time constant of τ = 50 ms. We solved the dynamics of Eqs. 1 and 2 using a first-order1483

Euler–Maruyama approximation between t0 and the simulation end time, tmax, with a discretization time step of1484

1 ms.1485

For analysis methods that used cross-validation (see below), for each cue condition, we simulated network dy-1486

namics twice with independent realizations of η(c)(t), to serve as (trial-averaged) train and test data. For other1487

analyses, we used a single set of simulated trajectories. All analyses involving networks with randomly gener-1488

ated (or initialized) connectivities that also did not require re-fitting their responses with other networks (Fig. 2,1489

Fig. 3d,e, Fig. 4, Fig. 6a–d, Extended Data Figs. 2 and 3, Extended Data Fig. 7a–c, Extended Data Fig. 5, and1490

Extended Data Figs. 11–13) were repeated a total of n = 100 times, consisting of either 10 different networks1491

and 10 different simulations (non-cross-validated) or simulation-pairs (cross-validated), each time with indepen-1492

dent samples of η(c)(t) (for networks with stochastic dynamics—with one exception, see below; Fig. 2, Fig. 4,1493

Fig. 6a–d, Extended Data Figs. 2 and 3, Extended Data Fig. 7a–c, and Extended Data Figs. 11–13), or (for deter-1494

ministic networks, Fig. 3d,e and Extended Data Fig. 5a,b, as well as for the stochastic networks of Extended Data1495

Fig. 5c,d) 100 different networks, each with a single simulation (non-cross-validated) or simulation-pair (cross-1496

validated). For those analyses that did require the re-fitting of nonlinear networks’ responses with other (linear1497

deterministic) networks (Extended Data Fig. 7d and Fig. 6e), we used just one simulation of the original (stochas-1498

tic nonlinear) network, so n = 10 simulations in total. Analyses of linear deterministic networks (Fig. 3, Fig. 5f,1499

Fig. 6e, Extended Data Fig. 6, Extended Data Fig. 7b,d, Extended Data Fig. 4, Extended Data Fig. 5a,b, and1500

Extended Data Fig. 10f,g), used a single simulation per network as their dynamics were deterministic. Note that1501

for (linear deterministic) networks obtained by fitting simulated neural responses, this meant that these analyses1502

were repeated a total of n = 10 times, once for each set of original responses that had been fit (Fig. 6e, Extended1503

Data Fig. 7d, and Extended Data Fig. 10f,g). For (linear deterministic) networks obtained by fitting experimentally1504

recorded neural responses, this meant that these analyses were performed either only once on the single split of1505

the data (Fig. 5d; blue, Fig. 5e,f, and Extended Data Fig. 10g), or were repeated n = 100 times on 100 different1506

random time shuffles of the data (Fig. 5d; dark gray, and Extended Data Fig. 10f).1507

1.3 Nonlinear networks1508

For the dynamical equations of nonlinear networks, see Methods 1.2. For nonlinear networks (Figs. 2 and 6,1509

Extended Data Figs. 2 and 3, Extended Data Fig. 7c, and Extended Data Figs. 11–13), we ensured that they1510

performed working memory maintenance competently by optimizing their free parameters, W, b, and h(c) for1511

appropriate cost functions (see below, Methods 1.3.3).1512

1.3.1 Nonlinear networks with instantaneous inputs1513

Following classical theoretical approaches to attractor network dynamics, we first used nonlinear neural networks1514

in which stimulus inputs acted instantaneously to determine the initial conditions of the dynamics Fig. 2 and Ex-1515

tended Data Figs. 2, 3 and 7. These networks were optimized using a ‘just-in-time’ cost function (Methods 1.3.3)1516

under one or two constraints. First, for all these networks, we constrained stimulus inputs to have a Euclidean1517

norm of 3 so that we could compare information loading strategies fairly when inputs were constrained to lie in1518

certain subspaces (see also below): either the persistent subspace, persistent nullspace, locally persistent sub-1519

space, locally most amplifying subspace, or a random subspace (Fig. 2f,l, Extended Data Fig. 2, and Extended1520

Data Fig. 7). When initial conditions were optimized without a subspace constraint (Fig. 2a–e,g–k, Fig. 2f,l; black1521

lines, and Extended Data Fig. 2b,f), we obtained similar results without this norm constraint on the initial condi-1522

tions1. Importantly, we show that qualitatively similar results can be obtained without this norm constraint, but1523

with only a more general energy-based penalty13,39,40,66 (Fig. 6 and Extended Data Figs. 3 and 11–13, see also1524

Methods 1.3.3). Second, for symmetric networks, we enforced W← 1
2 (W +W>).1525

These networks were trained in two epochs. For the first 1000 training iterations, we optimized all free parameters.1526

After this, we confirmed that our trained networks did indeed have attractors (i.e. that they were attractor networks)1527

1This may sound surprising, as one might expect that, without the norm constraint, networks should just use the trivial solution of using inputs
that initialize the network directly in the attractor state. However, the performance of this trivial solution is essentially indistinguishable from that of a
network whose dynamics only approach the attractor state later in the delay period when performance actually matters. (Indeed, all working memory
tasks we considered had a delay period and the information only needed to be accessible at the end of the delay period and not directly after stimulus
o�set.) This explains why we never found a trivial solution during optimization even without the norm constraint.
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and determined where these attractors were in state space by finding the stable fixed points of the networks’1528

dynamics (Fig. 2d,j, Extended Data Fig. 2b,f, and Extended Data Fig. 3a)—see below. We then continued for1529

another 1000 training iterations with only optimizing the initial conditions, h(c), while keeping the other parameters,1530

W (Fig. 2a,g) and b, fixed at the values obtained at the end of the first 1000 iterations. For this, we considered1531

three possible scenarios for introducing additional constraints on the initial conditions (beside the one on their1532

norm, see above): they were either projected and then restricted to the persistent subspace or to the persistent1533

nullspace (see Methods 1.7.1 for how these subspaces were computed), or there was no such constraint applied1534

so that they could utilize any direction in the full state space of the network. In addition, to understand the1535

link between the linearized (Methods 1.4.2) and original (above) forms of the dynamics of these networks, we1536

also considered three more constraints on the initial conditions: constraining them to the most persistent, most1537

amplifying, or a random subspace of the linearized dynamics (Extended Data Fig. 7a–c).1538

1.3.2 Nonlinear networks with temporally extended inputs1539

To more closely follow the experimental paradigms which we modelled, we also used nonlinear networks in1540

which stimuli provided temporally extended inputs (Fig. 6 and Extended Data Figs. 11–13). To construct these1541

networks, stimulus inputs and the weight matrix were freely optimized (Methods 1.3.3), without any constraints,1542

and optimization proceeded for a full 2000 iterations, without dividing training into different epochs.1543

1.3.3 Cost functions and training for nonlinear networks1544

We trained networks using one of four cost functions: a ‘cue-delay’ cost, a ‘full-delay’, a ‘just-in-time’ cost, and an
‘after-go’ cost. These costs only differed in terms of the time period in which we applied the cost function. The
general form of the cost function we used was a cross entropy loss plus a regularisation term:

L =

〈
−α(1)

nonlin

6∑
c=1

(
y(c)
)> ∫ T2

T1

log
(
So�max

(
Wout r(c)(t) + bout

))
dt + α(2)

nonlin

6∑
c=1

∫ tmax

t0

∥∥r(c)(t)∥∥22 dt
〉

(3)

where T1 and T2 determine the time period in which we applied the cost, α(1)
nonlin and α(2)

nonlin control the relative1545

contributions of the cross-entropy loss and firing rate regularisation, Wout ∈ R6×N and bout ∈ R6 include the 61546

sets of ‘readout’ weights and biases, respectively, and y(c) ∈ R6 is a one-hot vector where y (c)i =
{

1 if i = c
0 otherwise1547

defining the ‘target’ output for each cue condition. We initialized elements of the network parameters W, b, h(c),1548

as well as the readout parameters Wout and bout from a Gaussian distribution with mean 0 and variance 1/N ,1549

and then optimized using gradient descent with Adam optimization83, where gradients were obtained from back-1550

propagation through time. The angle brackets, 〈·〉, denote averaging over batch sizes of 50 random realisations1551

of r(c). We used a learning rate of 0.0005.1552

See Table 2 for how we set the parameters of Eq. 3 (T1, T2, t0, α
(1)
nonlin and α(2)

nonlin) depending on the cost function1553

and the level of regularization. Briefly, the cue-delay cost included both the cue (between stimulus cue onset and1554

offset) and the delay period (between stimulus cue offset and go cue onset), the full-delay cost the included delay1555

period but not the cue period, the just-in-time cost started between stimulus onset and the earliest go time and1556

ended at the onset of the go cue, and the after-go cost started at go cue onset and lasted for the duration of1557

the go cue (0.5 s). For simulating the random delay task (Fig. 6 and Extended Data Figs. 11–13), analogous to1558

what animals need to solve (see below), we sampled the go time uniformly between tgo = 0.75 s and tgo = 2 s.1559

For just-in-time (Fig. 2 and Extended Data Fig. 2) and after-go trained networks (Extended Data Fig. 12), we also1560

used a fixed delay task with a simulation end time of tmax = 2 s or a go time of tgo = 2 s, respectively. For the other1561

cost functions, networks trained on the fixed delay task yielded very similar dynamics to their counterparts trained1562

on the variable delay task (not shown). We set α(1)
nonlin and α(2)

nonlin so that networks could reliably learn the task1563

(at performance levels comparable across different settings) while also exhibiting relatively stable dynamics (i.e.1564

if α(1)
nonlin/α

(2)
nonlin is too large, the network dynamics can explode whereas if α(1)

nonlin/α
(2)
nonlin is too small, the network1565

is not able to learn the task). Note that vanishing gradients during training impacted the value of α(1)
nonlin that1566

was required for different networks to exhibit similar performance (Fig. 6c). Nevertheless, α(2)
nonlin was varied by1567

an order of magnitude between Fig. 6 and Extended Data Figs. 11–13 to specifically test the robustness of our1568

results to this parameter.1569

1.3.4 Optimized ring/bump attractor networks1570

When training to create ring/bump attractor networks (Extended Data Fig. 3), we made three modifications to
the nonlinear networks described above. First, in line with other approaches for optimizing recurrent neural
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Cost function T1 (s) T2 (s) α(1)
nonlin (1/s) α(2)

nonlin (1) Figures

cue-delay 0 tgo 20
0.00005 Fig. 6 and Extended Data Fig. 11
0.0005 Extended Data Fig. 11

full-delay 0.25 tgo 20
0.00005 Extended Data Fig. 13
0.0005 Extended Data Fig. 13

just-in-time

0.5 tmax 33 0.05 Extended Data Fig. 3
0.5 tmax 33 0.00005 Fig. 2 and Extended Data Fig. 2

0.75 tgo 33
0.00005 Fig. 6 and Extended Data Fig. 11 and Extended Data

Fig. 1e
0.0005 Extended Data Fig. 11

after-go tgo tgo + 0.5 10
0.00005 Fig. 6
0.0005 Extended Data Fig. 12

Table 2 | Parameters for nonlinear network optimization. Times T1 and T2 are relative to stimulus onset at t = 0. Units are shown in
parentheses after the name of the corresponding parameter.

networks17,20,24,66, we used a hyperbolic tangent nonlinearity because the saturation of this nonlinearity greatly
encouraged a continuous attractor to form compared with a ReLu nonlinearity. Second, we trained networks with
36 cue conditions (without enforcing any particular metric relationship between the corresponding inputs, h(c), as
above), and then subsequently restricted our analyses to 6 evenly spaced cue conditions to keep consistency
with our other analyses. Third, we used a cost function that measured estimation (or fine, rather than coarse,
discrimination) performance across those 36 conditions, thus encouraging a ring attractor to form:

L =

〈
α(1)
nonlin

36∑
c=1

∫ T2

T1

[
1− cos

(
θ̂ − θ(c)

