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Hippocampal circuits in the brain enable two distinct cognitive functions: the
construction of spatial maps for navigation, and the storage of sequential episodic
memories' . Although there have been advances in modelling spatial representations
in the hippocampus®™°, we lack good models of its role in episodic memory. Here we
present a neocortical-entorhinal-hippocampal network model thatimplements a
high-capacity general associative memory, spatial memory and episodic memory.

By factoring content storage from the dynamics of generating error-correcting stable
states, the circuit (which we call vector hippocampal scaffolded heteroassociative
memory (Vector-HaSH)) avoids the memory cliff of prior memory models*, and
instead exhibits a graceful trade-off between number of stored items and recall detail.
Apre-structured internal scaffold based on grid cell states is essential for constructing
even non-spatial episodic memory: it enables high-capacity sequence memorization
by abstracting the chaining probleminto one of learning low-dimensional transitions.
Vector-HaSH reproduces several hippocampal experiments on spatial mapping and
context-based representations, and provides a circuit model of the ‘memory palaces’

used by memory athletes®. Thus, this work provides a unified understanding of the
spatial mapping and associative and episodic memory roles of the hippocampus.

Aswe navigate through life, the hippocampus weaves threads of expe-
rience into a fabric of memory cross-linked by context. Thus, we can
revisit scenes and events fromonly afew cues, as with Proust’s famous
madeleine™. Such memories enable inferencesin the present and plan-
ning for the future. The hippocampal complex is responsible for this
functionality>™8, but it is unclear exactly how the architecture and
representations of the hippocampus and adjoining cortical regions
enableit.

Substructures of the hippocampal complex have been studied
extensively?>*2* and experimental findings combined with model-
ling have led to marked progress inunderstanding local circuit mecha-
nisms® %% These works put us in an excellent position to build our
understanding of how the combined system subserves memory storage
andrecall. A central questioninvolves the dualrole of this structure. The
ability toformepisodic memories, our catalogue of autobiographical
experiences, is compromised by damage to the hippocampal complex’.
Spatial memory—remembering the layout of our physical environment
and our updated position within it as we move about—also centrally
involves the hippocampus. Place cells fire at specific locations and
environments?, and entorhinal grid cells represent spatial displace-
ments in the form of triangular grid firing patterns that repeat across
environments®. It remains unknown why these two forms of memory
are co-localized.

One hypothesis is that the circuit prioritizes spatial memory, such
as where certain foods and dangers were found. In this view, epi-
sodic memory is an augmentation of the spatial memory system and

representations are optimal for spatial, not episodic, memory. The
second hypothesisis that the circuit is optimal for episodic memory,
with spatial coordinates represented primarily as a stable and useful
index for episodic memory*¢. The third hypothesis is that the circuit
does not simply store spatial and episodic information side by side
or with one in the service of the other, but that its highly structured
architectures, representations and dynamics are equally optimal for
both functions, even when the memory in question does not involve
space. Thus, the low-dimensional states in the circuit that are inter-
preted as spatial may serve as equally critical scaffolds for linking
together (potentially entirely non-spatial) elements of an episodic
memorym,‘ts—so‘

We propose a neocortical-entorhinal-hippocampal memory
model based on properties of the biological circuit. It excels at item
memory, spatial memory and sequential episodic memory with
content-addressablerecall, avoiding the full erasure (memory cliff) of
existing neural memory models when adding inputs beyond a fixed low
capacity (Fig.1a). Critically, the memory model: (1) separates dynamical
fixed point generation (for pattern completion and error correction)
from content encoding, with the former exploiting the structure of grid
cell states; and (2) converts the problem of sequence memory into a
simple process of low-dimensional transitions on the grid states. Grid
cells are thus equally essential for non-spatial memory, supporting
the third hypothesis.

This circuit, which we call Vector-HaSH because it assigns an
error-correcting hash code to each input (a hash is a unique label
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Fig.1|Biological memory:challenges and proposed architecture. a, Left,
memory cliff. Mutual information (MI) between stored and retrieved patterns
inaHopfield network of Nneurons drops sharply to zero after a critical number
(approximately N) of stored patterns. Middle and right, Mlin variants of Hopfield
networks (sparse synapses; input patterns with sparseness p, f= pIn(p); modern
Hopfield networks) all exhibit a cliff. Dashed black line indicates theoretical
limit for neural networks with N? plastic synapses''2. We explore whether it is
possible for content-addressable memory to hugthe bound, regardless of the
number of stored patterns. b, Vector-HaSH architecture. Grid cell modules

independent of content) and exploits the metric structure of grid
cell states to enable sequence storage via low-dimensional vector
transitions.

Factorization of dynamics and content

Hopfield networks are the paradigmatic model of content-addressable
neural network memory?®, Structured as monolithic recurrent net-
works, they exhibit a steep memory cliff: in an N-neuron network, up
to approximately Npatterns (of Nbits each) are perfectly recovered, but
adding more patterns leads to total loss of even previously memorized
patterns (Fig. 1a). Variants of Hopfield networks all exhibit a cliff*'>*",

Vector-HaSH is based on (known and inferred) connectivity of the
hippocampus and entorhinal cortex®*2. Entorhinal grid cells, which
project to hippocampus (Fig. 1b, orange), consist of multiple modules®
withdistinct periodsA. Each module expresses a set of low-dimensional
states thatare stabilized by recurrent connections and are invariant to
task and behavioural state®***3¢-38 In non-spatial contexts, these states
canbe conceptualized as abstract representations that are constrained
tolie onatwo-dimensional torus. Processed extrahippocampalinputs
carryingsensory and internally generated states enter the hippocam-
pus (Fig. 1b, purple) via non-grid entorhinal neurons and a few other
cortical areas (Fig. 1b, green).
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(orange) with fixed recurrent connectivity and states, hippocampal cells (pink)
and non-grid entorhinal/neocortical (EC) processed sensoryinputs (green). Solid
and dashed black arrows indicate fixed connections and weights; grey arrows
indicate plastic weights. N, is the number of grid cells, N, is the number of
hippocampal neurons and N,is the number of sensory input neurons. The light
blueboxrepresents alow-dimensional velocity ‘shift mechanism’ that changes
the grid phases. c-f, Vector-HaSH variants that model item memory (c), spatial
memory (d), episodic memory (e) and the memory palace technique (f).

Critically, connections from grid cells to hippocampus are set as
random and fixed. Hippocampus projects back to entorhinal cortex;
those to grid cells are set once (for example, during pre- or post-natal
development) by associative learning, then held fixed. Connections
of hippocampus to non-grid cells remain bidirectionally plastic for
memory acquisition and are set by associative learning. Activity propa-
gationbetweenregions occursinsequential order and discrete time, a
simplification of the oscillations and synaptic latencies hypothesized
to gatethisinformation flow. We refer to the grid-hippocampal subcir-
cuit, withits unchanging weights, as the fixed scaffold of the network.
Separately, we refer to the hippocampal-non-grid cortical feedback
loop as the heteroassociative part of the circuit. We will see that small
variations of this basic circuit enable content-addressable memory
in various settings, from spatial to non-spatial memory to sequential
episodic memory and memory palaces (Fig. 1c-f).

Avastlibrary of robust fixed points

Grid cells are partitioned into a few (M) independent modules: a
module (the ith module) can occupy one of K; states, which lie on
a two-dimensional torus. Together, the modules express [1,K; = (K)"
many distinct states, growing exponentially with M. An across-module
grid state, if bidirectionally coupled to a hippocampal cell that



2,.,T-1
Grid N,
Ty M
Hippocampus N,
Original grid state Original HPC state Noisy HPC state Noisy grid state Recovered grid state Recovered HPC state
d e f — Vector-HaSH  — Vector-HaSH
4 oqg° — Max GCstates  contiguous order
) <10° Ny 10 x10" _ shuffled — Random HPC states
2 ol 700 /={457 - ol
5'5’10 e S 4o ’__i,.) _’237[
5 I 600 £ 4 g
S 1¢° - g g |
- ol $ <] ?
2 N, =750, . 500 3 s 05 227
5 10° ~ Z w00 £ T 5
< 10 = ~ bt k2
° M ,?909" 400 & ° 5 B S 1+ w 000
S N, = 450, S 4 =13,4.5 2 E0)
5 ), S P
10 P Random HPC states 300 - A L2332 3
prE=300 ‘ : ¢ \ \ _ —FRandem HPC sfates 01 : : ole : x40
2 4 6 8 2 3 4 5 0 100 200 300 0 5 10 0 1 2 3 4
No. of grid modules No. of grid modules No. of HPC cells (N,) ||Perturbation|| No. of seen grid states

Fig.2| The scaffold generates exponentially many attractors with equally
largebasins. a, Scaffold architecture,asinFig.1.1,...,Tindicates the flow of
dynamics (order of updating) in the circuit. b, Left two images, grid state and
corresponding hippocampal (HPC) state. Other images: scaffold initialized
with noisy version of hippocampal state from the leftis cleaned up by
hippocampal-grid, grid-grid and grid-hippocampal scaffold dynamics.

¢, Number of scaffold fixed points increases exponentially withnumber of grid
modules®*, given enough hippocampal neurons. Diamonds are results of
numerical simulation; dashed linerepresents an analytical curve (Supplementary
Information, section C.1). Error barsrepresents.d. over five runs (but are not
visible). Light greenline represents shuffled pairing of grid-hippocampal states,
with grid-hippocampal weights bidirectionally learned. d, Left, minimal
hippocampal size (NV}}) to convert all grid states into fixed pointsislinearin

couples the modules®**?, canbecome astable fixed pointand enable

error correction®. Because there are many more grid states than hip-
pocampal neurons®, this formulation cannot work for all grid states.

Remarkably, if grid cells project with random weights (a high-rank
random projection) to hippocampus, and hippocampal cells (after
thresholding their inputs) send return projections that are learned
through Hebb-like learning to reinforce the corresponding grid states
(Methods), then all grid states become stable fixed points (attractors)
of thegrid-hippocampal scaffold network (Fig.2b,c), once the hippocam-
pus is above a minimal size (V). We define a state as an attractor if it is
restored toits non-noisy value through the scaffold dynamics after injec-
tion of noise of norm 0.25 times the average hippocampal state norm.

The minimum hippocampal size (Ny) to convert all grid states to
attractors is small (Fig. 2c)—it scales only linearly with the number of
grid modules (Fig. 2d, left and Supplementary Fig. 1; proofin Supple-
mentary Information, section C.1) and is nearly independent of the
scale (periodicity) of the grid modules (Fig. 2d, right and Extended
Data Fig. 1; proof in Supplementary Information, section C.1). Thus,
the number of attractors (approximately <K)") is exponential in the
total number of scaffold (grid and hippocampal) neurons (N, +
M(K) = M(c + K)), where c is a constant. For example, M =10, K =10°
(10 grid phases per dimension) would generate ~-10° scaffold attractors
with only ~-10° combined hippocampal and grid cells.

A correspondence between the grid states and grid-driven hip-
pocampal states is critical: if the set of hippocampal states is ran-
domly reassigned to the grid states, with bidirectional learning of
grid-hippocampal weights for self-consistent activity reinforce-
ment, the number of attractors collapses (Fig. 2¢,d, light green
curves; also see Supplementary Information Fig. 2). A similar col-
lapse occurs if hippocampal-to-grid weights are randomly set while
the grid-to-hippocampal weights are associatively learned for
self-consistency (Supplementary Fig. 3).

We derive theoretically that the scaffold has no spurious fixed points
orattractors, thus the scaffold attractor basins are maximally large (all
hippocampal states form the scaffold attractor basins). The basins are

|IHPC vector]|

number of grid modules. Right, Njis nearly independent of the grid period A.
Errorbarsrepresents.d. over fiveruns. e, Probability that noisy hippocampal
state flows to correct attractor, versus noise magnitude (in multiples of mean
hippocampal state norm). Grey curves show data for five different attractors.
Black curve shows the average over 3,600 attractors.100 random noise
realizations perattractor. f, Strong generalization: number of formed scaffold
attractors versus number of states used to associatively learn hippocampus-
to-grid weights. Dark grey represents any contiguous sequence of grid states;
blackis anoptimal sequence; lightgrey isarandom sequence. Vertical dashed
line represents the theoretical minimum number of states associatively learned
tomakeallgrid statesinto attractors. GC, grid cell; Max., maximum. Error bars
represents.d. over five runs.

alsoall convex and essentially identical (Supplementary Information,
sections C.2 and C.3). We test these analytical results by numerically
computing the probability that a noisy hippocampal state flows to
the true attractor (Fig. 2e). Injected noise of magnitude several times
the hippocampal state norm is reliably corrected, and all basins have
identical probability curves.

Strong generalization property of scaffold

Akey property of the scaffold is ‘strong generalization’: associatively
learning the hippocampal-to-grid cell weights to stabilize the exponen-
tially many (approximately O(K™)) grid states does not require visiting
them all. Visiting and performing associative grid—hippocampal
learning on avanishingly small fraction of the states stabilizes them all
(Fig. 2f). We show that visiting any O(MK,,,) contiguous grid states,
where K, is the number of states in the largest module, is sufficient
for stabilizing all (approximately (K)") of them as scaffold fixed points
(Extended Data Fig. 2 and Supplementary Information, section C.4);
the results are robust to noise during learning (compare with Supple-
mentary Fig.5). Replacing grid states with random patterns of matched
sparsity (for example, by shuffling within each multi-module grid-coding
state), as in memory scaffold with heteroassociation (MESH)*, results
innear-total generalizationloss (proofin Supplementary Information,
section C.4), and visiting grid states in random order decreases the
amountofgeneralization (Fig.2f). Certain special sets of non-contiguous
locations canalsolead to strong generalization (Supplementary Infor-
mation, section C.4 and Supplementary Fig. 4). Strong generalization
implies that restricted spatial exploration by juveniles in a small envi-
ronment is sufficient to set up the scaffold for the rest of the lifetime.

Heteroassociation of inputs onto scaffold

A content-addressable memory should store user-defined inputs and
recall them from partial or corrupted inputs. The scaffold states can
be used for content-addressable memory via heteroassociation of
external cues with the scaffold.
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withscaffold. a, Scaffold receives sensory inputs which become associated via
bidirectional associative learning. Numbersindicate update order for retrieval.
b, Content-addressable recall from corrupted version of amemorized input.

¢, Ml (normalized by number of stored patterns and bits per pattern) between
stored and retrieved patterns. C,is the number of scaffold attractors. Different
grey and black curves represent different grid periods. Green dashed line
represents theoretical MIbound. Inset curvesrepresentvarying N;.d, The black
line shows that MI (per synapse) between stored and retrieved patterns for
Vector-HaSH tends to anon-zero constant (dashed grey line) as total number of
memorized inputbits (per synapse) increases. Coloured lines show that Ml per
synapse drops to zero for Hopfield network and variants. Assessed for random
uncorrelated patterns (inset). e, Left, performance comparison (naturalimage
patterns): Vector-HaSH (black) and fully trainable autoencoder of matched
architecture and size, withidentity output-to-input tail-biting weights (blue).
Dashed line shows the analytical result (Supplementary Information, section D.3).

We will refer to inputs to the hippocampus from neocortex and
non-grid entorhinal cells (Fig. 3a, green), as sensory inputs. A sensory
inputisassociated with arandomly selected scaffold fixed point viaa
Hebb-like online implementation of the pseudoinverse rule between
sensory input and the hippocampal state (simple Hebbian learning
achieves the same asymptotic capacity with areduced constant prefac-
tor; Extended DataFig. 3 and Supplementary Information, section D.6).
These weights impose self-consistency so that hippocampal drive to
the sensory states approximates the sensory activations input to the
hippocampus.

Onceacquired, memories canbereconstructed from partial sensory
cues: these inputs drive a hippocampal state, which settles towards
a scaffold fixed point via hippocampal-grid dynamics; finally, a
sensory state is reconstructed by hippocampal-to-sensory weights.
Thus, Vector-HaSH behaves as a content-addressable memory net-
work (Fig. 3b).

A graceful item number-information trade-off
Memory recall in Vector-HaSH is perfect up to N, input patterns (the
circuitrecoversall N, bits per pattern correctly, where N;is the sensory

4 | Nature | www.nature.com

(No. of memorized patterns x bits per pattern) per synapse

Feed forward error reduction

No. of memorized patterns No. of memorized patterns

h i
) 1 o-.Familiar items
i l——————
Grid HPC Recovered pattern el .
! Novel items
>
m o
A g
& g
- o
I < <
Lol
Al Approximate but identical ¥ " = b °
Exact ID of ReCU”SWC“Oﬂ sensory reconstruction ) | 1 o
of exact 04 x10
abstract h L0
label pc state 0 1 5
ford st 8] 4 No. of memorized
i ©
patterns

Right, example reconstruction of two images, after variable numbers of stored
patterns.f, Left,number of grid (orange), hippocampal (purple) or sensory (green)
states recalled perfectly (zero error) when cued with corrupted sensory inputs
(2.5% noise) as a function of N,. Right, probability that the retrieved sensory
stateisinthecorrectbasinversus fractionalnumber of flipped bits in cue. Grey
linesrepresentindividual patterns;black lineis an average over 500 patterns.
g, Schematic of recovery in sensory, hippocampal and grid state spaces. Left to
right, two different cues (one corrupted, one noiseless (bottom)), with evoked
states (represented by x) progressing through the network. Dots indicate
noiselessstored states. h, Energy landscape schematic. Top, the width, depth
and positions of minima for Hopfield nets depend on pattern content and
thus are highly variable. The Vector-HaSH scaffold functions as a ‘clothesline’
withequally deep, well-spaced minima, onto which arbitrary contentis
heteroassociatively ‘hooked’.i, Accuracy of familiarity/novelty detection from
hippocampal firing rates. In c-f, shaded regions represent the s.d. over five runs.

input dimension); after more than N, patterns are stored, the informa-
tion recovered for each pattern scales inversely with the number of
patterns (Fig. 3c). Thus, Vector-HaSH exhibits a graceful trade-off or
‘continuum’ between patternnumber and recall richness, rather thana
memory cliff, and total information in the network remains parallel to
thetheoretical upper bound (the square of the number of synapses) out
to the number of scaffold fixed points (Fig. 3c). Proofin Supplementary
Information, section D shows perfect content-addressable recall for
thefirst N, states and near-optimal precision—-pattern number trade-off
beyond if the hippocampal states are a random projection from grid
cells, passing through some nonlinear transformation; almost any
nonlinear transformation, without fine-tuning, is sufficient (Supple-
mentary Figs.10 and 11).

Increasing the sensory input dimension and thus information per
pattern does not reduce the information fraction recovered because
although pattern size grows, so do the number of heteroassociative
weights (Fig. 3¢, inset; also see Supplementary Fig. 6). The informa-
tion contributed per synapse approaches a constant non-zero value
as the number of stored patterns increases (Fig. 3d), in contrast to
Hopfield networks, where the value drops to zero'" past the memory



cliff (Fig. 3d). Other memory models (Supplementary Information,
section D4) exhibit a similar cliff or only store one specific number of
patterns for a fixed network architecture®.

After most or all scaffold states have been used, there are three pos-
sibilities: (1) no furtherinputs are stored; (2) each newinputreplaces an
existing memory (based onsensory overlap, age or random selection);
or (3) all heteroassociative weights slowly decay so that older memories
fade and those scaffold states are identified for reuse.

Comparison with end-to-end trained deep networks
Vector-HaSH can be unfolded for interpretation as an autoencoder®
(Fig. 3e, left, architecture schematic) that has recurrent weights and
is highly constrained: encoding and recurrent weights in the bottle-
neck layer are fixed, as are weights fromthe encoder tobottleneck and
bottleneck to decoder layers. All remaining weights are set through
biologically plausible associative learning. For comparison, consider
anunconstrained and end-to-end gradient-optimized (via backprop)
autoencoder of the same dimensions, with the addition of atail-biting
(output-to-input identity) connection for iterative reconstruction®
(Fig. 3e, left, architecture schematic). Notably, Vector-HaSH substan-
tially outperforms this autoencoder despite the much greater potential
flexibility of the autoencoder (Fig. 3e), mirroring the results in ref. 54.
The tail-biting exhibits a memory cliff, seen from curves (Fig. 3e, left)
and reconstructions of a sample pattern (Fig. 3e, right). Vector-HaSH
also outperforms optimized tail-biting and non-iterated autoencoders
when cued with noisy sensory cues (Supplementary Fig. 7). Thus, the
fixed scaffold provides a key inductive bias for robust high-capacity
memory, which gradient optimization on an unconstrained architec-
ture apparently cannot find or achieve.

Mechanisms of the memory continuum

We probe the circuit to understand its continuum behaviour. As NV, is
varied above its threshold value, precision of reconstruction varies
across the circuit (Fig. 3f, left). Grid and hippocampal states are nearly
always recalled exactly. The sensory state is recalled approximately,
with a continuous dependence on hippocampus size. Even when
sensory retrieval is approximate, it falls in the correct basin (within
the Voronoi region of the original sensory pattern (Fig. 3f, left)). The
approximaterecalled sensory stateis identical, whether the cueis the
true memory pattern (Fig. 3g, left) or a highly degraded version of it
(Fig. 3f, right and Supplementary Fig. 8). In other words, although the
precision of sensory reconstruction systematically decreases with
the number of patterns (the distance of the recalled state within the
Voronoi cell from the true sensory patternincreases)—accounting for
the memory continuum—the reconstruction is reliable: regardless of
the cue (which might be noiseless or corrupted), the reconstructed
pattern is the same. This property will be important when modelling
memory palaces.