)]
dt + α(2)

nonlin

36∑
c=1

∫ tmax

t0

∥∥r(c)(t)∥∥22 dt
〉

(4)

with θ̂ = atan2
(
Wy

out r(c)(t) ,Wx
out r

(c)(t)
)

(5)

where θ̂ is the population vector-decoded stimulus angle, such that atan2(y , x) gives the angle that the point [x , y]1571

makes with the x-axis, Wx
out,W

y
out ∈ R1×N are 2 sets of ‘readout’ weights defining the plane in which decoded1572

angles are defined, and θ(c) = 2π c
36 is the target angle for cue condition c. All other terms were the same as those1573

defined in Methods 1.3.3.1574

We note that the cosine term in the cost function (Eq. 4), quantifying the precision of the decoded angle, is
closely related to a cost measuring the population Fisher information about angle. To see this, recall that the
Fisher information in this case is

I = −
∫
P
(
r|θ(c)

) ∂2

∂θ2
lnP(r|θ) dr (6)

In the limit of a sufficiently large population, the maximum likelihood estimator, θ̂ML achieves the same Fisher in-
formation as the full population vector, and is distributed as a (circular) Gaussian (von Mises) distribution centered
on the true orientation, θ(c), with some constant (circular) concentration, κ, so we can write

I ' −
∫
P
(
θ̂ML|θ(c)

) ∂2

∂θ2
lnP

(
θ̂ML|θ

)
dθ̂ML (7)

= κ
∫
P
(
θ̂ML|θ(c)

)
cos
(
θ̂ML − θ(c)

)
dθ̂ML (8)

Assuming that our population vector-based decoder is an efficient estimator that approximates the maximum
likelihood decoder, θ̂ ' θ̂ML, and substituting the integral over the distribution of the estimate with an empirical
average over its stochastic realizations, we can further rewrite the Fisher information as

I ' κ
〈
cos
(
θ̂ML − θ(c)

)〉
(9)

(We also checked empirically that, in line with our assumptions above, the empirical distribution of θ̂ was well1575

approximated by a von Mises distribution centered on |theta(c) with a constant concentration across target angles.)1576

Eq. 9 is thus identical to the first term in Eq. 4 up to an additive constant (the 1 inside the square bracket in Eq. 4),1577

which does not matter for optimization, a multiplicative constant (which can be incorporated into α(1)
nonlin) and a1578

sign-flip, because we are maximizing Fisher information in Eq. 9 but minimizing the cost in Eq. 4. Therefore,1579

minimizing (the first term in) Eq. 4 also (approximately) maximizes Eq. 6, and vice versa.1580
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1.4 Linear networks1581

For the dynamical equations of linear networks, see Methods 1.2. Linear networks were either constructed ‘de1582

novo’ (Figs. 3 and 4 and Extended Data Figs. 4 and 5), obtained by a local linearization of canonical nonlinear1583

dynamical systems (Extended Data Fig. 6) or of nonlinear neural network dynamics (Extended Data Fig. 3e1584

and Extended Data Fig. 7a–c), or they were fitted to neural responses obtained from experiments (Fig. 5f and1585

Extended Data Fig. 10f,g) or the simulation of nonlinear networks (Fig. 6e and Extended Data Fig. 7d).1586

1.4.1 De novo linear networks1587

We used de novo linear networks to develop an analytical understanding of the dynamics of optimal information1588

loading. These networks included small 2-neuron networks with hand-picked parameters (see Table 1) chosen to1589

illustrate the differences between normal (symmetric) and non-normal (unconstrained) dynamics and the effects1590

of different initial conditions (Fig. 3a–c), as well as large networks (with 10, 100, or 1000 neurons) with randomly1591

generated parameters (Fig. 3d,e, Fig. 4, Extended Data Fig. 4, and Extended Data Fig. 5a,b; see Table 1).1592

We always set the largest eigenvalue of the weight matrix to be exactly 1 (i.e., the largest eigenvalue of the1593

associated Jacobian would therefore be 0 due to the leak term) so that these networks had an integrating or1594

‘persistent’ mode6,32,34,43 (see Table 1)1595

Initial conditions (Fig. 3, Extended Data Fig. 4, and Extended Data Fig. 5a,b) or temporally extended inputs1596

(Fig. 4) were determined by computing the most persistent and amplifying direction(s) based on the Jacobian1597

of the dynamics (Figs. 3 and 4 and Extended Data Fig. 5a,b, see Methods 1.7.1; for how initial conditions were1598

determined in Extended Data Fig. 4c,d see Supplementary Math Note S1.8). For the networks in Fig. 4, we1599

also added a small amount of noise to the input to allow for some transient dynamics for all input directions1600

(see Fig. 4c at 0 s). Alternatively, we optimized initial conditions for maximal asymptotic overlap with the most1601

persistent mode (Extended Data Fig. 5c,d; see below). For setting the noise level, σ, in these networks, we1602

considered two scenarios: noise matched (Fig. 4a, light green and gray) and performance matched (Fig. 4a, dark1603

green and black). For noise matched simulations, we first determined the highest value of σ that still allowed us to1604

obtain 100% decodability (using a delay-trained decoder) for all networks when receiving inputs aligned with the1605

most amplifying mode (Fig. 4a, red). This resulted in σ = 0.1 for symmetric models, and σ = 0.17 for unconstrained1606

models. We then used the same σ for simulations using inputs aligned with the most persistent and random1607

directions. For performance matched simulations, we used a different value of σ for each possible input direction1608

so that all models achieved 100% decodability using a delay-trained decoder. For symmetric models, this resulted1609

in σ = 0.1 for inputs aligned with either the persistent or most amplifying modes, and σ = 0.005 for random inputs.1610

For unconstrained models, this resulted in σ = 0.17 for inputs aligned with the most amplifying mode, σ = 0.02 for1611

inputs aligned with the persistent mode, and σ = 0.005 for random inputs. (Note that, consistent with our theory,1612

smaller noise levels were necessary to achieve the same desired level of performance for input directions that1613

were predicted to be increasingly suboptimal by our analysis.)1614

To demonstrate that the initial conditions along the most amplifying directions, obtained by control theoretic anal-
yses, were indeed optimal for maximising the overlap with the most persistent mode (the measure of optimality
we used for these networks, Fig. 3c,e), we also used a direct numerical optimization approach, analogous to that
used to optimize initial conditions in our nonlinear networks (Figs. 2 and 6, see also Methods 1.3.3). Specifically,
we optimized h(c) (constrained to have unit Euclidean norm) with gradient descent using Adam optimization83 with
gradients obtained from back-propagation through time using the following cost function

L =
∫ 2 s

1.5 s

[
tanh

(
v>1 x(t)

)
− 1
]2

dt (10)

where v1 is the eigenvector associated with eigenvalue 0 of the Jacobian (i.e. the most persistent mode). We1615

used a learning rate of 0.0001. We performed the above training procedure independently for 100 random noisy1616

networks (either symmetric or unconstrained) and we show averaged results in Extended Data Fig. 5c,d. We1617

also used random initial conditions as controls. These had elements that were either sampled from a standard1618

normal distribution (re-scaled to have unit Euclidean norm) in large networks (Fig. 3d,e, Fig. 4, and Extended Data1619

Fig. 5a,b), or in the case of 2-neuron networks, quasi-randomly chosen (with unit Euclidean norm) for illustrative1620

purposes (Fig. 3a–c).1621

1.4.2 Local linearization of nonlinear dynamics1622

To better understand how the dynamics of optimal information loading that we identified in linear networks apply1623

to nonlinear attractor dynamics, we performed a local linearization of our simulated nonlinear networks (Extended1624

Data Fig. 6, Extended Data Fig. 3, and Extended Data Fig. 7a–c). This approach required access to the ‘true’1625

dynamical equations of the nonlinear networks—which we had by construction.1626
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We performed local linearizations of the original nonlinear network dynamics in x-space (the space of variables1627

in which the dynamics was defined, Eq. 1) around the origin (we found empirically that initial conditions were1628

distributed close to the origin)—which served as the reference point with respect to which the norm of optimized1629

initial conditions was constrained in the networks we linearized (Methods 1.3; analogous to our analysis of infor-1630

mation loading in linear networks, Fig. 3a–e, and see also Methods 1.7.2). As the ReLU firing rate nonlinearity1631

of these networks is non-differentiable at exactly the origin, we computed the ‘average’ Jacobian of the system1632

in the immediate vicinity of the origin instead (this allowed us to use the same linearization and the same set1633

of amplifying modes for all initial conditions; we obtained highly similar results by linearizing separately for each1634

initial condition). Because the derivative of each ReLU is 0 or 1 in half of the activity space of the network, this1635

resulted in the Jacobian J = 1
2 W

∗ − I, where W∗ is the weight matrix of the original nonlinear network. Note that1636

one obtains the same result even without averaging, by regarding the ReLu nonlinearity as the limiting case of the1637

soft-ReLu nonlinearity: [x]+ = lim
β→∞

1
β

ln
(
1 + eβ x), of which the derivative at x = 0 is 1

2 (at any value of the inverse1638

temperature, β) and thus results in the same Jacobian as above. We confirmed that the resulting dynamics were1639

always stable (largest real eigenvalue of J was less than 0). We then used this system to identify the locally1640

(around the origin) most amplifying or most persistent modes (Extended Data Fig. 7a).1641

For simulating these linearized networks (Extended Data Fig. 7b), we then used the Jacobian we thus obtained1642

to map the resulting linearized dynamics to a deterministic integrator with the effective weight matrix W = (J + I)−1643

λmax I, where λmax is the largest real eigenvalue of J. Thus, the resulting dynamics were always marginally stable1644

(largest real eigenvalue of J was exactly 0). (Note that for subsequent analyses involving most persistent and1645

amplifying modes, we used the original weight matrix, see more in Methods 1.7.1. Nevertheless, the most1646

persistent modes of the weight matrices we used for simulation and those we used in subsequent analyses were1647

identical, as they only relied on the eigenvectors of the weight matrix, or the Jacobian, and the rank order of1648

their associated eigenvalues, which this stabilization did not affect. We also checked numerically that making the1649

system marginally stable only had very minor effects on the most amplifying modes, with correlations between1650

the most amplifying modes of the original and simulated dynamics being above 0.9. Thus, in these respects, our1651

simulations were representative of the dynamics of the original systems.) The bias parameters, b, were the same1652

as in the original nonlinear networks. The initial conditions, h(c), were either the ones we originally optimized for1653

the nonlinear dynamics without any constraints (beside a constraint on their norm), or they were optimized while1654

constraining them to the most persistent, most amplifying, or a randomly chosen subspace of these linearized1655

dynamics (all were of the same dimensionality for a fair comparison, Extended Data Fig. 7).1656

For ring attractor networks (Extended Data Fig. 3), which used a tanh nonlinearity (Methods 1.3.4), the associated1657

linearized system around the origin is given by the Jacobian J = W− I, which we then used to identify the locally1658

most amplifying and persistent modes (Extended Data Fig. 3e).1659

We used the same approach to linearize the dynamics of the canonical minimal nonlinear attractor dynamics that1660

we used to gain insights into information loading in nonlinear systems (Methods 1.6, see also Supplementary1661

Math Note S2 and Extended Data Fig. 6). In this case, the Jacobian was well defined at the origin, so there1662

was no need to average it. For consistency with the notation and terminology we use in the rest of this paper,1663

and without loss of generality (as linear dynamical systems and linear neural networks are isomorphic), we refer1664

to the resulting linear dynamical system as a ‘linear neural network’ and define it by its ‘effective’ weight matrix1665