Mechanistically, sensory-to-hippocampal projections partially
denoise input cues (the hippocampal state is closer to its fixed point
(Fig. 3g, green to pink) than the cue may have been to the true input).
Next, scaffold dynamics recover the exact fixed point (Fig. 3g, pink to
orange to pink) even deep in the memory continuum (analytical proof
in Supplementary Information, section D.1) and for highly corrupted
hippocampal states, because of the convex large-basin property of scaf-
fold attractors. Finally, hippocampus-to-sensory projections decode
the scaffold state to a reconstructed sensory state. Interference in
the heteroassociative weights leads to growing approximation error
with pattern number, but it remains continuous rather than cliff-like
because decoding happens in a single feedforward pass rather than
viaiteration (proofs in Supplementary Information, sections D.2 and
D.6).Insum, the factorization of attractor creation from content stor-
age enables both pattern completion (exact recovery viarecursionin
the scaffold) and graded memory precision behaviour (feedforward
decoding) in Vector-HaSH.

Conceptually, conventional autoassociative memory networks
perform poorly because the locations, basin widths and depths of
their attractors are governed by pattern content, leading to uneven,
non-convex, small basins and many spurious minima. In Vector-HaSH,
theattractor landscapeis set by the regular structure of grid cell states,
which produce well-spaced attractors with large basins and no spurious
minima. Content is simply hooked onto these pre-structured states, in
analogy witha clothesline (the scaffold) to which any clothes (sensory
patterns) can be attached (via heteroassociation) (Fig. 3h).

One-shot robust recognition memory

Memorized inputs, because they are associated with scaffold attrac-
tors, generate grid-defined hippocampal states that form a narrow
distribution with highly similar firing rates. When a novel sensory input
drives the hippocampal state, that state, as well as the projectioninto
grid cellsand theirinitial return projection back to hippocampus, form
patternsthatare far outside the usual distribution for both cell popula-
tions (Supplementary Fig.12). Asimple decoder that detects firing rate
deviationsineither direction from the usual meanin the hippocampal
state—implemented with two hidden units and fixed parameters from
the time of scaffold formation (independent of the sensory inputs or
number of memories stored; Supplementary Information, section
D.7)—actsas areliable familiarity/novelty discriminator (Fig. 3i). Such
arecognition memory can be used to decide a sensory input should
be cleaned up (pattern completed) for recall or trigger new memory
creation (association with a fresh scaffold state).

Spatial inference and memory

When self-motion signals drive transitions between grid cell states
(Fig.4a), the architecture and dynamics of Vector-HaSH support spatial
memory without catastrophic forgetting and zero-shot spatial infer-
ence along novel paths.

At alandmark or corner of a novel room, grid module phases are
initialized randomly. Velocity inputs update the grid phases by path
integration®. Vector-HaSH learns a map of the room via associations
betweenthe grid-drivenscaffold states and sensory cues. Its structure
permits successful reconstruction fromeither input (Supplementary
Information, section D), thus grid states can be recalled from sensory
cuesorviceversa (Fig.4a).If afamiliarroomis traversed without access
to sensory cues (in the dark or in-between landmarks), Vector-HaSH
pathintegrates to update grid (and thus hippocampal) states. Ataland-
mark, the hippocampal state isupdated via the sensory-hippocampal
weights (Fig. 3a,b), resetting any path-integration errors. Thus, without
threshold modifications, hippocampal states can be determined by grid
inputs alone, sensory inputs alone, or acombination of these. Grid cells
and hippocampal cells exhibit realistic spatial tuning, including the
localized and usually single-bump tuning typical of place cells (Fig. 4b
and Supplementary Fig. 13).

After very sparse exploration in a novel room (trajectory of Fig. 4c,
left), Vector-HaSH is able to predict expected sensory observations
along an entirely new route through the room (trajectory of Fig. 4c,
right). This zero-shot inference ability arises from the path invariance
of velocity integration: velocity updating generates accurate grid states
evenalong novel paths, which then reconstruct (predict) sensory cues
associated with those states.

After sequential exposure to a set of rooms (Fig. 4d), Vector-HaSH
learns distinct spatial maps, assessed for each by testing sensory-cued
grid state inference (without path integration) after seeing that room
(Fig. 4d,e). To examine gradual interference between rooms (cata-
strophic forgetting), we test Vector-HaSH in all prior rooms right
afterlearning the ithroom (Fig. 4d,e). Recall of hippocampal and grid
states from sensory cues remains unchanged for all prior environ-
ments after subsequent acquisition of up to 10 rooms, without replay or
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a, Left, Vector-HaSH with velocity inputs that drive grid phase shifts. Right,ina
familiar environment (after heteroassociative learning), bidirectionalinference
of position (internal grid states) from sensory cues (top), or prediction of
sensory landmarks fromagrid state (bottom). b, Tuning curves (smoothed)
ofthree hippocampal cells and one cell from each grid module (unsmoothed
curvesinSupplementary Fig.14). c, Left, first traversal of environment (white
trajectory), with heteroassociative learning of landmarks. Right, prediction
oflandmarks on an entirely novel path (white trajectory) beginning at aknown
location. Forrealism (to put it onthe memory continuum) Vector-HaSH previously
made 596 other landmark-scaffold associations. d, Sequential learning
protocol for11rooms: Vector-HaSH learns landmark-state associations on
random trajectoriesineachroom (cyan), andisimmediately tested on scaffold
state inference fromlandmarks (mustard) with anew trajectory. Allrooms
arere-tested for scaffold state inference from landmarks after learning all
11rooms (green), thentested again for landmark inference from scaffold states
(‘dark condition’ (grey)). e, Spatial tuning curves ford. rm, room. f, Black,
landmark reconstructionaccuracy forroomiafterlearningroomsi,...,i - 1.
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consolidative rehearsal. Thisis due to the exponential scaling capacity
and architecture of Vector-HaSH, in which random grid phase initiali-
zationsresultin well-separated maps (Fig. 4g). Thus the model avoids
not only a memory cliff but also catastrophic forgetting in grid and
hippocampalrecall.

Inthe ‘dark’ (no visible landmarks), after the initial grid state is speci-
fied foreachroom, the modelis abletorecallalarge amount of sensory
information (1cue perlocationin every room) over 11 rooms, although
the sensory cues in all rooms are recalled less vividly after learning 11
rooms (rightmost part, black curves of Fig. 4f) because the circuit is
inthe memory continuum.

Hippocampal tuning is stable on repeated visits to the same room,
with orthogonal representations of different rooms asin experiments
(Fig. 4i,j). Additional properties, including the distribution of prob-
abilities that a hippocampal cell has a field in multiple rooms, match
experimental data (Fig. 4k).

Ina continuous-activation and continuous-space implementation of
Vector-HaSH (Methods), the discrete scaffold attractors formafolded
two-dimensional continuous attractor within the NV,-dimensional space
of hippocampal states. The basins remain large (N, — 2-dimensional
instead of V,-dimensional; Fig. 4l illustrates this using aone-dimensional
continuous attractor). Vector-HaSH still performs robust associative
memory retrieval and inference in the continuous limit (Fig. 4m).

Vector updating of grid states

Episodic memory centrally involves sequences of events in time.
Sequence memory can be modelled with asymmetric Hopfield net-
works* in which the user-defined pattern at one time drives, through
learned weights, the next user-defined pattern. These models result
insimilar or stronger capacity limitations as foritem memory**: such
networks quickly fail (within approximately 50 steps) to reconstruct
even anapproximation of the next pattern (Fig. 5b). We will show that,
remarkably, Vector-HaSH permits massive sequence memory by fac-
torizing the problem to construct high-capacity abstract sequences
(asequencescaffold) and then affixing content via heteroassociation.

First, we hypothesized that modelling hippocampus as an asymmet-
ric Hopfield-like network directly encoding the input patterns, with
bidirectionally learned grid cell interactions to help denoise and pat-
tern complete the imperfectly reconstructed next hippocampal state,
might support high-capacity sequence reproduction. This roughly
doubled the sequence capacity (to approximately 100 steps), but did
not fundamentally alter capacity scaling with network size (Fig. 5b).

Next, in the full spirit of the scaffold network, we reasoned thatlearn-
ing an abstract sequence of scaffold states rather than user-defined
hippocampal states might be the solution. Hippocampal states were
given by random grid state projections and hippocampus-to-grid
weights were associatively set to be consistent with the next (rather
than the current) grid state. Despite the full benefit of the scaffold
architecture, sequence capacity remained low (Fig. 5b, failure within
approximately 30 steps). We hypothesized that this happened because
even abstract grid states are large and specific activity patterns, for
whichthe previous hippocampal state must provide sufficient informa-
tiontoreconstruct. This hypothesis gave us the critical insight that grid
states, which canbe specified from a previous one by atwo-dimensional
velocity input acting on the grid network via a velocity-shift mecha-
nism, could enable efficient sequence specification by memorization
of asequence of two-dimensional (and thus very low-information)
velocity vectors.

Consider using the previous hippocampal state to cue the next grid
state, but via the drastic dimensionality and complexity reduction
of the velocity-shift mechanism: the previous hippocampal state
specifies a two-dimensional velocity that signals where to move
in the grid-coding space. A small and simple feedforward network
(amulti-layer perceptron (MLP)) (Fig. 5a, top) associated the previous

grid state, via the hippocampus, with a two-dimensional velocity
vector. This architecture resulted in the accurate reconstruction of
abstract scaffold sequences of 1.4 x 10* states, using the same small
number of cellsin the scaffold network as before (Fig. 5a, left). Alterna-
tively, recalled sensory states can drive the low-dimensional velocity
transitions, without a separate MLP (Supplementary Information,
section D.8).

To quantify sequence scaffold capacity, we statistically assessed how
well the circuit could recall random velocity (shift) vectors assigned
to each grid state (Fig. 5c). The sequence scaffold perfectly recalled
approximately 1.5 x 10° state-velocity associations with N, = 500 and
N =275 neurons, with grid periods 5, 9 and 13 (totalling approxi-
mately 3.4 x 10° grid states). The scaling of scaffold sequence length
with the number of hippocampal cells is again sub-logarithmic, similar
to scaffold capacity scaling for item memory (Fig. 5d, left); the num-
ber of MLP units needed to learn the hippocampal state-to-velocity
mapping is linear with a very small coefficient (approximately 10~)
(Fig. 5d, right).

Using the sequence scaffold, Vector-HaSH supports high-capacity
episodic or sequence memory by hooking external inputs experi-
enced over an episode onto asequence scaffold (Fig. 5f). The abstract
sequence scaffold may be formed concurrently with the learning of
the heteroassociative weights that link sensory inputs to the scaffold,
or inputs could be affixed to a pre-existing sequence scaffold that is
learned once. For episodic memories without clear metric variables
such as spatial position, the scaffold trajectory can be arbitrarily
chosen.

Asymmetric Hopfield networks and tail-biting autoencoders®
quickly diverge from the trained state sequence during recall; in a
sequential version of the memory cliff, recalled states do not even
approximately resemble the trained states (Fig. 5h). In Vector-HaSH,
internal grid sequences are recalled with essentially perfect fidelity
over very long sequences, and sensory states are recalled perfectly
interms of identity but only approximately in content depending on
the total length of the memorized sequence (Fig. 5i) (the equivalent
to the item memory continuum). Because sequence transitions are
generated entirely within the scaffold, their continued fidelity does
not depend on the fidelity of sensory reconstruction. As for item
memory, the quality of sensory recall per state in the sequence (Ml
per input bit) degrades as the total memorized sequence content
grows (Fig. 5i), but the information recalled per synapse remains finite
and approaches a constant asymptotically (Fig. 5j), while it drops to
zero for other models. To summarize, while in conventional memory
models the current state and its recurrent projections must carry all
the information to reconstruct the high-dimensional next state, in
Vector-HaSH the current (scaffold) state and its recurrent projections
must reconstruct merely the next two-dimensional velocity vector
(Fig. 5k). The high-dimensional vector is then reconstructed via feed-
forward decoding in the sensory areas.

Our information-based hypothesis is that failure or success in
sequence memory depends on how much information the current
state must specify to construct the next state. We test this hypothesis
by varying the amount of information that the network must recall at
eachstep, by increasing the range of possible velocities (length of veloc-
ity vectors) to be recalled. The recalled sequence fraction decreased
systematically with increasing velocity range (Fig. 5e), in proportion
tothetheoretically expected inverse proportionality to the number of
information bits required to specify the velocity (blue). In sum, con-
straining sequence recall dynamics to a low-dimensional manifold
where only low-dimensional tangent vectors (velocities) rather than
the manifold states themselves must be reconstructed results in vast
increases in recalled sequence length. Thus, the path integrability of
the grid cell code can not only support spatial inference and mapping,
butalso serve as ascaffold for episodic and sequence memory evenin
the absence of any spatial inputs.
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(left; trained on 585 x 585 random transitions) and grows linearly with the size
of the hippocampus-to-velocity MLP (right). e, Correctly recalled transitions
decrease as the number of potential next states for each transitionincreases.
Bluelines show inverse entropy of the set of next states (1/(log of number

of next states)). f, Vector-HaSH for episodic memory. Sensory inputs are
heteroassociatively coupled to the sequence scaffold from a. g,h, Recalled
naturalimage sequencein Vector-HaSH (g) and an asymmetric Hopfield
network with matched synapse number (periods {3, 4, 5}, N,=50, N, =400,
N,=3,600; N, =3,600 for Hopfield).i,j, Ml per input bit (i) and Ml per synapse (j)
forsensory sequence recall (random binary patterns) across models. Shaded
areas shows.d. over five runs.k, Top, in conventional sequence memory models,
the previous state must reconstruct the entire content of the next state.
Bottom, in Vector-HaSH, the previous state must reconstruct amere two-
dimensional vector, whichrequires far less informationin therecurrentloop.



Entorhinal and hippocampal phenomenology

While serving as a general-purpose memory circuit, Vector-HaSH
recapitulates many grid cell properties shared with continuous
attractor models (which constitute its core), and several hippocam-
pal and full-circuit properties. Immediately in novel environments,
Vector-HaSH grid cells exhibit periodic activity bumps (Fig. 6a, top),
which align with the regular pattern seen on further explorations’
(Fig. 6a, bottom). Similar patterns are present during dark exploration
(no sensory cues) over short times (Fig. 6b, left). Alternative models
require extensive exploration and sensory cues for grid tuning emer-
gence®®, Vector-HaSH exhibits grid resetting by sensory cues: After
darknavigation and phase drift in afamiliar environment, asensory cue
(‘lights’ turned on) resets the hippocampal (and then grid) states viathe
sensory-to-hippocampalin one cycle through the circuit (Fig. 6b, right),
asin refs. 40,57. Vector-HaSH co-modular grid cells exhibit invariant
relationships seenacross behavioural states and environments where
spatial tuning curves change®>**¢" (Fig. 6c, left) (Supplementary
Fig. 18 shows relative phase invariance across environments of dif-
ferent dimensions), whereas hippocampal cells in Vector-HaSH and
experiments globally remap>® (Fig. 6c, right).

Vector-HaSH recapitulates grid—place cell correlations*>*%; the frac-
tion of grid cells whose fields overlap with that of a place cell across
environments (dashed line; Fig. 6d) is significantly larger (P value of
0.0) than shuffle controls (place fields randomly reassigned across
cells; Fig. 6d), consistent with other models where grid cells drive place
fields'o**,

Grid cells determine hippocampal statesin Vector-HaSH, yet there
isastrongreverse influence: If the hippocampusis lesioned when grid
velocity inputs are noisy, grid cell spatial tuningis destroyed (Fig. 6e,
left), asinref. 59. Nevertheless, grid cells maintain their relative phase
relationships (Fig. 6f; Methods), consistent with ref. 60. Thus, place
cells are critical for reliable grid spatial tuning. By contrast, with suf-
ficient sensory inputs, hippocampal tuning remains unchanged after
grid lesioning® (Fig. 6e, right). Thus, the circuit exploits all avail-
able means to estimate position: velocity (via grid cell integration),
external cues (via hippocampus), both, or either. It mechanistically
reconciles the question of whether place cellsemerge fromgrid cells
orvice versa.

Vector-HaSH generates splitter cells®***, whose spatial tuning
depends on context, recent memory and other factors, via the mech-
anism of grid phase remapping when internally generated context is
appended tothe hippocampal sensory input. Inaspatial T-maze alter-
nation task, contextin the central stemis distinct forincoming trajec-
tories fromtherightorleft returntracks. A distinct context appended
to the sensory input produces grid phase remapping in Vector-HaSH
(differential grid phase shifts across modules; Supplementary Figs. 23
and 24), total hippocampal remapping (Fig. 6g) and hippocampal cells
that are contextually selective. The same process yields directionally
selective place cells on linear (Fig. 6i) and circular one-dimensional
tracks, tree mazes, and radial mazes (Supplementary Figs.19-22). The
resulting ratios of splitter to non-splitter and direction-dependent to
directionally untuned hippocampal cells were similar to values from
experiment® (Fig. 6h,j) with the predictions that grid cells will possess
splitter-like and directional tuning (Supplementary Fig. 24) and that
splitter and directionally tuned hippocampal cells are not a separate
biophysical type; this contrasts with the possibility that splitter (and
direction-dependent) cell tuning is generated within the hippocampus
by (possibly) distinct cell types.

Anuntested predictionis thatgrid activations should be periodicand
hippocampal states that are much lower-dimensional than expected
(relative to the dimensionality from randomly shuffling hippocampal
fields) when traversing abstract domains and even recalling episodic
memories, if the states are plotted as afunction of the relevant abstract
variable (Fig. 6k).

62-64

Finally, for hippocampally dependent memories, items thatare seen
orrecalled repeatedly are more resistant to hippocampal damage®,
a phenomenon known as hippocampal memory consolidation. We
exposed Vector-HaSH to several inputs, some of which were presented
multiple times, leading to additional increments of the corresponding
hippocampus-to-sensory weights (Fig. 61). Memories thus reinforced
were remembered with richer detail (Fig. 6m), and recall was relatively
robust toneuron removal (Fig. 6nand Supplementary Fig.16). Addition-
allyincrementing hippocampus-to-grid and sensory-to-hippocampus
weights produced no further consolidation (Fig. 60). The primaryrole
of directed synapses from hippocampus to cortex is consistent with
and provides specific predictions about mechanisms for consolidation
of hippocampus-dependent memory®®. An alternative hypothesis is
thatrepeating inputs form associations with multiple scaffold states.
Vector-HaSH simulations (1,000 runs; datanot shown) did not support
this hypothesis: associating an input with two different scaffold states
always (100% of runs) resulted in the activation of a third, unrelated
scaffold state when presented with a partial sensory cue.

Mechanism for the memory palace technique

Vector-HaSH provides the first model to explain the power of the
method of loci (memory palaces), amnemonic technique that has
been used for millennia and is currently widely exploited by memory
athletes®™. Givenarandomly ordered deck of playing cards, memory ath-
letes take animagined walk through a familiar and richly remembered
space, and ‘place’ the cards near landmarks they encounter along the
way. At recall time, they walk through and ‘collect’ the items they had
placed. Counterintuitively, by adding to their memory task the demand
of also recollecting the correctitem-landmark associations, they are
able to perform highly accurate one-shot memorization and recall.

The hippocampus (and Vector-HaSH, via vector-based sequence
memorization) already enables richmemory for sequences, as we have
seen. However, deep in the continuum, sensory recall is only approxi-
mate: a long new sequence of items cannot be exactly memorized
using the native mechanism (Fig. 3e, upper row). However, the whole
of Vector-HaSH, working in the regime of recall of a familiar sequence
inthe memory continuum, canitselfbe converted into a new scaffold
for precise memory, as follows. Suppose Vector-HaSH is initialized
to a starting location in a highly familiar environment, and items at
locations along the path taken by the memory athlete are recalled.
Crucially, eventhough therecalled sensory states are only anapproxi-
mation of the actualitems, each time they arerecalled they arereliably
the same (Fig. 3g, green); thus, even deep in the memory continuum,
theserecalled sensory states can have the role of perfectly retrievable
abstract scaffold states for heteroassociation of the new neocortical
inputs (Fig. 7b,c). For this new extended scaffold, the heteroassocia-
tive linkages are well before its continuum regime, and the inputs can
berecalled with high fidelity (Fig. 7d, blue) even when associated with
sensory states that are a poor approximation of the original sensory
inputs. Another advantage of using this extended scaffold is that the
effective information capacity bottleneck, which was previously the
size of the hippocampus, is now the size of the sensory input area and
could be much larger, meaning that perfect memorization of amuch
larger number of inputs is possible (Fig. 7e). Memory athletes cycle
between using different memory palacestorefresh recently used pal-
aces; in terms of the model, this presumably corresponds to erasure
of heteroassociative linkages with the palace and refreshes the ability
to reuse that scaffold in a non-continuum regime.