(defined via the Jacobian as above). Initial conditions were magnitude-matched and chosen to align with the most1666

persistent or the most amplifying direction extracted from the Jacobian (Methods 1.7.1), or chosen randomly, or1667

varied systematically to cover the whole range of possible directions. There were no other parameters for these1668

linearized ‘networks’.1669

1.4.3 Fitting linear neural networks to neural responses1670

In order to be able to apply our theoretically derived measures of optimal information loading without having1671

access to the true dynamics of the system, we also created linear neural networks whose parameters were fitted1672

to experimental data (see below). As a control, we repeated the same fitting procedure with simulated nonlinear1673

networks to validate that our approach provides meaningful results when 1. we do not have access to the true1674

dynamics but only to samples of activities generated by those dynamics, and 2. we also cannot assume that the1675

true dynamics are linear.1676

We fitted deterministic linear neural networks to 1 s of trial-averaged neural activity (experimentally recorded, or1677

simulated by a nonlinear neural network model). For the main analyses (Fig. 5d–f, Fig. 6e, Extended Data Fig. 3f,1678

and Extended Data Fig. 7d), we used data starting from the onset of the stimulus cue. For the control analysis of1679

late delay experimental recordings (Extended Data Fig. 10g), we used the final 1 s of neural activity just prior to1680

the go cue. For the shuffle control (Fig. 5d; dark gray, and Extended Data Fig. 10f), we again used data starting1681
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from stimulus onset but randomly shuffled neural activity across time and proceeded by fitting this shuffled data1682

instead.1683

For fitting high dimensional neural data, we first performed principal components analysis on neural activity (di-
mensions: neurons, data points: time points, indexed by t, and cue conditions, indexed by c), and projected it
through the principal components (PCs): x(c)∗ (t) = P r(c)∗ (t), where the columns of P are top 20 principal compo-
nents of the data, and r(c)∗ (t) is trial averaged neural responses (mean-centered, see above) at time t in condition
c. These top 20 PCs captured approximately 75% and 76% of variance for monkeys K and T, respectively during
the cue and early delay period (Fig. 5d–f), 70% and 60% of variance for monkeys K and T, respectively during
the late delay period (Extended Data Fig. 10g), and over 95% of the variance for all simulated neural activities
(Fig. 6e). The projected neural activity time courses of the neural data, x(c)∗ (t), served as the targets that needed
to be matched (after a suitable linear transformation with ‘read-out’ matrix C ∈ R20×20) by the neural activity time
courses generated by the fitted neural network’s dynamics in the corresponding cue conditions, x(c)(t) (Eqs. 1
and 2). For fitting the parameters of the network (W, h(c), b) and the readout matrix (C), we used the following
cost function:

L = ε2 + αlin

[
‖C‖2F + ‖b‖

2
2 +

6∑
c=1

∥∥∥h(c)
∥∥∥2
2

]
(11)

with ε2 =
1
6

6∑
c=1

∫ 1 s

0 s

(
e(c)(t)

)>
De(c)(t) dt being the mean squared error of the fit (12)

and e(c)(t) = Cx(c)(t)− x(c)∗ (t) the momentary error (13)

where D is a diagonal matrix with the variances explained by the corresponding PCs in P on the diagonal (en-1684

couraging the optimization procedure to prioritize fitting the top PCs), ‖·‖2F is the Frobenius norm of a matrix.1685

Although including C as an additional parameter (free to be optimized) makes the fitting problem overparametrized1686

(at least with respect to the fitting error, ε2, as for any invertible choice of G, any remapping of the parameters1687

as W → GWG−1, h(c) → Gh(c), b → Gb, and C → CG−1 achieves the same ε2), we included C because it1688

allowed the network to develop dynamics that make appropriate use of persistent and amplifying modes without1689

simultaneously having to match the neural dimensions (which can be easily re-mapped with C). We then used C1690

as the read-out matrix when identifying amplifying modes (see Methods 1.7.1). Indeed, when validating this fitting1691

procedure with simulated responses generated by linear stochastic neural networks with different (instantaneous)1692

information loading strategies (most persistent, most amplifying, random; see Methods 1.7.2), and using our1693

standard subspace-overlap-based measures (Methods 1.7.3) to identify the information loading strategy from1694

these simulated responses, we found that the true information loading strategy was recovered more reliably with1695

including C than without it (not shown). Moreover, we found this approach was even able to distinguish between1696

different information loading strategies of nonlinear networks from simulated data (Extended Data Fig. 7d).1697

Also note that we had no constraints on W to define stable dynamics. Nevertheless, when fitting experimental1698

recordings, and responses generated by nonlinear attractor networks, we found that the largest real eigenvalue1699

of the fitted W was typically within the 0.95 ≤ λmax ≤ 1.05 range, i.e. the dynamics were near marginal stability, in1700

line with the dynamics of our de novo linear neural networks (Methods 1.4.1), as well as of those that we obtained1701

by local linearization (Methods 1.4.2). The only exception was when fitting the responses of nonlinear networks1702

trained on an after-go-time cost (Methods 1.3.3) which resulted in dynamics without attractors and, consequently,1703

the fitted linear dynamics had λmax > 1.05.1704

We used Adam83 to perform gradient descent optimization of W, h(c), b, and C with gradients obtained from1705

back-propagation through time, and a learning rate of 0.0001. We initialized elements of all of these parameters1706

from a Gaussian distribution with mean 0 and variance 1/20. We set the regularisation parameter to αlin = 1/12,1707

although we found that the results did not change substantially when setting αlin = 0 or using larger values of αlin.1708

The stimulus-masking kernel (mh(t), Table 1) was matched to how the responses being fitted were obtained:1709

with temporally extended or instantaneous inputs. Specifically, when fitting responses to temporally extended1710

inputs (experimentally measured, Fig. 5f and Extended Data Fig. 10f, or simulated, Fig. 6e), the masking kernel1711

of the fitted linear network matched the cue period. When fitting responses generated by networks driven by1712

instantaneous inputs (Extended Data Fig. 3f and Extended Data Fig. 7d), or when fitting the late delay period of1713

experimental recordings (during which no stimulus is present, Extended Data Fig. 10g), the stimulus masking ker-1714

nel was set to zero, and instead the initial condition of the fitted linear network was tuned to match the responses1715

(see below).1716

In most cases (Fig. 5f, Fig. 6e, and Extended Data Fig. 10f), we set the initial condition x(c)(t0) = 0. There were1717

two exceptions to this. First, when fitting the late delay dynamics in the experimental recordings (Extended Data1718

Fig. 10g), we set x(c)(t0) = C−1 x(c)∗ (t0) (i.e. we fixed the initial condition of the latent dynamics to the data; we also1719

observed qualitatively similar results when we included x(c)(t0) as a separate optimizable parameter in this case).1720
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Second, when fitting simulated data from models that used instantaneous stimulus inputs (Extended Data Fig. 3f1721

and Extended Data Fig. 7d), we set x(c)(t0) = h(c).1722

1.5 Previous working memory models1723

We used the following dynamics for implementing all previous neural network models of working memory:

x(c) = Wr(c)(t) +mh(t) h(c) +mg(t) g (14)

τr
dr(c)(t)
dt

= −r(c)(t) + f
(
x(c)(t)

)
+ br + σr η

(c)
r (t) (15)

where all symbols refer to the same (or a closely analogous, see below) quantity as in Eqs. 1 and 2. Note that we1724

use this notation to best expose the similarities with and differences from the dynamics of our networks (Eqs. 11725

and 2), rather than the original notation used for describing these models5,6,26, but the dynamics are nevertheless1726

identical to those previously published. Overall, these dynamics are closely analogous to those that we used1727

earlier for our networks with the following differences. First, for us, dynamics were defined in x-space, with r1728

being an instantaneous function of x. Here, the dynamics are defined instead in r-space (Extended Data Fig. 1a–1729

d and Extended Data Fig. 8), with x being an instantaneous function of r. (There are slightly different assumptions1730

underlying these rate-based formulations of neural network dynamics when deriving them as approximations of1731

the dynamics of spiking neural networks48, and the two become identical in the case of linear dynamics.) As a1732

result, time constants, τr, biases, br, and the variance of noise, σr (as well as noise itself, η(c)
r (t)), are defined for r1733

rather than x. For nonlinear variants of these networks, there are also differences for the choice of single neuron1734

nonlinearities, f(·). Furthermore, some of these networks distinguish between excitatory and inhibitory cells, with1735

different time constants, and noise standard deviations. Thus, each of these parameters is represented as a1736

diagonal matrix, τr and σr, respectively, with each element on the diagonal storing one of two possible values of1737

that parameter depending on the type (excitatory or inhibitory) of the corresponding neuron (τE
r and σE

r , or τ I
r and1738

σI
r, respectively). Most importantly, all of these networks used a set of parameters which were hand-crafted to1739

produce the required type of dynamics, rather than optimized for a function (or to fit data) as in the case of our1740

networks. In line with our analyses of experimental data and task-optimized networks (Figs. 5 and 6), simulations1741

started at t0 = −0.5 s, i.e. 0.5 s before stimulus cue onset (defined as t = 0), the stimulus cue lasted for 0.25 s, and1742

the go cue appeared at tgo = 2 s and lasted for 0.5 s. (Note that for these networks we considered the fixed-delay1743

variant of the task as that is what these networks were originally constructed to solve.) As with our networks1744

(Methods 1.2), we solved the dynamics of Eqs. 14 and 15 using a first-order Euler–Maruyama approximation1745

between t0 and the simulation end time with a discretization time step of 1 ms.1746

For analysis methods that used cross-validation (see below), we simulated network dynamics twice (for each1747

cue condition) with independent realizations of η(c)
r (t), to serve as (trial-averaged) train and test data. For other1748

analyses, we used a single set of simulated trajectories. All analyses involving these networks were repeated1749

n = 10 times, using 10 different simulations (non-cross-validated) or simulation-pairs (cross-validated), each time1750

with independent samples of η(c)
r (t).1751

Table 3 provides the values of most network and other parameters used for simulating each model. In the following1752

we provide the additional details for each of these models that are not included in Table 3.1753

1.5.1 Classical bump attractor model1754

The bump attractor model that we used (Extended Data Fig. 1a) has been described previously (see Ref. 5). The
model contained separate excitatory and inhibitory populations. As in the discrete attractors model, the weight
matrix was of the form

W =
(
WEE −WIE

WEI −WII

)
(16)

where the elements of WIE,WEI, and WII were set to 6.8/N , 8/N , and 1.7/N , respectively. The excitatory sub-matrix
WEE had a circulant form:

W EE
ij =

6 e1.5 cos
(

4π (i−j)
N

)
∑N/2−1

k=0 e1.5 cos(
4π k
N )

(17)

for cell-pairs i, j = 1,… ,N/2.1755

Stimulus cue inputs were also analogous to those used in the discrete attractors models and were set to

h(c)i =
200 e1.5 cos(π( 4 iN − 2 c−1

6 ))∑N/2
k=1 e1.5 cos(π( 4 kN − 2 c−1

6 ))
(18)

for cues c = 1,… , 6 and cells i = 1,… ,N/2 (i.e., as above, inputs were only delivered to the excitatory neurons).1756
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Parameters used in network simulations of previous models
Symbol Extended Data

Fig. 1a
Extended Data
Fig. 1b

Extended Data
Fig. 1c and
Extended Data
Fig. 8a,b,d,e

Extended Data
Fig. 1d and
Extended Data
Fig. 8c,f

Units Description

N 100 108 100 100 - number of neurons
t0 -0.5 -0.5 -0.5 -0.5 s simulation start time
tgo 2 2 2 2 s go cue time
tmax 3 3 3 3 s simulation end time
τ - - 0.05 0.01 s membrane time constant
τE
r 0.02 0.02 - - s membrane time constant

(E neurons)
τ I
r 0.01 0.01 - - s membrane time constant

(I neurons)
r(c)(t0) 0 0 0 0 Hz initial condition
f(·) nonlineara nonlineara lineara lineara Hz neural activation function
W setb setb setb setb s weight matrix
C 6 6 6 6 - number of stimuli
h(c) setb setb setb setb - stimulus input
g

∑
c h

(c) ∑
c h

(c) ∑
c h

(c) ∑
c h

(c) - go cue
mh(t) K (0, 0.25)c K (0, 0.25)c K (0, 0.25)c K (0, 0.25)c - stimulus masking kernel
mg(t) K

(
tgo, tgo + 0.5

)c
K
(
tgo, tgo + 0.5

)c
K
(
tgo, tgo + 0.5

)c
K
(
tgo, tgo + 0.5

)c - go cue masking kernel
br bE

r = 0.2,
bI
r = 0.5

bE
r = −1.2,
bI
r = 0.28

0 0 Hz cue-independent bias

σr - - 0.02 0.02 Hz noise standard deviation
σE
r 1 2 - - Hz noise standard deviation

(E neurons)
σI
r 3 1 - - Hz noise standard deviation

(I neurons)

Table 3 | Parameters used in previous models.

a For nonlinear networks, fi (x) =

{
[xi]2+ if xi ≤ 1,
√
4xi − 3 otherwise.

. For linear networks fi (x) = xi .

b See text for details.
c K (t1, t2) =

{
1 if t1 ≤ t ≤ t2 s,
0 otherwise.
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1.5.2 Discrete attractors model1757

The discrete attractors model that we used (Extended Data Fig. 1b) has been described previously (see the1758

methods of Ref. 5). The model contained separate excitatory and inhibitory populations.1759

The weight matrix was of the form

W =
(
WEE −WIE

WEI −WII

)
(19)

where the elements of WIE,WEI, and WII were set to 2.4/N , 8/N , and 2.6/N , respectively. The excitatory sub-matrix1760

WEE was constructed by dividing the population of excitatory cells into six clusters (of 9 neurons each), with each1761

cluster corresponding to one of the stimulus cue conditions. Connections within each cluster were strong, with a1762

value of 30/N . Connections between neurons belonging to clusters that corresponded to adjacent stimulus cues1763

were weaker, with a value of 2.5/N . All other connections were very weak, with a value of 0.02/N . This resulted in1764

a block circulant structure for WEE.1765

Stimulus cue inputs were set to

h(c)i ∝
350 e8 cos(π( 4 iN − 2 c−1

6 ))∑N/2
k=1 e8 cos(π( 4 kN − 2 c−1

6 ))
(20)

for cues c = 1,… , 6 and cells i = 1,… ,N/2 (i.e. inputs were only delivered to the excitatory neurons).1766

1.5.3 Linear integrator model1767

The linear integrator model that we used (Extended Data Fig. 1c and Extended Data Fig. 8a,d) has been de-
scribed previously (see Ref. 6). There were no separate excitatory and inhibitory populations in this model, and
the weight matrix was constructed such that network dynamics were non-normal, non-oscillatory, and stable with
a single two-dimensional neutrally stable subspace (i.e. a plane attractor). We achieved this by defining W via its
eigen-decomposition:

W = VDV−1 (21)

where the eigenvectors (columns of V, denoted as vj, for j = 1, … ,N , with elements vij, for i, j = 1, … ,N) were1768

generated by the following process:1769

1. Generating a random vector:

νi
iid.∼ N (0, 1) (22)

for i = 1,… ,N .1770

2. Making the first 10% of vectors overlapping so that the resulting matrix is non-normal:

vik = νi + εik (23)

where εik
iid.∼ N

(
0, 0.052

)
(24)

for i = 1,… ,N and k = 1,… ,K with K = 0.1N .1771

3. Making the the other 90% of vectors orthogonal:

vK+k = the kth column of Nullspace(v1, … vK ) (25)

for k = 1,… ,N − K1772

4. Unit normalizing each vector:

vk ←
vk
‖vk‖22

(26)

and the eigenvalues (λi, for i = 1, … ,N , the diagonal elements of the diagonal matrix D) were generated by the1773

following process1774
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1. Generating random (real) values:

λi
iid.∼ Uniform(0, 0.8) (27)

for i = 1,… ,N − 2.1775

2. Creating a pair of neutrally stable eigenmodes:

λN−1 = λN = 1 (28)

The stimulus cue inputs were set to

h(c) = K


cos
(

(c−1)π
3

)
sin
(

(c−1)π
3

)
1

 (29)

for cues c = 1,… , 6, and we considered two forms for K: either K =
[
vN−1, vN , vr1

]
+
[
vr2 , vr3 , vr4

]
(Extended Data1776

Fig. 1c and Extended Data Fig. 8a,d; as in the original formulation6) or K =
[
vr1 , vr2 , vr3

]
(Extended Data Fig. 8b,e),1777

where r1, r2, r3, r4 were randomly drawn integers over the range 1 to N − 2. The first formulation of K ensured that1778

stimulus cue inputs partially align with the persistent subspace, whereas the second formulation of K ensured1779

that stimulus cue inputs align only with random directions.1780

1.5.4 Feedforward network model1781

The linear feedforward network model that we used (Extended Data Fig. 1d and Extended Data Fig. 8c,f) has
been described previously (see Refs. 21,26). (For pedagogical purposes, we used the simplest set up consisting
of a feedforward chain of neurons, see below. However, using a more general network model that contained
‘hidden’ feedforward chains21 did not affect our analyses except for Extended Data Fig. 10e which, in contrast to
the simple feedforward chain, could display overlap values greater than 0.5.) There were no separate excitatory
and inhibitory populations in this model, and the weight matrix included a single chain running from neuron 1 to
neuron N :

Wij = δ(i−1),j (30)

for cell-pairs i, j = 1,… ,N .1782

The stimulus cues provided random inputs delivered to only the first 10 neurons so that each input could pass
through the feedforward network:

h(c)i
iid.∼ N (0, 1) (31)

for cues c = 1,… , 6 and cells i = 1,… , 10.1783

1.6 Canonical nonlinear systems with two stable fixed points1784

In order to illustrate the applicability of our analysis of optimal information loading in linear dynamical systems to1785

the behaviour of nonlinear dynamical systems, we first studied two variants (either symmetric or non-symmetric)1786

of a canonical nonlinear system that can exhibit two stable fixed points. (These systems are closely related to the1787

damped, unforced Duffing oscillator which is a classic example of a [non-symmetric] system that can exhibit two1788

stable fixed points. Additionally, the analysis of these systems also holds for the Duffing oscillator.)1789

The dynamics of the first system (which has a symmetric Jacobian matrix) are governed by

dx1(t)
dt

= x1(t)− x31 (t)

dx2(t)
dt

= −x2(t)
(32)

and the dynamics of the second system (which has a non-symmetric Jacobian matrix) are governed by:

dx1(t)
dt

= x1(t)− x31 (t) + 3 x2(t)

dx2(t)
dt

= −x2(t)
(33)
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We used a cubic polynomial in Eqs. 32 and 33 because it is the lowest order polynomial that allows a system1790

to exhibit 2 stable fixed points. Both systems exhibit 3 fixed points: both have a saddle point at the origin and1791

both have 2 asymptotically stable fixed points at (±1, 0) (see Extended Data Fig. 6 for the state space dynamics1792

of these two systems).1793

We solved the dynamics of Eqs. 32 and 33 using a first-order Euler approximation starting from t = 0 with a1794

discretization time step of 0.02 (note time was unitless for this model).1795

1.7 Analysis methods1796

Here we describe methods that we used to analyse neural data. Whenever applicable, the same processing1797

and analysis steps were applied to both experimentally recorded and model simulated data. As a first step in all1798

our analyses, in line with previous work analysing neural population dynamics84, we removed the stimulus cue-1799

independent time-varying mean activity from each neuron’s firing rate time series (see Fig. 5a for an example).1800

(This was done separately for training and test data for cross-validated analyses, see below.) In most of our1801

analyses, neural activities were aligned to stimulus cue onset defined to be at t = 0. However, due to the variable1802

delay duration of the task (Fig. 1a), experimentally recorded neural activities were also aligned to go cue onset1803

for analyses that required incorporating the late delay and go epochs (i.e. beyond the first 1.65 s after the stimulus1804

cue onset; Fig. 5b–c, Extended Data Fig. 10a–c,g). For simulated neural activities, this was not necessary, as1805

we always simulated our networks in a fixed-delay task for ease of analysis, even if they were optimized for a1806

variable-delay task in accordance with how our experimental monkey subjects were trained.1807

1.7.1 Identifying amplifying, persistent, and other subspaces in network dynamics1808

In order to understand the dynamics of neural networks with potentially complex and high-dimensional dynamics,1809

and the way these dynamics depend on initial conditions, we identified specific subspaces within the full state1810

space of these networks that were of particular relevance for our analyses. These subspaces served dual roles.1811

First, as ‘intervention tools’, to ascertain their causal roles in high dimensional network dynamics, we used them1812

to constrain the initial conditions of the dynamics of our networks (see also Methods 1.7.2). Second, as ‘mea-1813

surement tools’, to reveal key aspects of the high-dimensional dynamics of neural networks, we used them to1814

project high-dimensional neural trajectories into these lower dimensional subspaces (see also Methods 1.7.3).1815

Our main analyses relied on identifying the most persistent and most amplifying modes of a network. This re-1816

quired dynamics that were linear—either by construction, or by (locally) linearizing or linearly fitting dynamics that1817

were originally nonlinear (see Table 1). We computed the most persistent mode(s) in one of two different ways.1818

First, for networks that were either guaranteed to have stable dynamics by construction (i.e. those constructed1819

de novo; Figs. 3 and 4 and Extended Data Figs. 4, 5 and 8), or were confirmed to be always stable in practice1820

(i.e. those constructed by local linearization; Extended Data Fig. 3e,f, Extended Data Fig. 6, and Extended Data1821

Fig. 7), we simply used the eigenvector(s) of the weight matrix W associated with the eigenvalue(s) that had the1822

largest real part(s). Second, for networks that were fitted to nonlinear dynamics or recorded data, and whose1823

dynamics could thus not be guaranteed to be stable (Fig. 5f, Fig. 6e, Extended Data Fig. 3f, Extended Data1824

Fig. 7d, and Extended Data Fig. 10f,g), we used the eigenvectors of W associated with the largest real eigen-1825

values that were less than or equal to 1 + δ (with δ = 0.05) (i.e. we find the slowest, or most persistent, modes of1826

the network—the δ was mostly relevant only for the after-go-time networks of Fig. 6 and Extended Data Fig. 121827

which exhibited eigenvalues substantially greater than 1 and setting δ less than 0.05 did not substantially change1828

our results). (Note that an eigenvalue of W of 1 corresponds to an eigenvalue of 0 of the associated Jacobian of1829

the dynamics due to the leak term.)1830

For computing the most amplifying modes, we performed an eigendecomposition of the associated Observability
Gramian Q52,61. Specifically, we obtained Q by solving the following Lyapunov equation:(

W̃− I
)> Q +Q

(
W̃− I

)
+ C>C = 0 (34)

where W̃ is the ‘stabilized’ weight matrix of the dynamics (and the −I terms represent the effect of the leak on the1831

Jacobian of the dynamics, Eq. 1) and C is the read-out matrix of the network. The most amplifying mode(s) of the1832

network are given as the eigenvector(s) of Q associated with the largest eigenvalue(s). Again, for networks that1833

were guaranteed to have stable dynamics by construction (Figs. 3 and 4, Extended Data Fig. 7a–c, Extended1834

Data Fig. 5, and Extended Data Fig. 8), W̃ = W − ε I, where W is the original weight matrix of the dynamics1835

and ε = 0.01 (to ensure dynamical stability). For other networks, i.e. either linear networks fitted to experimental1836

data (Fig. 5f and Extended Data Fig. 10f,g), linear networks fitted to simulated nonlinear dynamics (Fig. 6e,1837

Extended Data Fig. 3f, and Extended Data Fig. 7d), or local linearizations of nonlinear dynamics (Extended Data1838

Fig. 6, Extended Data Fig. 3e, and Extended Data Fig. 7a–c), we used W̃ = W unless the largest eigenvalue1839