Akey prediction of Vector-HaSH is that during memory palace use,
grid, hippocampal and sensory area cells should be reliably activated
in a way that correlates with location in the palace, and the correla-
tion with location should be more faithful than correlation with the
neural responses to the actual sensory inputs that were present when
experiencing and acquiring memories of the palace. Another is that
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Fig.6|Vector-HaSH reproduces multiple aspects of entorhinal and
hippocampal phenomenology. a, Grid fields are presentin first stepsinan
environment (top) and are consistent with the map formed after fuller exploration
(bottom). b, Grid fields formin dark; they may eventually wash out without
corrective sensory input (left three panels); rapid phase reset occurs when cue
ismade visibleif there wasa phase error (remaining panels). ¢, Left, grid cell
tuning curves shift across environments. Right, relative phases (closest peak to
cross-hairsin cross-correlation) of co-modular neurons are preserved. This is
notthe case for hippocampal cells. d, Fraction of grid cells that exhibit across-
environment coactivation with a hippocampal cell (red); the distribution after
shuffling place field locations is shown in black. PDF, probability distribution
function. e, Top left, grid cell spatial tuning with noisy velocity inputs before
and after hippocampalinactivation. Top right, grid cell inactivation. Bottom,
hippocampal tuning with sensory cues present, before and after grid network
inactivation. f, Similarity in correlation matrix of co-modular grid cells, before
and after hippocampalinactivation lesion (red), versus similarity after shuffled
correlations (black). g, Left, alternation task, with left-to-right (red) and
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right-to-left (blue) trajectory contexts. Remappingin grid space (middle) yields
distinct hippocampal tuning for the two contexts (right). h, Hippocampal left/
rightselectivity ratiosin central stem®2.i, Left, left/right trajectoriesin 1D. Middle,
asing. Right, hippocampal cells, ordered by rightward run field locations for
rightward (red outline) and leftward (blue outline) runs. j, Directionality
index®***for Vector-HaSH (left) and experiments (right). k, Vector-HaSH grid
and hippocampal cells have structured responses; plotted in the relevant
continuous space (for example, time) for abstract domains (for example,
traversal though an episodic memory).1, Memory consolidation. Repeated
patternsdrive further hippocampal-to-sensory weightincrements (red outlined
arrow). Unrep, unrepeated. m, Patterns (top) and recall (middle) in the
continuumregime. Bottom, consolidation of pattern2but not pattern1leads
toselectively richer recall. n, Patterns (top) and recall without consolidation after
20% hippocampallesion (middle). Bottom, consolidated patterns (dark green
outline) are protected at the cost of unconsolidated ones (light green outline).
0,Same asn, withadditional increments in sensory-to-hippocampus and
hippocampus-to-grid weights. Error barsinn,oindicate s.d.across three runs.
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Fig.7|Accuraterecall ofarbitrary inputs by heteroassociation onto
landmarksinamemory palace formed by Vector-HaSH. a, The memory
palacetechnique.b,c, Circuit for the memory palace technique (b); the full
Vector-HaSH circuit for episodic memory (compare with Fig. 5 or Supplementary
Information, section D.8) is ascaffold for newinputs via heteroassociation
ontorecalled sensory states (c).d, Recalled sensory states in Vector-HaSH are
approximate (top row), but at any given pointin the continuum, a consistent
stateisreliably retrieved (compare firstand second rows), thus they qualify as

memory palaces could be built from familiar non-spatial sequences
involvingrich sensory data.

Discussion

Extensions

There are many paths for extending Vector-HaSH, whichinclude mod-
elling the subregions of hippocampus; incorporating hippocampal
cells that respond to a simultaneous combination of grid and sen-
sory inputs to model partial remapping; including local field poten-
tial oscillations as possible gating processes for the between-region
iterations that we have assumed occur in ordered cycles; model-
ling how the circuit enables goal-directed behaviours; and many
others.

Relationship to anatomy
Anatomically, entorhinal projections to hippocampus derive from
superficial layers and return projections arrive at deep layers, whereas
Vector-HaSH predicts a tight and fully self-consistent loop from grid
cells to hippocampus and back. This can be tested connectomically,
andindeed, new discoveriesstill surprise: deep entorhinal layers send
a copy of their outputs back to the hippocampus®.

Random fixed grid-to-hippocampal weights are important and
sufficient for several properties of Vector-HaSH, and several types of
non-random weights are insufficient, but this does not eliminate the
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new abstract scaffold states. When new sensory data are (hetero)associatively
linked toanapproximately recalled sensory sequence (at any given depthinthe
memory continuum of Vector-HaSH, shown here for three depths), itis recalled
with high fidelity (bottom). e, Memory curve foritems remembered using
Vector-HaSH as amemory palace scaffold (blue). The curve applies to newly
remembered items using agiven memory palace, regardless of where Vector-
HaSHisinits memory continuum. Error bars shows.d.over10runs.Ind,e,
A=14,5,7},N,,=400; N,is the size of the sensory output of Vector-HaSH.

possibility of non-random solutions. For instance, expander graphs
for error-correcting codes admit non-random solutions in principle,
but they have been difficult to find, whereas random connections are
sufficient. Of note, ref. 68 shows that the layer Il MEC stellate cell cir-
cuit (these comprise most grid cells) is the first to mature, and activity
in this network then drives maturation of the hippocampal circuit,
followed by entorhinal layer 5, and finally, layer Il of LEC. This matura-
tion order is exactly consistent with what our modelwould predict on
the basis of how it must be structured: the scaffold has to be formed
first, and within it, the grid cell circuit is formed first, followed by
the formation of fixed connections to hippocampus, then the hip-
pocampal circuit, and finally the hippocampal-non-grid entorhinal
circuit.

Experimental tests

We have highlighted a number of model predictions throughout.
Central parts of our model could be invalidated if, for instance:
grid-to-hippocampal synapses were plastic at atimescale faster than the
hippocampal-to-grid synapses; if grid cell lesions did not affect episodic
memory; or if, whenimagining traversing a childhood home, the grid
representations were distinct from those when using the same home
as amemory palace when using the method of loci. Finally, because
Vector-HaSH is adynamical neural network, it can be directly queried
for experimental predictions about representation, dynamics and
learning under alarge variety of conditions and perturbations.

Nature | www.nature.com | 11
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Related models

Together with the bipartite expander network and MESH network
models****, Vector-HaSH defines a new class of memory models
that we name robust hash-based memory: they create exponentially
many fixed points with large basins as abstract error-correcting states
for memory. Furthermore, existing models do not implement the
low-dimensional shift mechanism of Vector-HaSH for efficient sequence
memory.

Vector-HaSH resembles the models in refs. 7,10, which involve
pre-structured grid cell representations interacting with hippocam-
pal cells. Learning of grid-to-hippocampus weights prevents these
models from having high-capacity, large robust basins and strong gen-
eralization, and avoiding the memory cliff and catastrophic forgetting.
Vector-HaSH further contrasts with models that learn the structure of
the explored space, such as successor representation®, principal com-
ponents analysis* and the Tolman-Eichenbaum machine®, because
theirinternal representations derive fromthe geometries and dimen-
sionality of the environment so can be non-grid-like, and require sen-
sory inputs to form representations in new environments.

Any model of hippocampal memory necessitates compression of
cortical inputs. Modelling hippocampus as a bottleneck layer in an
cortico-hippocampal autoencoder (Fig. 3 and refs. 55,69) is a form of
content-based compression. These models lack the capacity, resist-
ance to catastrophic forgetting and sequence memory properties
of Vector-HaSH. In Vector-HaSH, the hippocampus is a content-
independent pointer or hash for content localized in cortex, related
to the models of refs. 70,71. The circuit performs locality-sensitive
hashing for episodic memory, with locality defined in the temporal
domain (temporally contiguous inputs map to contiguous grid states).

Nevertheless, commonalities among these models point towards a
converging view of the hippocampal complex. The highly performant
features of Vector-HaSH suggest a first-draft understanding of the
circuit mechanisms of the hippocampal complex as ageneral memory
system.
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Methods

Reference % introduced the MESH associative memory architecture,
leveraging a three-layer network to store numerous independent
memory states. This architecture allowed a high-capacity memory
with a trade-off between the number of stored patterns and the fidel-
ity of their recall. However, MESH did not require specifically grid cell
encodings, did not exhibit strong generalization in scaffold learning,
and did not exhibit a high sequence capacity.

In Vector-HaSH, the memory scaffold consists of a recurrent cir-
cuitincorporating MEC grid cells and a hippocampal layer that may
be interpreted as the proximal CAl and distal CA3 regions of the hip-
pocampal complex.Inaddition, vVector-HaSHincludes a sensory layer
thatis associatively linked to the hippocampal layer, as we describe in
additional detail below. Activity propagation between regions occurs
insequential order and discrete time, a simplification of the oscillations
and synaptic latencies that are hypothesized to gate this information
flow. Most simulations involve discrete-valued inputs and grid cell
activations, which we then later show can generalize to continuous
space and activations.

We represent the MEC grid cells as outlined in ref. 73, where each
grid module’s state is expressed using a one-hot encoded vector that
represents the module’s phase (and thus the active grid cell group
within the module). The states are on a two-dimensional discretized
hexagonallattice with period A. Thus, the state of each grid module is
represented by a vector with a dimensionality of A2,

M such grid modules are concatenated together to form a collec-
tive grid state g < {0, 1}¥e, where the Ny= ZM /11124- The continuous
attractor recurrencein the grid layer®is represented by amodule-wise
winner-take-all dynamics, which we denote as CAN. This ensures that
the equilibrium states of g always correspond to a valid grid-coding
state.

g(¢+1) = CAN[g(t)]. 0

Werepresent these equilibrium states by g2 where weindex the cod-
ing states by the two-dimensional location X . For coprime periods
Ay, the grid states can encode a spatial extent of N, =[], Ay spatial
locations.

This layer of grid cells projects randomly onto the hippocampal
layer, through a N, x N, random matrix W, with each element drawn
independently from a Gaussian distribution with a mean of zero and
s.d. of N(O, 1). This matrix is sparsified such that only a y fraction of
connections is retained, leading to a sparse random projection. This
projection constructs an N,-dimensional set of hippocampal sparse
states, h defined as

h%=ReLU[W,,,g~ -0l (2

Thereturn weights from the hippocampal layer back to the grid cell
layer is set up through Hebbian learning between the predetermined
set of grid and hippocampal states, 8 and h3.

Win= e Y ezh}. 3)
The dynamics of the hippocampal scaffold is then set up as
g(t+1) = CAN[Wh(0)] 4)
h(t+2) =ReLU[W,g(t+1) - 6] 5)
These equations maintain each g, h- state as afixed point of the

recurrent dynamics, as we prove in Supplementary Information,
section C.1.

This constructed hippocampal memory scaffold is thenused to gen-
erateindependent memory locations to store information presented
through asensory encodinglayer, representing the non-grid cell com-
ponentofthe entorhinal cortex. Information tobe stored is presented
asabinary encoding of statesin the sensory layer, and is ‘tagged’ onto
amemory location X of the scaffold through pseudoinverse learned
heteroassociative weights.

Wis=HS* (6)

and

M/sh = SH+, (7)

where His a N, x N,,.-dimensional matrix with columns as the prede-
termined hippocampal states s, and Sis a N, x N, ,-dimensional
matrix with columns as the encoded sensory inputs to be stored at
location X . As discussed in the main text, the pseuodoinverse compu-
tation can be performed through a biologically plausible iterative
pseudoinverse learning rule’™”. However, to reduce computational
time-complexity, we use an exact pseudoinverse rather than aniterative
pseudoinverse for calculation of these inter-layer weights, unless
otherwise specified.

Giventhe above equations, we can now perform bidirectional infer-
ence of sensory inputs from grid states and vice versa:

h(t+1) = ReLU[W,,s(t)] (8)
g(t+2)=CAN[W,h(t +1)] 9)

and
h(t+1) =ReLU[W,,g(t) - 6] (10)
s(e+2) =sgn[Wh(t+1)] (1)

The above two sets of equations can then be combined to use
Vector-HaSH as a content-addressable memory to recover stored sen-
sory inputs from corrupted inputs—first the grid states are inferred
from the corrupted sensory input, and then the true sensory input is
recalled from the inferred grid state.