λmax of W was greater than or equal 1, in which case we used W̃ = W − (λmax − 1 + ε) I, to ensure that the1840
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linear dynamics with W̃ were stable (which is required for calculating Q). For networks obtained by fitting neural1841

responses (experimentally recorded or simulated; Fig. 5f, Fig. 6e, Extended Data Fig. 3f, Extended Data Fig. 7d,1842

and Extended Data Fig. 10f,g), C was obtained by fitting those responses (Methods 1.4.3), as we wanted to1843

understand how the fitted dynamics taking place in a latent space can generate the most discriminable fluctuations1844

in (the principal components of) the neural responses to which they are related by this read-out matrix (although1845

using C = I did not change our results substantially). For all other networks (Figs. 3 and 4, Extended Data Fig. 7a–1846

c, Extended Data Fig. 3e, Extended Data Fig. 5, and Extended Data Fig. 8), we simply used C = I, as the activity1847

of these networks was supposed to be read out in the same space within which their dynamics took place.1848

We also applied methods which did not rely on the linearization (or linear fitting) of network dynamics. Our goal1849

was to develop basic intuitions for how much the dynamics of the different simulated nonlinear networks of Fig. 21850

and Extended Data Fig. 2 used the persistent subspace of their dynamics. For this, we determined the ‘persistent1851

subspace’ as the subspace spanned by the 5 principal components of the final 500 ms of neural activities (x)1852

across all 6 cue conditions, corresponding to 6 distinct attractors, and the ‘persistent nullspace’ of the network as1853

the 45-dimensional subspace orthogonal to the persistent subspace. For plots showing the projection of network1854

activities within the persistent subspace (Extended Data Fig. 2b,f and Extended Data Fig. 2c–d and g–h, bottom)1855

we used the first two principal components of the full, five-dimensional persistent subspace of the network, as1856

determined above. For plots showing the projection of network activities to persistent vs. cue-aligned directions1857

(Fig. 2d,j, and Extended Data Fig. 2c–d and g–h, top right), ‘persistent PC1’ was determined as the direction1858

spanning the two persistent states corresponding to the two cue conditions being illustrated (i.e. as above,1859

spanning the final 500 ms of neural activities across the two cue conditions), and ‘initial PC1 (orthogonalized)’1860

was determined as the the direction spanning the two initial conditions corresponding to the two cue conditions1861

being illustrated, orthogonalized with respect to the corresponding persistent PC1.1862

1.7.2 Subspace-constrained initial conditions1863

When using the subspaces identified above as ‘intervention tools’, to constrain the initial conditions of our net-1864

works, we either used the single top most persistent or amplifying mode for linear networks with low-dimensional1865

coding spaces (including the linearized canonical nonlinear attractor dynamical system; Figs. 3 and 4 and Ex-1866

tended Data Figs. 5 and 6), or numerically optimized initial conditions within the corresponding higher-dimensional1867

subspaces (Fig. 2f,l, Extended Data Fig. 2c,d,g,h, Extended Data Fig. 7; see also Methods 1.3 and Methods 1.4).1868

When the persistent subspace was extracted from neural responses (rather than from the dynamical equations1869

of the network, Methods 1.7.1; Fig. 2f,l, Extended Data Fig. 2c,d,g,h, Extended Data Fig. 7a) we used different1870

sets of simulations to generate data from which we could estimate the persistent subspace (as explained above),1871

and to analyse network dynamics when initialized within these subspaces. In all cases, for a fair comparison, the1872

magnitude of initial conditions was fixed (Methods 1.3.1, Methods 1.4.1), and only their direction was affected by1873

constraining them to one of these subspaces.1874

1.7.3 Measures of subspace overlap1875

In order to measure the overlap of high dimensional neural dynamics with the subspaces we identified, we used
one of two methods. First, for analysing network dynamics across two conditions chosen to correspond to ‘op-
posite’ stimulus cues (Fig. 2d,j, Fig. 3c,d,e, Extended Data Fig. 2c,d,g,h, Extended Data Fig. 6c,d, and Extended
Data Fig. 5), such that the coding part of the persistent subspace was one-dimensional, we simply measured
the projection of neural dynamics onto the first eigenvector (i.e. the eigenvector associated with the largest real
eigenvalue) of the corresponding subspace using a dot product:

activity along mode(t) = u>x(t) (35)

where u may correspond to the most persistent, or the most amplifying mode, or the first PC of the persistent-1876

orthogonalized cue subspace (as defined above). We also used the same measure for visualising the quality of1877

fit of linear neural network dynamics to experimental data (Methods 1.4.3) with u being the first PC of the full1878

state space of neural firings rates (Fig. 5e). In those cases, when u had to be estimated from neural responses1879

(Fig. 2d,j, Fig. 5e, Extended Data Fig. 2c,d,g,h), we used a cross-validated approach, using different subsets of1880

the data to determine u and x(t) (from a single split of the data). In other cases, u was determined from the truly1881

deterministic dynamics of the system and thus there was no need for cross-validation.1882

Second, to measure subspace overlaps for d-dimensional neural activities across multiple conditions and time
points within coarser time bins (Fig. 4c, Fig. 5f, Fig. 6e, Extended Data Fig. 3f, Extended Data Fig. 7d, Ex-
tended Data Fig. 8d–e, Extended Data Fig. 11c, Extended Data Fig. 12d, Extended Data Fig. 13d, and Extended
Data Fig. 10b,c,f,g), thus corresponding to high-dimensional coding sub-spaces, we used the following properly
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normalized measure:

variance explained
(
t , t ′
)
=
Tr
(
U>(t ′

)
Σ(t) U(t ′

))
Tr
(
P>(t) Σ(t) P(t)

) (36)

where Σ(t) is the covariance matrix of neural activities across conditions and raw (1-ms) time points within time bin1883

t, the columns of P(t) are the first principal components of neural activities within time bin t (i.e. the eigenvectors of1884

Σ(t) associated with the largest eigenvalues), and U(t ′
)

is the subspace of interest with respect to which overlaps1885

are computed (which itself may or may not depend on time, see below). The time resolution of t and t ′ (i.e. the1886

duration of time bins within which data was used to compute the corresponding terms at a given t or t ′), the1887

choice of U(t ′
)
, and the number of vectors used for constructing U(t ′

)
and P(t) depended on the analysis (see1888

below).1889

Specifically, for measuring subspace overlap between neural activity and persistent vs. amplifying modes (Fig. 4c,1890

Fig. 5f, Fig. 6e, Extended Data Fig. 3f, Extended Data Fig. 7d, Extended Data Fig. 8d–e, and Extended Data1891

Fig. 10f,g), we set U(t ′
)
= U where the columns of U are the first d/4 eigenvectors of the most persistent or1892

amplifying subspace (orthogonalized using a QR decomposition for the most persistent modes—this was not1893

necessary for most amplifying modes which are orthogonal by construction), or d/4 randomly chosen orthonormal1894

vectors as a control (shown as ‘chance’; computed analytically as 1/4 for ‘de novo’ linear networks (Fig. 4c and1895

Extended Data Fig. 8d–e), and numerically for fitted linear networks, also yielding values of approximately 1/4,1896

Fig. 5f, Fig. 6e, Extended Data Fig. 7d, and Extended Data Fig. 10f). P(t) contained the first d/4 principal1897

components. In this case, a value of 1 for this metric implies that the d/4 directions of greatest variability in1898

neural activity overlap exactly with the d/4-dimensional subspace spanned by U. The time resolution of t was1899

20 ms (for clarity, bins to be plotted were subsampled in the corresponding figures). Note that when this analysis1900

was performed on linear networks fitted to neural data (experimentally recorded or simulated), U, P(t), and Σ(t)1901

were all obtained from the same fitted linear network (i.e. no cross-validation). Specifically the parameters of the1902

network were used to determine U (see Methods 1.4.3), and the neural responses these fitted linear dynamics1903

generated (rather than the original neural responses that were fit by the linear model) were used to determine1904

Σ(t) and thus P(t). See Methods 1.8 for computing the significance of these overlaps (and their differences).1905

When analysing optimized ring attractor networks (Extended Data Fig. 3e,f), we used 2-dimensional subspaces1906

(rather than d/4-dimensional subspaces) because we found empirically that the obtained ring attractors lay in a1907

2-dimensional subspace.1908

For analyzing subspace sharing between different task epochs (Extended Data Fig. 11c, Extended Data Fig. 12d,1909

Extended Data Fig. 13d, and Extended Data Fig. 10b), U(t ′
)

contained the top k principal components (PCs) of1910

neural activity within the time bin indexed by t ′ (we used k = 10 for the monkey data and k = 4 for our models1911

because the models typically exhibited lower dimensional dynamics), while P(t) included all PCs within the time1912

bin indexed by t. For these, we performed principal components analysis with dimensions corresponding to1913

neurons and data points corresponding to time points and cue conditions. The time resolution of both t and t ′1914

was 250 ms, such that the time periods (relative to cue onset) that we used were −500 to −250 ms (spontaneous1915

epoch), 0 to 250 (cue epoch), 1250 to 1500 ms (delay epoch), and the first 250 ms after the go cue, i.e. tgo to1916

tgo + 0.25 s (go epoch). In this case, U(t ′
)
, P(t) and Σ(t) were obtained by fitting all the available neural data (i.e.1917

no cross-validation). See also Ref. 64 for an ‘alignment index’ metric that is closely analogous to this use of this1918

metric, but uses U(t ′
)

and P(t) that contain the same number of eigenvectors, as in our previous case, and are1919

estimated in a cross-validated way, using different sets of trials.1920

For showing how much variance the top 2 delay epoch PCs capture over time (Extended Data Fig. 10c), we set1921

U(t ′
)
= U where the columns of U are the first 2 principal components of neural activities over the time period 7501922

to 250 ms before the go cue, i.e. tgo − 0.75 to tgo − 0.25 s, and P(t) also includes the top 2 principal components.1923

The resolution for t was 10 ms (for clarity, bins to be plotted were subsampled in the corresponding figure). In this1924

case, we estimated U and P(t) in a cross-validated way—we estimated U using training data and P(t) and Σ(t)1925

using test data, and we show results averaged over 10 random 1:1 train:test splits of the data. See also Ref. 61926

for a measure that is closely related to this use of this metric, but uses the number of neurons in the denominator1927

instead of the total variance.1928

1.7.4 Linear decoding1929

We fitted decoders using linear discriminant analysis to decode the stimulus cue identity from neural firing rates1930

(Fig. 2e,f,k,l, Fig. 4a,b, Fig. 5b,c, Fig. 6c,d, Extended Data Fig. 7c, Extended Data Fig. 3d, Extended Data Fig. 8a–1931

c,Extended Data Fig. 10a,h, Extended Data Fig. 11a,b, Extended Data Fig. 12b,c, and Extended Data Fig. 13b,c).1932

We constrained the decoders to be 2-dimensional (in line with previous studies6) because this was a sufficient1933

dimensionality to decode responses. (We also trained decoders using logistic regression in the full activity space1934

and obtained qualitatively similar results; not shown.) We primarily considered two types of decoding analyses:1935
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we either trained decoders on late delay activity and tested on all time points (‘delay-trained decoder’, e.g. Fig. 4a),1936

or we trained decoders separately at every time point and tested on all times (‘full cross-temporal decoding’, e.g.1937

Fig. 4b). In all cases, we measured decoding performance in a cross-validated way, using separate sets of neural1938

trajectories to train and test the decoder, and we show results averaged over 10 random 1:1 train:test splits of1939

the data. For delay-trained decoders, training data consisted of pooling neural activity over a 500 ms time interval1940

(the time interval is shown by a horizontal black bar in all relevant figures), and tested the thus-trained decoder1941

with data in each 1 ms time bins across the trial (for clarity, test bins to be plotted were subsampled every 10 ms1942

in the corresponding figures). For full cross-temporal decoding, we binned neural responses into 10 ms time bins1943

and trained and tested on all pairs of time bins (specifically, we plotted mean decoding performance across the1944

10 1-ms raw time bins corresponding to each 10-ms testing bin). We used a shrinkage (inverse regularisation1945

parameter on the Euclidean norm of decoding coefficients) of either 0.5 or 1 (depending on the ratio of features1946

to number of observations) for all main figures (we also tested various other values and found qualitatively similar1947

results; not shown). Chance level decoding was defined as 1/C, where C = 2 or 6 is the number of cue conditions1948

that need to be decoded (Tables 1 and 3).1949

1.7.5 Quality of fit for linear models fitted to neural responses1950

When fitting linear models to neural data (experimentally recorded or simulated; Methods 1.4.3) we used a cross-1951

validated approach for measuring the quality of our fits, with a random 1:1 train:test split of the data (Fig. 5d). For1952

this, we first fitted the model on training data (x(c)∗ = x(c)train in Eq. 13). The quality of fit was then computed on the1953

test data, x(c)test, as the fraction of variance of x(c)test(t) explained by the simulated responses (after the appropriate1954

projection, i.e. Cx(c)(t)), across all 20 dimensions weighted by D (all parameters, including P, C and D, were set1955

to their values obtained by fitting the training data). In other words, we computed the Pearson R2 with respect to1956

the identity line using the mean squared error, ε2 in Eq. 12, with the momentary error in Eq. 13 computed using1957

x(c)∗ = x(c)test. Once the quality of fit for this split was thus established, we conducted all further analysis involving1958

fitted linear models with the model that was fit to the training half of this split.1959

As a meaningful lower bound on our quality of fit measure, we also computed the same measure (i.e. fitting a linear1960

dynamical system to training data and calculating the quality of fit using test data) for 100 different time-shuffled1961

controls of the original train:test split of the data (Methods 1.4.3), such that we shuffled time bins coherently1962

between the training and the test data, across neurons and conditions (Fig. 5d, dark gray).1963

To calibrate how much our fits were limited by the noisiness of the data, we also computed the quality of fit directly1964

between x(c)train(t) and x(c)test(t) (i.e. using the mean squared error, ε2 in Eq. 12, with the momentary error redefined1965

as e(c)(t) = x(c)train(t) − x(c)test(t)) for 100 random 1:1 train:test splits of the data (Fig. 5d, light gray). The extent to1966

which the R2 computed with this control was below 1 reflected the inherent (sampling) noise of the experimental1967

data that limited the quality of fit obtainable with any parametric model, including ours that was based on linear1968

dynamics. Moreover, a cross-validated R2 computed with our fits that was higher than the R2 obtained with this1969

control (Fig. 5d dark and light blue vs. light gray) meant that the inherent assumption of linear dynamics in our1970

model acted as a useful regularizer to prevent the overfitting that this overly flexible control inevitably suffered1971

from. See more in Methods 1.8 on statistical testing for our quality of fit measure.1972

When fitting to simulated neural data, we obtained high quality of fits using the same measure (R2 > 0.95, not1973

shown).1974

1.7.6 Overlap between the coding populations during the cue and delay epochs1975

To test whether separate neural populations encode stimulus information during the cue and delay epochs (Ex-
tended Data Fig. 10e), we trained (non-cross validated) decoders to decode cue identity using logistic regression
on either cue-epoch activity (‘cue-trained’; the first 250 ms of activity after cue onset) or delay-epoch activity
(‘delay-trained’; 1250–1500 ms after cue onset). We used an L2 regularisation penalty of 0.5 (we also tested other
regularisation strengths and observed no substantial changes in our results). We took the absolute value of de-
coder weights as a measure of how strongly neurons contributed to decodability (either positively or negatively).
We then binarized the absolute ‘cue-trained’ and ‘delay-trained’ weights using their respective median values as
the binarization threshold. (This binarization reduces a potential bias effect from large or small weight values in
our analysis.) Our measure of overlap between the coding populations during the cue and delay epochs, was
then simply the inverse normalized Hamming distance between these two sets of binarized weights:

overlap = 1−
〈∣∣wcue

n,c − wdelay
n,c

∣∣〉
n,c (37)

where wcue
n,c (‘cue trained’) and wdelay

n,c (‘delay trained’) is the binarized weight of neuron n in cue condition c during1976

the cue and delay epochs, respectively, and 〈·〉n,c denotes taking the mean across neurons and cue conditions. For1977
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completely overlapping populations, this measure takes a values of 1, for completely non-overlapping populations,1978

it takes a values of 0, and for random overlap (shown as ‘chance’) it takes a values of 0.5.1979

For the shuffle controls, we randomly permuted the neuron indices of the delay-trained weights (such that using1980

the median as a threshold thus resulted in values close to 0.5, i.e. chance level; Extended Data Fig. 10e). We1981

show results (for both the original analysis and shuffle control) for 10 random halves of the data (equivalent to1982

the training halves of 10 different 1:1 train:test splits). We also tested a variety of percentile values other than the1983

median and our results did not change substantially (choosing a threshold other than the median causes both1984

the data and shuffle controls to have overlap values lower than those that we obtained with the median as the1985

threshold, but it does not substantially affect the difference between them). As an additional control, we also1986

removed neurons that did not contribute to decodability: we removed neurons that had a thresholded weight of1987

0 for all 6 cue conditions in both the cue and delay epochs. This resulted in removing 13.3 neurons on average1988

for monkey K and 33.5 neurons for Monkey T (when using the median as the threshold) and our results did not1989

change substantially (not shown).1990

1.7.7 Finding fixed points1991

For finding the fixed points of nonlinear network dynamics (Fig. 2d,j, Extended Data Fig. 2b,f, Extended Data1992

Fig. 3a, and Extended Data Fig. 11d), we used a slow-point analysis method17 that searches for an x for which the1993

L2 norm of the gradient determined by the autonomous dynamics of the network is below a threshold. Note that1994

this was only possible in model neural networks as the method requires access to the equations (and parameters)1995

defining the true (nonlinear) dynamics of a system.1996

Specifically, for network dynamics governed by (cf. Eqs. 1 and 2)

dx(t)
dt

= ψ(x(t)) , (38)

for some function ψ, we sought to find points x∗ such that ‖ψ(x∗) ‖2 is small. To achieve this, we drew 10001997

x’s from a spherical Gaussian distribution with mean 0 and variance 10 (the large variance helps to ensure that1998

we cover a large part of state space) and we optimized each x to minimize ‖ψ(x) ‖2 using gradient descent with1999

gradients obtained by back-propagation with an Adam optimizer83. We used an adaptive learning rate (which we2000

found worked substantially better than a fixed learning rate in this scenario) that started at 0.1 and halved every2001

1000 training iterations (we used 5000 training iterations in total). Finally, we identified the x’s obtained at the2002

end of optimization as asymptotically stable fixed points, x∗, if ‖ψ(x) ‖2 < 0.001 and if the largest real part in the2003

eigenvalues of the linearization of ψ(x) around x∗ was less than 0.2004

1.7.8 Correlations between initial and final neural firing rates2005

To measure correlations between initial and final simulated activities, we used the Pearson correlation coefficient2006

(with respect to the identity line) between initial and final mean-centered firing rates across neurons within the2007

same simulation (i.e. no cross-validation; Fig. 2b,h; insets). Histograms show the distribution of this correlation2008

across 6 cue conditions (and the 10 different networks, each simulated 10 times, see above) using a kernel-2009

density estimate (Fig. 2c,i, Extended Data Fig. 2c,d,g,h, and Extended Data Fig. 3c).2010

1.8 Statistics2011

We performed statistical hypothesis testing in two cases.2012

First, we tested whether the quality of fit of linear models to experimental data was sufficiently high using permu-2013

tation tests. To construct the distribution of our test statistic (cross-validated R2, see also Methods 1.7.5) under2014

the null hypothesis, we used n = 100 different random time shuffles of the data (Fig. 5d, dark gray), such that we2015

shuffled time bins coherently between the training and the test data, across neurons and conditions, and for each2016

shuffle used the same random 1:1 train:test split as for the original (unshuffled) data. For additional calibration,2017

we also constructed the distribution of our test statistic under the alternative hypothesis that all cross-validated2018

errors were due to sampling noise differences between the train and test data. For this, we used n = 100 random2019

1:1 train:test splits of the (original, unshuffled) data, and measured the quality of fit directly between the test data2020

and the training data (rather than a model fitted to the training data, see also Methods 1.7.5; Fig. 5d, light gray).2021

In both cases, we computed the two-tailed p-value of the test statistic as computed on the real data (Fig. 5d, blue2022

lines) with respect to the corresponding reference distribution.2023

Second, we also used a permutation test-based approach to test whether the experimentally observed overlaps2024

with persistent and amplifying modes (or their differences) were significantly different from those expected by2025

chance. For testing the significance of overlaps in a given time step, we constructed the distribution of our2026
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test statistics (the overlap measures; Methods 1.7.3) under the null hypothesis by generating n = 200 random2027

subspaces within the space spanned by the 20 PCs we extracted from the data (Methods 1.4.3), dimensionality2028

matched to the persistent and amplifying subspaces (i.e. 5 orthogonal dimensions), and computed the same2029

subspace overlap measures for the data in the given time step with respect to these random subspaces (Fig. 5f2030

and Extended Data Fig. 10f–g; gray line and shading). For testing the significance of differences between overlaps2031

(amplifying vs. persistent at a given time step, or amplifying or persistent between two different time steps), our2032

test statistic was this difference (i.e. a paired test), and our null distribution was constructed by measuring it for2033

n = 200 pairs of random subspace overlaps at the appropriate time step(s). Once again, in all these cases we2034

computed the two-tailed p-value of the test statistic as computed on the real data (Fig. 5f and Extended Data2035

Fig. 10f–g, green and red lines) with respect to the corresponding reference distribution.2036

Note that we did not compute p-values across multiple splits of the data because this led to p-value inflation2037

as we increased the number of splits. Instead, we repeated all relevant analyses on 10 different random 1:12038

train:test splits to see if our results were robust to the choice of data split. Indeed, we obtained qualitatively and2039

quantitatively (in terms of p-values for quality of fits, and overlaps) similar results for all these splits.2040