The above equations have been written considering sensory inputs
toberandombinary states. Incasesinwhich sensory states are continu-
ous valued (as in Fig. 3b, for example) the sreconstruction equation,
equation (11) is replaced with simply s(¢ +2) = W h(t +2).

Equations (1)-(11) describe the core working of Vector-HaSH—this
core versionand its variants can then be used to generate item memory,
spatial memory, episodic memory, as well asawide range of experimen-
tal observations, such as those discussed in Fig. 6. In general, across
all models, we assume that the relevant synapses are plastic during
input presentation for memory storage, and are frozen during testing
of memory retrieval.

High-capacity pattern reconstruction

For the basic task of pattern storage and reconstruction, we utilize the
simplest form of Vector-HaSH without any additional components.
To examine reconstruction capacity, N, sensory cues are stored in
the network via training the W, and W,, weights as described in equa-
tions (6) and (7).

The N,,,s sensory cues need to be stored corresponding to distinct
scaffold states. In ourimplementation, for simplicity, we selected scaf-
fold states in a ‘hairpin’-like traversal, similar to that shown in Fig. 5a,
right to achieve this.

Then, aclean or corrupted version of a previously stored patternis
presented to the network in the sensory encoding layer, which then



propagates through the network via equations (8)-(11), finally generat-
ing the recalled patterns.

Inallnumerical examples that we consider in the main text we either
construct random binary {-1, 1} patterns, or consider images from
mini-imagenet (https://www.kaggle.com/datasets/whitemoon/mini-
imagenet). In particular, we took 3,600 images from the first 6 classes
{’house-finch’, ‘robin’, ‘triceratops’, ‘green-mamba’, ‘harvestman’ and
‘toucan’} and centre-cropped them to consider the middle 60 x 60
image and converted them to greyscale. We refer to this set of greyscale
images as bw-mini-imagenet. In all models, the memorized patterns
areanoise-free set, then we test memory recall with noise-free, partial
or noisy cues.

InFigs.2and 3, the recall performance and quality was examined in
networks with three grid modules, y = 0.6, and 6 = 0.5.

The capacity in Fig. 2c,d, right was evaluated by injecting a noise
into the hippocampal layer of magnitude 20% of the magnitude of
the hippocampal state vector, and requiring the iterated dynamics to
returnthe hippocampal state to within 0.6% of the original hippocampal
state (here magnitudes and distances were calculated viaan L>metric).

InFig. 2d, left and Extended Data Fig. 1, the critical N;} is estimated
asthe smallest value of N, such that all scaffold states have been stabi-
lized as fixed points. The corresponding module periods for data points
plottedin Extended Data Fig.1for two and three modules are listed in
Table 1. Similarly, the grid module periods for the data in Fig. 2c, left
arelistedin Table 2.

To estimate the basin sizes of the patterns stored in the scaffold,
as shown in Fig. 2e, we compute the probability that a given pattern
is perfectly recovered (that is, remains within its correct basin) as we
perturb the hippocampal states with avector of increasing magnitude.
We assume that the size of any given basin can be estimated as the
typical magnitude of perturbation that keeps the system within the
same basin of attraction—this is not generally true for non-convex
basins, particularly in high-dimensional spaces. However, this estimate
isrelevantin the context of testing robustness under corruption with
uncorrelated noise. Furthermore, we later demonstrate in Supple-
mentary Information, section C.3 that the basins are indeed convex.
Heregrid module periodsA = {3, 4, 5}, number of grid cells N, = 50, and
N, =400 hippocampal cells were used. Probability that a given pattern
remains withinits correct basin was estimated by computing the frac-
tionof runsin whichagiven patternwas correctly recovered fora100
different random realization of the injected noise.

Figure 2f examines the learning generalization in Vector-HaSH,
that is, the capability of Vector-HaSH to self-generate fixed points
corresponding to scaffold grid-hippocampal states despite training
onasmaller number of fixed points. For agiven number of training pat-
terns, we calculate the number of generated fixed points by counting

Table 1| Grid module periods, number of grid cells and total
number of patterns for datain Fig. 2e

A N, Noouts
2,3 13 36
3,4 25 144
4,5 , 400
5,6 61 900
6,7 85 1764
7,8 113 3136
1,2,3 14 36
2,3,5 38 900
3,4,5 50 3,600
4,57 90 19,600
5,6,7 110 44,100

Table 2 | Grid module periods, number of grid cells and total
number of patterns for data in Fig. 2f

A NQ Npalls
78 n3 3,136
3,58 98 14,400
3,4,57 99 176,400
1,3,4,57 100 176,400

the number of states that, wheninitialized at a scaffold state, remain
fixed afteriteration through equations (4) and (5). As discussed in the
main text, when training onagiven number of training patterns (thatis
less thanthe complete set of all patterns), the ordering of the patterns
is crucial in controlling the generalization properties of the model.
For Vector-HaSH, we order patterns such that atwo-dimensional con-
tiguous region of space is covered (see Supplementary Information,
section C.4 for additional details of the ordering and the freedom of
possibilities in this ordering), resulting in the strongest generaliza-
tion (Supplementary Information, section C.4). For comparison, in
Fig.2fwe also consider ‘shuffled hippocampal states’, wherein scaffold
states are randomized in order before subsets are selected for train-
ing. We also consider ‘random hippocampal states’: here we consider
each hippocampal state vector and randomize its indices, in effect
constructing a new state vector with exactly the same sparsity and
statistics, but now uncorrelated to the grid state corresponding to
that hippocampal state. Then, we use bidirectional pseudoinverse
learning between grid and hippocampal states and construct this as
ascaffold. This lack of structured correlations between grid and hip-
pocampal population vectors (PVs) results in catastrophic forgetting,
with no observed fixed points remaining once all scaffold states have
been used for training.

Allcurves showninFig.3c-fareaveraged over five runs with differ-
entrandominitialization of the predefined sparse connectivity matrix
W,e error bars shownas shaded regions represent standard deviation
across runs. InFig. 3b,e,h, grid module periods A= {3, 4, 5}, N, = 50,
N, =3,600 was used. The total capacity of the network in this case is
capped by N =[1,, A =3,600. For the other associative memory
models*>” " usedinFig.3d, all shown networks have -5 x 10° synapses.
Number of nodesin these networks are as follows: (1) Hopfield network
of size N=708, synapses = N°. (2) Pseudoinverse Hopfield network of
size N=708, synapses = N°. (3) Hopfield network with bounded syn-
apseswas trained with Hebbian learning on sequentially seen patterns.
Size of the network N =708, synapses = N°. (4) Sparse Hopfield network
(with sparse inputs) with a network size of N=708, synapses = N2,
sparsity =100(1 - p). (5) Sparse Hopfield network. Size of the network
N, synapse dilution k, synapses = k x N =10°. (6) Tail-biting overpa-
rameterized autoencoder with network layer sizes 900, 275, 38, 275,
900. Vector-HaSH uses 1= {2, 3, 5}, and layer sizes: N, = 38, N,,= 275,
N,=900.

For stored patterns of size N, recall of anindependent random vector
of size Nwould appear to have a Ml of -1/-/N, which when evaluating
the total Ml across all O(N) patterns or more would appear to scale as
O(-JN), despite no actual information being recalled. To prevent this
apparentinformationrecall,in Fig. 3fif theinformationrecall is smaller
than1/-/N we then set it explicitly to zero.

To examine Vector-HaSH’s performance on patterns with correla-
tions, in Fig. 3e we trained it on bw-mini-imagenet images using grid
module sizes A= {3, 4, 5}, and layer sizes: N, = 50, N;,=400, N;=3,600.
The plotted curve shows the mean-subtracted cosine similarity between
recovered and stored patterns illustrating that Vector-HaSH shows
gradual degradation as the number of stored patternsisincreased. The
resultant curveis an average over 5 runs with different sparse random
projections W,,.


https://www.kaggle.com/datasets/whitemoon/miniimagenet
https://www.kaggle.com/datasets/whitemoon/miniimagenet
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Mapping, recall, and zero-shot inference in multiple spatial
environments without catastrophicinterference

Here we add a path-integration component to Vector-HaSH, that utilizes
avelocity input to change the grid cell population activity akin to ref.
8, such that the phase represented by each module changes in corre-
spondence to the velocity input. Corresponding to the discrete hex-
agonal lattice space used torepresent each grid module, for simplicity
the velocity is assumed to have one of six directions, and magnitude
is assumed to be fixed at a constant such that the phase of each grid
module updates by asingle lattice pointinasingle time-step. Thisinput
velocity vector, that we call a velocity-shift operator, v, is thus repre-
sented by asix-dimensional one-hot encoded vector determining the
direction of the shift.

In order to capture the inherent randomness and uncertainty pre-
sent in real-world scenarios, a small amount of neuronal noise was
introduced by adding random perturbations to the activation values
of hippocampal cells in Vector-HaSH. This noise, generated from a
uniform distribution between 0 and 0.1, mimics the fluctuations and
disturbances observed in individual neurons, and corresponds to a
noise magnitude of roughly 25% the magnitude of the hippocampal
state vectors.

In Fig. 4a,c we first demonstrate bidirectional recall of grid states
from sensory inputs and vice versa. Here we consider Vector-HaSH
withA=1{3, 4, 5}, N,=50, N, =400, N, =3,600. We train the modelon a
total of 600 sensory inputs taken from bw-mini-imagenet (including
the 4 landmarks placed inthe room shownin Fig.4c). To demonstrate
zero-shot recall in panel ¢, the model dynamics are simulated on a
novel trajectory (right) through the same room with some locations
overlapping with the previous trajectory. Note that the reconstructed
landmarks do not have perfect recall. Instead, the reconstructions are
degraded relative to the originally stored landmarks since the total
number of stored landmarks in the model exceeds N, = 400 (Fig. 2f).

For all other panels of Fig. 4, we use Vector-HaSH with grid module
periodsA=1{3,4,5,7}, N;=99,N,=342,y=0.1,and §=2.5. The total
capacity of this grid-coding space is 176,400 = 2 x 10°. Each room is
stored by allocating arandom 10 x 10 patch of the grid-coding space to
it. Thisis constructed by first choosing any random pointin the room
tomaptoarandomly chosen area of the grid-coding space. Thenasthe
model moves in the room, path integration correspondingly updates
the grid phases in each grid module. The region of grid-coding space
explored as the model physically explores aroom is then the patch of
grid-coding space storing the particular room.

Toeach of the100 locations comprising aroom, we simulate aninde-
pendentsensory landmark as abinary {-1, 1} vectors. At initialization,
before observing any room, we begin with a pre-trained memory scaf-
fold, whereinthe W, and W, matrices have already been constructed
and trained corresponding to equations (2) and (3).