Permutation tests do not assume that the data follows any pre-defined distribution. No statistical methods were2041

used to predetermine experimental sample sizes. Sample sizes for permutation tests (n above) were chosen so2042

as to be able to determine p-values to a precision of 0.02 (quality of fits) or 0.01 (subspace overlaps).2043
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Extended data figures2059
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Extended Data Fig. 1 | Dynamics of network models of working memory. a, Neural network dynamics in a bump attractor network 5

performing the task shown in Fig. 1a. Left: trajectory in neural state space in a single cue condition during the cue period (pale purple line,
ending in pale purple circle) and delay period (dark purple line). Purple arrow heads indicate direction of travel along the trajectory, black cross
shows attractor state, gray arrow shows overlap between cue input and late delay activity. Center: time course of relative (i.e. mean-centered)
firing rates of one neuron for two cue conditions (purple vs. blue, see also inset). Yellow lines indicate cue onset and offset times. Right:
cross-temporal decoding of neural activity produced by the network across all 6 cue conditions. Pink rectangles indicate generalized decoding
between the cue/early delay period and the late delay period and cyan rectangles indicate generalized decoding between time points in the
late delay period. The gray tick on the color bar indicates chance-level decoding. b, Same as a but for a discrete attractors model 5,28,30.
c, Same as a but for a linear integrator model with transient dynamics that are orthogonal to the attractor subspace 6. d, Same as a but for
feedforward network model 21,26. e, Same as a but for a network optimized to perform the task shown in Fig. 1a using gradient descent (cf.
Fig. 6d, right).
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Extended Data Fig. 2 | Attractor network dynamics with or without constraints on the initial condition of the dynamics. a, Illustration
of an attractor network with symmetric connections. b–d, Analysis of neural responses in symmetric attractor networks (such as shown in a).
b, Sub-threshold activity for all 6 cue conditions (color trajectories) with initial conditions optimized within the full state space (Methods 1.3.1).
Open circles show the optimized initial conditions and crosses show stable fixed points. We show neural activity projected onto the top two
principal components of the persistent subspace. c, Analysis of neural responses when initial conditions are constrained to lie within the
5-dimensional persistent subspace. Top left: distribution of Pearson correlations between initial and final mean-centered neural firing rates
across all 6 cue conditions and 10 networks (same as Fig. 2c, but for persistent subspace-constrained inputs, corresponding to green line in
Fig. 2f). Top right: sub-threshold activity for 2 cue conditions in an example network (color trajectories; same as Fig. 2d, but for persistent
subspace-constrained inputs, corresponding to green line in Fig. 2f). Open circles (with arrows pointing to them from the origin) show the
optimized initial conditions, black crosses show stable fixed points, dashed gray line is the identity line. Horizontal axis (persistent PC1)
shows neural activity projected on to the 1st principal component (PC1) of network activities at the end of the delay period (across the 2
conditions shown), vertical axis (initial PC1 (orthogonalized)) shows projection to PC1 of initial neural activities orthogonalized to persistent
PC1. Bottom: same as b, but for persistent subspace-constrained inputs, corresponding to green line in Fig. 2f. d, Same as c, but for
persistent nullspace-constrained inputs. Note that the distribution of Pearson correlations of neural firing rates (top left) is distinct from a delta
function at 0 because we constrained the initial conditions in the space of sub-threshold activities (rather than firing rates). In the bottom
panel, which shows sub-threshold activity, we see that indeed all the colored circles overlap at the origin, indicating orthogonality of the initial
conditions to the persistent subspace. e, Illustration of an attractor network without a symmetric connectivity constraint. f–h, Same as b–d
but for attractor networks without a symmetric connection constraint (i.e. panels f, g, and h, respectively correspond to the networks shown
by the black, green, and red lines in Fig. 2). Note initial conditions being near the origin in f mean that they are strongly orthogonal to the
persistent subspace (as in d, but without constraining them explicitly to be in the persistent nullspace).
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Extended Data Fig. 3 | Dynamics of optimized ring attractor networks. a, Neural activity for 6 cue conditions (color trajectories) with
optimized initial conditions in a ring attractor network with unconstrained connectivity (see Methods 1.3.1 and 1.3.4). Open circles show the
optimized initial conditions and black crosses show fixed points. We show neural activity projected onto the top two principal components
of the persistent subspace. Thus, all circles being near the origin means that initial conditions are strongly orthogonal to this subspace (cf.
Extended Data Fig. 2f). b, Tuning curves for 6 neurons (purple curves) whose preferred angles (coloured crosses) correspond to the 6 cue
conditions shown in a. c, Distribution of Pearson correlations between initial and final mean-centered neural firing rates across the 6 cue
conditions and 10 networks (cf. Fig. 2i). d, Cross-temporal decoding of neural firing rate activity (cf. Fig. 2k). Note that only the first second
of the delay period is shown on both axes because the dynamics of these networks, using a tanh nonlinearity, are faster than those shown in
other figures (e.g. Fig. 2), using a ReLu nonlinearity (but the same time constant; Methods 1.2, and Table 1). e, Overlap (mean±1 s.d. across
10 networks) of the 2 locally most persistent (green), most amplifying (red), or random directions (black), obtained using a local linearization
around the origin, with the ‘persistent subspace’ and ‘persistent nullspace’ of the original non-linear dynamics, obtained without linearization,
and the subspace spanned by the ‘optimal’ initial conditions of the original nonlinear dynamics (cf. Extended Data Fig. 7a, bottom; see
Methods 1.4.2 and 1.7.3). We used 2-dimensions from the local linearization because we found empirically that the ring attractor lay in a
2-dimensional subspace (see also a). f, Percent variance explained (mean±1 s.d. across 10 networks) by the subspace spanned by either
the 2 most persistent (green) or 2 most amplifying (red) modes as a function of time for a 20-dimensional linear dynamical system fitted to the
neural activities of the nonlinear ring network (Methods 1.4.3; cf. Extended Data Fig. 7d, bottom far right). We used 2-dimensions because
we found empirically that the ring attractor lay in a 2-dimensional subspace (see also a and e). Gray lines show chance level overlap defined
as the expected overlap with a randomly chosen 2-dimensional subspace.
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Extended Data Fig. 4 | Analysing the total energy produced by different initial conditions in linear networks. a, The norm of neural
activity integrated over time (i.e. a measure of total energy used by the network) for each of 1000 random initial conditions (10 initial conditions
for each of 100, 100-neuron networks) relative to the energy produced by the most amplifying initial condition, plotted as a function of their
overlap with the persistent mode for symmetric (top) and unconstrained (bottom) linear integrator networks. A positive value on the y-
axis means that the total energy produced by the given random initial condition is greater than that produced by the most amplifying initial
condition. Initial conditions are scaled so that they all produce the same level of persistent activity (i.e. the same level of performance)
after 2 s of simulation. b, Same as a, but initial conditions are plotted as a function of their overlap with the most amplifying mode. Note
that overlap with the most amplifying mode (but not in general with the most persistent mode) is strongly predictive of total energy (with an
inverse relationship between the two). c, Overlap (mean±1 s.d. across the 100 networks from a and b) of optimal initial conditions (Eq. S39),
producing an overlap of 1 with the persistent mode after a given delay length (x-axis) while using the minimal total energy over time (Eq. S38),
with either persistent (green), most amplifying (red), or random (black) directions, for symmetric (top) and unconstrained (bottom) networks.
In unconstrained networks, for very short delay lengths, initial conditions must align exactly with the persistent mode, by necessity (green
lines at 0 s). For longer delay lengths, initial conditions make greater use of the most amplifying direction (red lines). d, Total energy over time
(mean across the 100 networks from a and b; we do not show error bars for visual clarity) for dynamics starting from initial conditions that
produce an overlap of 1 with the persistent mode after a given delay length (x-axis) and are aligned with the optimal initial condition (blue; i.e.
the one using the least energy, cf. panel c), the most persistent (green), most amplifying (red), or a random direction (black), in symmetric
(top) and unconstrained (bottom) networks. In unconstrained networks, for very short delay lengths, initialising along the most persistent
mode achieves near-optimal energy-efficiency (green is close to blue), but for longer delay lengths, initialising along the most amplifying
mode becomes more energy efficient (red is closer to blue). (Note that for symmetric networks (top), we have offset the curves for the most
amplifying, persistent, and optimal directions because these 3 directions are the same and therefore produce the same total energy.)
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Extended Data Fig. 5 | Analysis of linear networks of different sizes. a, Distributions of absolute overlap with the persistent mode for
persistent (pale green), most amplifying (pale red), or random initial conditions (gray) across 100 randomly sampled linear symmetric (top)
and unconstrained networks (bottom) consisting of either 10 (solid), 100 (dashed), or 1000 (dotted) neurons (cf. Fig. 3d). The persistent
initial conditions produced delta functions at 1 (arrows). Results for persistent and most amplifying initial conditions are identical in symmetric
networks (top). b, Time course of mean (across the 100 networks from a) absolute overlap with the persistent mode when starting network
dynamics from persistent (green), most amplifying (red), or random initial conditions (black) in symmetric (top) and unconstrained networks
(bottom) consisting of either 10 (solid), 100 (dashed), or 1000 (dotted) neurons (cf. Fig. 3e). Results for persistent and most amplifying initial
conditions are identical in symmetric networks (top). c, Mean (across 100 networks) overlap of initial conditions that were optimized so as to
generate persistent activity in 100-neuron noisy symmetric (top) and unconstrained (bottom) networks with 100 orthogonal modes ordered
by their persistence (green) or amplification (red) (i.e. corresponding to the rank ordered eigenvectors of the weight matrix, green, or of the
observability Gramian of the dynamics, red; Methods 1.7.1). In symmetric networks (top), the optimized initial conditions overlap only with
the most amplifying mode and no other mode (note that the most persistent mode is identical to the most amplifying mode in this case).
In unconstrained networks (bottom), optimized initial conditions overlap strongly with the most amplifying mode and only weakly with other
modes. (The non-zero overlap with the most persistent mode is simply due to the fact that there is a non-zero overlap between the most
persistent and amplifying mode in random networks, and it is at the level that would be expected based on this overlap.) d, Time course
of mean (across the 100 networks from c) absolute overlap with the persistent mode for 100-neuron symmetric (top) and unconstrained
networks (bottom) when the network is started from optimized initial conditions (blue), and for comparison for the most amplifying (red
dashed) initial conditions (cf. Fig. 3e). Note the close agreement between the two indicating that the most amplifying mode is indeed optimal
in these networks. Horizontal black bar on x-axis shows the time period in which we applied the cost function to optimize the initial conditions
(Methods 1.7.3).
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Extended Data Fig. 6 | Analysis of canonical nonlinear attractor systems. a, State space of a canonical nonlinear system with two
attractors and a symmetric (top) and non-symmetric Jacobian (bottom, see also Methods 1.6, Supplementary Math Note S2; cf. Fig. 3b).
Pale blue arrows show flow field dynamics (direction and magnitude of movement in the state space as a function of the momentary state).
Black crosses indicate asymptotically stable fixed points (i.e. attractor states), dashed black line shows the separatrix (the manifold separating
the basins of attraction of the two attractors). Thin green and red lines indicate the locally most persistent and amplifying modes around the
origin, respectively (lines are offset slightly in the top panel to aid visualisation). Pale green, red, and gray arrows with open circles at the
end indicate most persistent, amplifying, and random initial conditions, respectively. Blue ellipses show the fixed initial condition norm around
the origin to highlight the different axis scales. Dark green, red, and black arrows show neural dynamics starting from the corresponding
initial condition. b, Time course of dynamics of the system along the persistent mode (i.e. the projection onto the green line in a) when
started from the persistent (green), most amplifying (red), or random (black) initial conditions for the symmetric (top) and the unconstrained
system (bottom). c, Late overlap with the locally persistent mode as a function of initial overlap with the locally most amplifying mode in the
canonical nonlinear systems shown in panels a–b (solid gray line) and, for comparison, in the linear networks of Fig. 3a–c (dashed gray line)
for symmetric (top) and unconstrained systems (bottom). Late overlap is measured as the mean overlap of activity along the persistent mode
(panel b, from t = 0.8 to t = 2 for the canonical nonlinear system; Fig. 3c, from t = 0.8 s to t = 2 s for the linear networks). Open circles and
squares indicate the random (gray), persistent (pale green), and most amplifying (pale red) initial conditions used respectively in panels a and
b for the canonical nonlinear system, and in Fig. 3b–c for the linear networks.
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Extended Data Fig. 7 | Linear analyses of the nonlinear attractor networks of Fig. 2. a, Overlap (mean±1 s.d. across 10 networks) of
the 5 locally most persistent (green), most amplifying (red), or random directions (black) of the symmetric (top) and unconstrained (bottom)
networks from Fig. 2, obtained using a local linearization around the origin, with the ‘persistent subspace’ and ‘persistent nullspace’ of the
original non-linear dynamics, obtained without linearization (as used in Fig. 2f and l, red and green), and the 5-dimensional subspace spanned
by the 6 ‘optimal’ initial conditions of the original nonlinear dynamics (used in Fig. 2b–e, h–k, and f and l, black). For comparison, we also
show the overlap (mean±1 s.d. across 100 networks) of the single most persistent (pale green), most amplifying (pale red), and random
(gray) direction with the optimal initial condition of the linear networks from Extended Data Fig. 5c,d (‘optimal (lin. model)’). b, Time course
of the overlap (mean±1 s.d. across 10 networks, s.d. not shown in bottom for visual clarity) of the linearized dynamics of symmetric (top)
and unconstrained networks (bottom) with the subspace spanned by their most persistent modes when started from initial conditions that
were optimized for the decoding accuracy of the nonlinear dynamics while constrained to be within the locally most persistent (green), most
amplifying (red), or a random subspace (black). The linear dynamics, the persistent subspace wrt. which overlap is measured, and the
subspaces within which initial conditions were constrained while being optimized, were all based on a local linearization of the nonlinear
dynamics around the origin. Compare with Fig. 3e for the analogous plots for linear networks. For reference, blue line shows overlap of
the same linearized dynamics when started from the initial conditions directly optimized for the decoding accuracy of the nonlinear dynamics
without subspace constraints (used in Fig. 2b–e, h–k, and f and l, black). For consistency with Fig. 3b–e (where initial conditions were
constrained to have unit norm), we scaled activity by the norm of the initial condition (which was constrained to be 3 here; Methods 1.4.2). c,
Performance (mean±1 s.d. across 10 networks) of a delay-trained decoder (black bar indicates decoder training time period; Methods 1.7.4)
on neural activity in stochastic nonlinear symmetric (top) and unconstrained networks (bottom) over time. Colors indicate initial conditions as
in b. (Blue line shows same data as black line in Fig. 2f and l). Gray dotted line shows chance level decoding. Green, red, and blue lines are
vertically offset slightly in the top panel to aid visualization. Compare with Fig. 4a (noise matched) for the analogous plots for linear networks
(though with non-instantaneous inputs). d, Percent variance explained (mean±1 s.d. across 10 networks) by the subspace spanned by either
the 25% (i.e. 5) most persistent (green) or 25% (i.e. 5) most amplifying (red) modes as a function of time for 20-dimensional linear dynamical
systems fitted to the neural responses generated by the symmetric (top) and unconstrained (bottom) nonlinear networks when started from
the same (optimized) initial conditions analyzed in b–c: constrained to be within the locally most persistent (far left), most amplifying (center
left), or a random subspace (center right), as determined by the local linearization of the dynamics, or without subspace constraints (far right).
Gray lines show chance level overlap defined as the expected overlap with a randomly chosen subspace occupying 25% of the full space (i.e.
5 dimensions). Compare with Fig. 4c for the analogous plots for linear networks (though with non-instantaneous inputs, and performance-
matched levels of noise, see also Supplementary Math Note S3) and with Fig. 5f and Extended Data Fig. 10f,g for analogous plots of linear
dynamical systems fitted to experimental data.
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Extended Data Fig. 8 | Analysis of two variants of an integrator model and feedforward model. a, Cross-temporal decoding of model
neural activity (cf. Fig. 2e,k, Fig. 4b, and Fig. 5c) for a linear integrator model 6 (see also Methods 1.5). Yellow lines indicate cue onset, offset,
and go times. b, Same as a for the same model but for inputs aligned with purely random directions (as opposed to inputs aligned with both
persistent and random directions as in the original formation of Ref. 6). c, Same as a but for a linear feedforward network model 21,26. d,
Percent variance explained by the subspace spanned by either the 25% most persistent (green) or 25% most amplifying (red) modes as a
function of time for the linear integrator model from a (cf. Fig. 4c,b, Fig. 5f, and Fig. 6e). Yellow lines indicate cue onset, offset, and go times.
Gray dotted line shows chance level overlap with a subspace spanned by 25 random orthogonal directions. e, Same as d for the same model
but for inputs aligned with purely random directions. f, Same as d but for a linear feedforward network model 21,26.
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Extended Data Fig. 9 | Recording locations for the two monkeys. Left: recording locations in monkey K (T1-weighted image). In order to
image the interior of the chamber, we filled the chamber with cut cottons soaked in iodine. In the upper picture, the yellow arrow indicates the
principal sulcus. In the bottom picture, locations of the 11 by 15 grid holes were superimposed over the MR picture. Right: recording locations
in monkey T (T2-weighted image). The bottom picture shows the location for the grid of the 32 semi-chronic electrodes. Yellow dots indicate
electrode penetrations and recording sites, red dots indicate non-visited sites.
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Extended Data Fig. 10 | Supplemental analysis of experimental data and comparison to models. a, Cross-temporal decoding analysis
for monkey K (cf. Fig. 5c for the same analysis for monkey T and for explanation of plotting scheme and annotations). b, Subspace overlap
between different task epochs, measured as the percent variance explained (PVE) by projecting neural activity from one task epoch (tested)
through the top 10 PCs of another task epoch (fitted). Diagonal elements show the PVE within each task epoch. We show results for monkey
K (left) and monkey T (right). c, Time course of overlap with delay epoch subspace, measured as the percent variance explained by the top
2 PCs obtained from delay period activity (black bar shows time period of activity from which these PCs were obtained) on held-out test data
taken in different time bins. This metric is called the alignment index 64 and is very similar to that used in Ref. 6 (Methods 1.7.3). We show
mean (over 10 different data splits) results for both monkeys. Yellow ticks on horizontal axis indicate cue onset, cue offset, and go times.
(Caption continued on next page.)
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Extended Data Fig. 10 | Supplemental analysis of experimental data and comparison to models (cont’d). d, Schematic of 3 different
hypothetical scenarios for the relationship between cue and late delay activities (panels), illustrated in neural dynamics for 2 neurons and 2
cue conditions. Coloured curves show neural trajectories, black squares indicate cue onset, open circles indicate cue offset, and filled circles
show late delay activity. Left vs. right: populations encoding the cue during cue and late delay periods are overlapping vs. non-overlapping,
respectively. Top vs. bottom: cue and delay activities are non-orthogonal vs. orthogonal, respectively. (Note that we are not showing dynamics
for non-overlapping, non-orthogonal dynamics because no overlap necessarily implies orthogonality.) e, Relationship between cue and late
delay activities in various different models and our experimental recordings (x-axis). Top: population overlap measured as the mean difference
between cue and delay epoch classifier weights (left for each model and data) and, as a control, when randomly shuffling classifier weights
across neurons (right for each model and data) (Methods 1.7.6). Box plots show medians (black lines), quartiles (boxes), and 1.5 times the
inter-quartile range (whiskers). Dotted gray line shows chance level overlap. Bottom: orthogonality measured as 1 minus the mean overlap
between cue and delay epochs (given by the corresponding elements of the subspace overlap matrices shown in panel b and Extended Data
Fig. 11c, center right). The discrete attractors, bump attractor, and integrator models show high overlap but low orthogonality. The simple
feed-forward network shows high orthogonality but low overlap (note that recurrent networks with embedded feed-forward connectivity 21

may show high overlap). The just-in-time network shows high overlap and orthogonality, similar to the experimental data in both monkeys.
f–g, Same analysis as in Fig. 5f, but either after randomly shuffling data across time (but consistently across conditions and neurons, and
applied to the same time period as in the main analysis; f, see also Methods 1.4.3), or applied to the late delay time period (without across-
time shuffling) in which we do not expect information loading dynamics (g). h, Decoding of stimulus information within the subspace spanned
by either the 25% most persistent modes (green), or the 25% most amplifying modes (red) in the original linear systems shown in Fig. 5f.
Comparisons use two-sided permutation tests (*, p < 0.05; **, p < 0.01; n.s., not significant; see Methods 1.8) i, Top inset: original data
analysis of overlaps repeated from Fig. 5f to indicate the comparisons (coloured numbers) we show in the table below (numbered columns).
Bottom: table showing p-values (in each cell for experimental data, top: monkey K, bottom: monkey T) from two-sided permutation tests for
each comparison of the main analysis (row 4, repeated from the main text associated with Fig. 5f) and the control analyses shown in panels
f and g of this figure (rows 5–6). Top 3 rows show predictions for the sign of each comparison under different information loading strategies
in unconstrained linear networks (Fig. 4c, bottom): using inputs aligned with random directions (1st row), persistent directions (2nd row), or
the most amplifying directions (3rd row). In the column headings, pers., amp., and ch. respectively refer to overlap with most persistent, most
amplifying and random subspaces (chance), t0 refers to the beginning of the analysis time window, i.e. cue onset (rows 1–5) or 1 s before
the timing of the go cue (row 6), and t1 = t0 + 1 s refers to the end of the analysis time window. The colored numbers above each column
correspond to the comparisons shown in the inset above the table. Gray indicates no significant difference between data points, red and blue
indicate a significant difference for both monkeys where the first data point is respectively greater or smaller than the second data point, and
pale red indicates a significant difference for one of the two monkeys (see Methods 1.8).
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Extended Data Fig. 11 | Cue-delay and just-in-time trained networks. a–b, Same as Fig. 6c green and red, and Fig. 6d left and right,
but with a regularisation strength of α(2)

nonlin = 0.0005 used during training (Methods 1.3.2). c, Subspace overlap between different task epochs,
measured as the percent variance explained (PVE) by projecting neural activity from one task epoch (tested) through the top 4 PCs of
another task epoch (fitted; cf. Extended Data Fig. 12d, Extended Data Fig. 13d, and Extended Data Fig. 10b). Diagonal elements show the
PVE within each task epoch. We show results for cue-delay (left two panels) and just-in-time trained networks (right two panels) trained with
either a regularisation strength of α(2)

nonlin = 0.00005 (left panel for each model, as in Fig. 6) or α(2)
nonlin = 0.0005 (right panel for each model, as

in panels a–b). d, Neural activity plotted in the top two PCs of delay-epoch activity for all 6 initial conditions for cue-delay and just-in-time
trained networks for each of the network-regularization combinations shown in c (cf. Extended Data Fig. 2b–d and f–h.) Purple traces show
state-space trajectories, squares indicate cue onset, open circles indicate cue offset, and crosses indicate asymptotically stable fixed points,
colours indicate cue condition as in Fig. 2d.
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Extended Data Fig. 12 | After-go-time trained networks. a, Cost function for after-go-time training on the fixed delay task (Methods 1.3.3).
Cue onset, cue offset, and go cue times are indicated by the yellow vertical lines. The boxcar shows the interval over which stable decoding
performance was required (i.e. the cost was only applied after the go cue). b–c, Same as Fig. 6c orange and Fig. 6d center, but with a
regularisation strength of α(2)

nonlin = 0.0005 used during training and when either a random (b orange, c left) or a fixed delay task is used (b
blue, c right, Methods 1.7.4). d, Subspace overlap between different task epochs, measured as the percent variance explained (PVE) by
projecting neural activity from one task epoch (tested; cf. Extended Data Fig. 11c, Extended Data Fig. 13d, and Extended Data Fig. 10b)
through the top 4 PCs of another task epoch (fitted) for the networks shown in b–c. Diagonal elements show the PVE within each task epoch.
e, Neural activity plotted in the top two PCs of delay-epoch activity for all 6 initial conditions for random delay (left) and fixed delay (right)
trained networks (cf. Extended Data Fig. 2b–d and f–h; and Extended Data Fig. 11d.) Purple traces show state-space trajectories, squares
indicate cue onset, open circles indicate cue offset, and crosses indicate asymptotically stable fixed points (if there are any), colours indicate
cue conditions as in Fig. 2d.
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Extended Data Fig. 13 | Full-delay trained networks. a, Cost function for full-delay training on the random delay task (Methods 1.3.3).
Yellow ticks indicate cue onset and offset times, the yellow bar indicates range of go times in the variable delay task. Boxcars show intervals
over which stable decoding performance was required in three example trials with different delays (Methods 1.3.3). b–c, Same as Fig. 6c–d,
but when training with the full-delay cost with a regularisation strength of α(2)

nonlin = 0.00005 (b solid, c left) or α(2)
nonlin = 0.0005 (b dashed, c right,

Methods 1.7.4). d, Subspace overlap between different task epochs, measured as the percent variance explained (PVE) by projecting neural
activity from one task epoch (tested; cf. Extended Data Fig. 11c, Extended Data Fig. 12d, and Extended Data Fig. 10b) through the top 4 PCs
of another task epoch (fitted) for the networks shown in b–c. Diagonal elements show the PVE within each task epoch.
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