When firstbrought to aroom, the grid stateis initialized to the grid
state vector corresponding to the randomregion of grid-coding space
allocated totheroom. Then, as path integration updates the grid state
after moving around theroom, the observed sensory landmark states
are associated with the corresponding grid-hippocampal scaffold
states through learning the W,,and W,, matrices following equations (6)
and (7).

In the first two tests of each room (first tested right after each
room has been learned, and then tested after all rooms have been
learned; shownin Fig. 4d) sensory landmark cues can be observed by
Vector-HaSH. Using equation (8), the observed sensory landmarks
can be used to reconstruct the hippocampal state, resulting in the
reliably reconstructed hippocampal tuning curves as seen in Fig. 4e.
For testing stable recall in dark (Fig. 4d,e), Vector-HaSH is provided a
randomsingle sensory landmark cue from any given room. Thisland-
mark is used to ascertain the grid state corresponding to that landmark
through equation (8). Thereafter, path integrationis used to construct

the grid-hippocampal scaffold state as room s exploredin the absence
ofany further sensory cues. As seenin Fig. 4e, this also reliably recon-
structs the hippocampal state at each location in every room.

In Fig. 4f, we examine the dark recall of 3,600-dimensional sensory
landmarksineachroominacontinual learning setting. Here we begin
again with simply the pre-trained grid-hippocampal scaffold. As the
ith room is explored, the sensory-hippocampal weight matrices are
updatedtostore the thus far observed landmarks and their locations. At
eachstep of explorationwithin the ithroom, vVector-HaSH is queried
on the current and all previous rooms as follows: for any completed
roomyj (thatis, 0 <j<i), Vector-HaSH is dropped randomly anywhere
intheroomand allowed to observe the sensory landmark solely at that
startlocation and no further sensory landmarks. Then the model moves
around theroom through pathintegration, and attemptsto predict the
sensory landmarks that would be observed at each location. We then
compute the average Mlrecovered for eachlandmark at each position
intheroom, whichis shownin Fig. 4f. For the partially completed room
i, Vector-HaSH is similarly dropped randomly in the room, restricted
to the set of previously observed locations within the room. The MI
recovered during sensory prediction is similarly only evaluated over
the previously observed portion of the room.

For the baseline model shownin Fig. 4f, we first construct the grid-
hippocampal network through random hippocampal states with the
same sparsity as those in Vector-HaSH, and bidirectional pseudoinverse
learning between grid and hippocampal layers. Thereafter, the sensory
landmarks are associated with the hippocampal layer as in Vector-HaSH
described above, and this baseline model is subjected to an identical
test protocol to examine continual learning. The number of nodes in
the baseline modelis kept identical to Vector-HaSH.

For Fig. 4h, we follow the same analysis as in the experiment’. Dot
productbetween PVsacross all combinations of the 11 test rooms were
computed. To construct the PVs, we record the activations of hippocam-
pal cells for each of the 10 x 10 positions in the simulated room. We
stack theseinto100 composite PVs, 1for each positionin the room. To
compute overlaps between representations, the activation of each
hippocampal cellinany particular roomwas expressed as aratio of its
activation to the maximal activation of that cell across all rooms. The
overlap was then calculated as the normalized dot product between
the hippocampal cell activation vectorsin2 rooms, that s, the sum of
the products of corresponding components divided by the total num-
ber of hippocampal cells (N, = 342) for a given position/pixel, averaged
over 100 positions. The colour-coded matrix in Fig. 4h shows the aver-

age dot product values for PVs across rooms ( 121) =55 room pairs).

Repeated exposures to three familiar rooms were also added to this
analysis leading to a total of (1;] =91 room pairs.

For Fig. 4j, we plot the distribution of PV normalized dot products
computed above (for multiple visits to all the rooms) and use this PDF
to compute the corresponding cumulative distribution function.
Similarly, the cumulative distribution functions for shuffled data are
computed through the same procedure, but using shuffled data to
compute the PV normalized dot products. Shuffled data are obtained
either by random assignment of rate maps across rooms (shuffle room)
or by shuffling of cell identities within rooms (shuffle cells) or by acom-
bination of the two procedures (shuffle room and cells). The number
of different shuffles generated in each case was 1,000.

Extension of Vector-HaSH to continuous space

So far we have considered the grid states to be {0,1}-valued discretely
varying modular one-hot states. This leads to a finite number of grid
phases per module, and hence a finite number of grid PVs that can be
exactly enumerated, leading to the wealth of theoretical advancements
and results described above. To bring Vector-HaSH closer to biologi-
calrealism, we constructed continuous-valued grid states (Fig. 41), as



a Gaussian bump of activity on a two-dimensional lattice of neurons
with periodic boundary conditions, similar to the one-hot stateson a
periodic lattice considered earlier (compare with Fig. 2b). Continuous
attractor dynamics were approximated through a circular mean to
determine mean activity location, and reinitialization of a Gaussian
bump centered at the calculated mean location. Since the number of
phasesineach moduleis now infinite (the Gaussian bump need not be
centred on a neuron in the lattice) it is computationally challenging
to demonstrate memory capacity results similar to our analysis for
the discrete model above. As a proof of concept, we demonstrated
landmark reconstruction from grid phases and vice versain Fig. 4m.

For Fig.4m, we used 3 grid modules, consisting of 81,144 and 225 cells
each. The Gaussian bump of activity in each module was constructed
to have astandard deviation of 0.5.

We also used this continuous extension of Vector-HaSH in Fig. 6b,e-f.
Theresults presented in Fig. 6f are computed similarly to those in ref.
60. We first compute the temporal correlation between every pair
of grid cells before and after hippocampal activation. We compute
the correlation between these temporal correlations (shown by the
vertical red dashed line). We then generate 1,000 random shuffles of
the temporal correlations post hippocampal activation, and use these
shuffles to generate a control distribution of the correlation between
the temporal correlations (shown as the null distribution in black).

Pathlearningin the hippocampal scaffold
Here again, we add a path-integration component to Vector-HaSH as
described in the section above, such that a velocity-shift operator, v,
canbeusedto pathintegrate and update the grid cell population activ-
ity akin to ref. 8, such that the phase represented by each module
changes in correspondence to the input shift.

Forlearning of trajectoriesinspace, this vector v is either associated
with spatial locations and corresponding hippocampal state vectors
(as in path learning) or with sensory landmark inputs (as in route
learning).

All networks in Fig. 5j were constructed to have approximately
5x10°synapses, with network parametersidentical to those in Fig. 3d.
Figure 5i,j considers random binary patterns, and Fig. 5g,h considers
bw-mini-imagenetimages.

Path learning. Learning associations from the hippocampal layer
directly to the velocity inputs through pseudoinverse learning would
resultin perfect recall for only N, < Ny, which may be much smaller
than the grid-coding space, and would hence result in an incapability
torecall verylongsequences. To obtain higher capacity, welearnamap
from the hippocampal cell state to the corresponding velocity inputs at
that spatial location through a multi-layer perceptron, MLP. For all the
resultsshowninFig. 5¢,d, left, for example, we use asingle hidden layer
inthe MLP with 250 nodes. The dynamics of the network are as follows:

J(6) = MLP[A(1)] (12)
g(t+ 1) =Pllg(®); 5(0)] (13)
h(t+2) = ReLU[Wp,g(t+1) - 6] (14)
s(t+2) =sgn[W,h(t+2)] (15)

Thus, when cued with a sensory state at the start of an episode, the
sensory inputs to hippocampus reconstruct the corresponding hip-
pocampal and grid states. Then, through the MLP, the hippocampal
state projectstoalow-dimensional velocity vector thatis used to update
thegrid cellsviapathintegration. From thisupdated grid state, the cor-
responding hippocampal stateis constructed, which thenreconstructs
the next sensory pattern of the episode. The new hippocampal state

also maps to the next velocity vector, that continues the iteration by
updating the grid state. In this way, the memory scaffold along with
the MLP successively construct grid and hippocampal states, and the
heteroassociative weights to the sensory layer successively construct
the memorized patterns of the episode.

Route learning. Since detailed sensory information cannot be recalled
at very high capacities, route learning is performed by learning asso-
ciations between the recollection of the sensory inputs at alocation
}), and the velocity-shift vector v determining the direction of motion
of the trajectory being learned at that location. This association can
belearned directly through pseudoinverse learning as

W,.=Vs/, (16)
where, S,isa N, x N,.,-dimensional matrix with columns as the recalled
sensoryinputss-, and Visa 6 x N.,-dimensional matrix with columns
as the corresponding velocities. These associations can then be used
torecall long trajectories through

J(t) = WTA[W, s()] 17)
g(t+1)=Pllg(;5(0)] (18)
h(t+2) =ReLU[W,,,g(t+1) - 6] (19)
s(t+2) =sgn[W,,h(t+2)] (20)

As argued in Supplementary Information, section D.9, this results in
perfectsequencerecallfor N, < N, which can scale as the exponentially
large capacity of the grid-coding space. Note that the results in Sup-
plementary Information, section D.9 rely on S, being a rank-ordered
matrix. While this holds for random binary patterns through equa-
tion (20) applying a sign nonlinearity, this does not directly hold for
continuous-valued sensory states, where no nonlinearity is necessary.
In this case, we take the input sensory patterns, and apply an inverse
sigmoid functionto thembefore storage inthe W, matrix. Then, we use
equation (20) with the sign nonlinearity replaced with the sigmoid non-
linearity. This application of the inverse sigmoid and then the sigmoid
ensuresthat the final recovered states correspond to theinital patterns,
but the sensory states are recovered through a nonlinear readout.

Reproducing entorhinal-hippocampal phenomenology. For Fig. 6e,f
we used the continuous extension of Vector-HaSH (see detailsin ‘Exten-
sion of Vector-HaSH to continuous space’). We describe the methods
details for other panels below.

Grid-hippocampal correlations. We follow in Fig. 6d a similar analysis
toref.45. We consider two 10 x 10 rooms. Then, we choose a hippocam-
pal cell thatisactive inboth rooms at some location. Then, we calculate
thefraction of grid cells that are active at both of these locations, shown
inred. Then, we generate 100 shuffles of all place cell PVs, and generate
acontrol distribution of the fraction of grid cells that are co-active with
these shuffled place cells shown as the black histogram.

Goal and context-based remapping. When initialized in a new envi-
ronment, we model the grid state population activity to be randomly
initialized inthe grid-coding space (amechanistic model for suchran-
dominitialization will be discussed in future work), that is, the grid
state undergoes remapping. This grid-coding state, along with the
corresponding hippocampal coding state and sensory observations
atthatlocationarethenstoredinthe corresponding weight matrices,
thatis, W,,and W, via equations (6) and (7). When brought back to a
previously seen environment, these weight matrices in Vector-HaSH
use the observed sensory observations to drive the hippocampal cell
(and thus grid cell) population activity to the state initialized at the
first traversal of that environment.
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Similar to new environments, we also model contextual information
(suchas goals, rewards, start-end location pairs) tobe appended to the
sensory inputs. We allow new contextual information to also trigger
reinitialization of grid state, which then permits storage of multiple
paths that involve the same spatial location, provided that they are
distinguished by a contextual signal.

We use this set up of manualreinitialization of the grid state to repro-
ducethe experimental observations of splitter cells®?, route-dependent
place cells®®, directional place fields in one-dimensional environments®*
and ondirected routes in two-dimensional environments® in Fig. 6g-j
and Supplementary Fig. 19; and of directional place fields in a radial
eight-arm maze® in Supplementary Fig. 21. Inall of these cases, we first
generate trajectories correspondingto the paths that the animals are
constrained to traverse in the given experiment. These trajectories,
arethenstoredin Vector-HaSH atarandomlocationin the grid-coding
space througha path learning mechanism. At new contextual cues, the
grid stateinthe modelis reinitialized and the agent then continues ata
new location in the grid-coding space. This results in different spatial
firing fields, irrespective of whether the agent is at the same spatial
location as in a different previous context.

For all the simulations in Fig. 6g-j and Supplementary Figs. 19
and Fig. 21, Vector-HaSH withA={3, 4, 5, 7}, N, =500, N, = 99, 6 =2.5
and y = 0.10 was used. The total size of the grid-coding space is
420 x 420 =10°.In order to capture the inherent randomness and uncer-
tainty presentinreal-world scenarios, asmall amount of neuronal noise
was introduced by adding random perturbations to the activation
values of hippocampal cellsin Vector-HaSH. This noise, generated from
auniformdistribution between 0 and 0.1, mimics the fluctuations and
disturbances observed in individual neurons.

Splitter cells: For Fig. 6h, we follow an analysis method similar to
the analysis done on the experimental data®®. The central stem is
divided into four equal regions (Supplementary Fig. 22b), and the
mean activation of every hippocampal cell is computed in each of
the four regions. Supplementary Fig. 22¢ plots mean activations in
each of the four regions, of cells that show different activity patterns
as Vector-HaSH traverses the central stem on left-turn and right-turn
trials. The ‘activation ratio’ on right-turn trials versus left-turn trials
is then calculated for each cell in the region for which the given cell
has maximum difference in activations. The distribution of these
activation ratios is plotted in Fig. 6h, that shows the frequency dis-
tribution of cells with preferential firing associated with left-turn or
right-turn trials. Note that the distribution of cells preferring left-turn
and right-turn trials is approximately even. The percentage of hip-
pocampal cells with non-differential firing was found to be -3.896%,
and the percentage of hippocampal cells with differential firing was
found to be ~96.103% in Vector-HaSH (using a threshold of 2 on the
activation ratio).

Route encoding: In Supplementary Fig.19a,c we employed an ensem-
ble analysis approach mirroring that used in ref. 63 to validate if hip-
pocampal cells demonstrate route-dependent activity. Our simulated
session comprised 4 blocks, each representing one of 4 routes (0-3),
with 11trials per block. We performed ensemble analysis on the maze
region common to all routes.

We compared the PV—activations of all hippocampal cells on an
individual trajectory—to the average activation of these cells across
all trajectories on each route (route-PV). Specifically, we compared
the PVs for each trajectory to the average activation PVs (route-PVs)
of all four routes, excluding the trajectory in consideration from its
route-PV calculation to avoid bias.

Using cosine similarity, we assessed the likeness between each
trajectory PV and each of the four route-PVs. We then calculated the
fraction of correct matches (the highest similarity score was with its
corresponding route-PV) and incorrect matches (a higher similarity
score was with adifferent route-PV). The comparison results are shown
inSupplementary Fig. 2043, left.

We repeated the process 10,000 times with randomized data to
estimate the chance probability of correct matches. We randomized
the session data by shuffling trials across blocks, randomly assign-
ing each trajectory to one of the four routes, thereby disrupting any
correlation between the hippocampal cell activations and a specific
route. Supplementary Fig. 20a,right depicts a typical result from one
such shuffle.

For eachmatrix element (i,j), we plotted the distribution of datafrom
these 10,000 matrices in Supplementary Fig. 20b. We then estimated
the PDF from this distribution using a Gaussian kernel (Python’s scipy.
stats.gaussian_kde method). To gauge the chance probability of cor-
rect matches in our original, unshuffled analysis, we calculated the
percentile position of our observed match proportion, referencing
the same matrix element (i, ) from the unshuffled matrix in Supple-
mentary Fig. 20a.

Supplementary Fig.19c presents the probability of correct matches
in the unshuffled analysis based on these distributions from 10,000
shuffles. Low diagonal values indicate that trajectories significantly
match only their corresponding route-PVs.

Directional cells: For Fig. 6j and Supplementary Figs.19d and 21, the
directionality index is defined similar to that defined for the experi-
mental data analysis®*®*. Given the activation (4) of a hippocampal cell
inpositive and negative running directions (A, and A_), we define the
directionalityindexas|A, — A_|/|A, + A_|. By this definition, a direction-
alityindex of one indicates activity in one direction only, and adirec-
tionality index of zero indicates identical activity inboth directions.

We use the same definition of directionality index to compute the

directionality of the grid cells in Vector-HaSH, shown in Supplemen-
tary Fig. 24.
Multiple traces theory. In Fig. 61-0, we consider Vector-HaSH with
A=1{3, 4,5}, N;=50,N,=400,N,=3,600,y=0.6,and 6=0.5. We use
random binary patterns in Fig. 6n, right, o, and bw-mini-imagenet
patternsin Fig. 6m,n, left. The results are averaged over 20 runs. For
sensory inputs presented multiple times, the sensory-hippocampal
weights are reinforced multiple times using online pseudoinverse
learning rule’™, and the grid-hippocampal weights are reinforced
multiple times using Hebbian learning (Fig. 61). The W, weights are
invariant to reinforcement due to the iterative pseudoinverse caus-
ing perfect hippocampal reconstruction from sensory inputs. Given
aparticular lesion size, the cells to be lesioned are randomly chosen
from the set of all hippocampal cells, and their activation is set to
zero.Sensory recovery error is defined as the mean L2-norm between
the ground truth image and the image reconstructed by the model.
During testing, the model receives the ground truth sensory image
asinput, and the reconstruction dynamics follow equations (8)-(11).
Additional results from each layer of Vector-HaSH while testing the
Multiple-Trace Theory are shown in Supplementary Fig. 16, right.
Furthermore, Supplementary Fig. 16, left shows the results when only
W,, weights are reinforced, assuming pre-trained scaffold weights
We.. Inboth case, same parameter settings were used as in Fig. 6n,
right and Fig. 60.

Parameter values. Figure 2: across all panels: y= 0.6, 8 = 0.5. Stable
states counted if they can correct noise of magnitude 20% of the typi-
cal hippocampal state magnitude, and requiring dynamics to return
towithin 0.6% of the original hippocampal state. Figure 2e,fuse three
moduleswithA={3,4,5}and N, =400.
Figure3:acrossallpanels:y=0.6,0=0.5.InFig.3b,e,i,A={3,4,5}, N,
=50,N,=3,600.InFig.3c,e,f, right,i, N, =400. Capacity iscomputedin
Fig.3fthroughinjecting 2.5% noise inthe sensory inputs, and demand-
ing perfect (0 error) recall. In Fig. 3d, all shown networks have ~5 x 10°
synapses, with Vector-HaSH module periods A = {2, 3, 5}, and layer sizes:
Ng =38, N;,=275, N;=900. Number of nodes in other networks are as
follows: (1) Hopfield network of size N = 708, synapses = N°. (2) Pseu-
doinverse Hopfield network of size N = 708, synapses = N* (3) Hopfield



network with bounded synapses was trained with Hebbianlearning on
sequentially seen patterns. Size of the network N = 708, synapses = N%.
(4) Sparse Hopfield network (with sparse inputs) with a network size
of N=708, synapses = N?, sparsity =100(1 - p). (5) Sparse Hopfield net-
work. Size of the network N, synapse dilution k, synapses = k x N> =10°.
(6) Tail-biting overparameterized autoencoder> with network layer
sizes 900, 275, 38, 275, 900.

Figure 4: across all panels: y=0.1, 8 =2.5. Figure 4a,c used
A1=1{3,4,5},N,=400and N, =3,600.InFig.4m, weused 3 grid modules,
consisting of 81, 144 and 225 cells each, and N, =1,000. The Gaussian
bump of activity had standard deviation of 0.5. All other panelsin Fig. 4
usedA=1{3,4,5,7}, N,=342. In Fig. 4c, we show the model 596 other
landmarks before observing the 4 shown landmarks.

Figure 5a, left,b-e used A=1{5, 9, 13}, y=0.6, 6 =0.5, N, =500.
Figure 5a, right,g used 1= {3, 4, 5}, N, =400, N, =36,00. Hopfield net-
work in Fig. 5h used 3,600 nodes. Figure 5g,h stored a sequence of
length 1,000. Figure 5i also used N,, =400. Figure 5a,c,d, left,e used
250 MLP nodes. Parameters used in Fig. 5j were identical to those used
in Fig. 3d.

Figure 6: all panelsused y=0.1,0=2.5.Figure 6b,e,fused the continu-
ous version of Vector-HaSH, using the same parameters as Fig. 4k,m.
All other panels in Fig. 6 usedA=1{3, 4, 5}, N,,=400, N, =3,600.

Figure 7: all panelsused1={4, 5,7}, N,=400,y=0.6,0=0.5.The
mnemonicinputlayer had 3,600 nodes.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data were collecting by running the codes available at https://github.
com/FieteLab.

Code availability

Codes used to run the model and analyse data are available at https://
github.com/FieteLab.
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Extended DataFig.1|Critical number of hippocampal cells necessary to
supportallscaffold fixed pointsis asymptoticallyindependent of the
number of grid cells. For agiven number of modules, the critical number of
hippocampal cells, N; increases slowly with the number of grid cells, but then
asymptotically approaches a constant, asexpected from the theoretical results
inSec.C.1.
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Extended DataFig.2|Learning generalization approaches theoretical
expectations withincreasing N,. The number of generated fixed points
approaches the maximal scaffold capacity for avery small number of learned
patterns (see also Fig. 2f). As the number of hippocampal cells increases, the
number of learning patterns necessary for complete generalization approaches
thetheoreticalexpectation of MxK,,,, as provedinSISec. C.4.
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Extended DataFig.3|Hebbianlearning betweensensory layer and scaffold
also produces memory continuum. A memory continuumis obtainedin
Vector-HaSH evenifthe weights between the sensory and hippocampal layers
arebi-directionally trained using Hebbian learning (instead of pseudoinverse
learning, asinFig.3. This continuumis also asymptotically proportional to the
theoreticalbound on memory capacity (forest green dashed line indicative of
slope of theoretical upper bound, vertical and horizontal position of dashed
lineis arbitrary). However, the proportionality constantis lower, with the gradual
degradation of information recall occurring well before N,. Vector-HaSH
parametersidentical to Fig.3cwithA=1{3,4,5}.
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Randomization  We have not collected or analyzed data beyond the performed numerical simulations. n/a
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