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Episodic and associative memory from spatial 
scaffolds in the hippocampus

Sarthak Chandra1,4, Sugandha Sharma1,4, Rishidev Chaudhuri2,3 & Ila Fiete1 ✉

Hippocampal circuits in the brain enable two distinct cognitive functions: the 
construction of spatial maps for navigation, and the storage of sequential episodic 
memories1–5. Although there have been advances in modelling spatial representations 
in the hippocampus6–10, we lack good models of its role in episodic memory. Here we 
present a neocortical–entorhinal–hippocampal network model that implements a 
high-capacity general associative memory, spatial memory and episodic memory.  
By factoring content storage from the dynamics of generating error-correcting stable 
states, the circuit (which we call vector hippocampal scaffolded heteroassociative 
memory (Vector-HaSH)) avoids the memory cliff of prior memory models11,12, and 
instead exhibits a graceful trade-off between number of stored items and recall detail. 
A pre-structured internal scaffold based on grid cell states is essential for constructing 
even non-spatial episodic memory: it enables high-capacity sequence memorization 
by abstracting the chaining problem into one of learning low-dimensional transitions. 
Vector-HaSH reproduces several hippocampal experiments on spatial mapping and 
context-based representations, and provides a circuit model of the ‘memory palaces’ 
used by memory athletes13. Thus, this work provides a unified understanding of the 
spatial mapping and associative and episodic memory roles of the hippocampus.

As we navigate through life, the hippocampus weaves threads of expe-
rience into a fabric of memory cross-linked by context. Thus, we can 
revisit scenes and events from only a few cues, as with Proust’s famous 
madeleine14. Such memories enable inferences in the present and plan-
ning for the future. The hippocampal complex is responsible for this 
functionality1,15–18, but it is unclear exactly how the architecture and 
representations of the hippocampus and adjoining cortical regions 
enable it.

Substructures of the hippocampal complex have been studied 
extensively2–5,19–24, and experimental findings combined with model-
ling have led to marked progress in understanding local circuit mecha-
nisms8–10,25–45. These works put us in an excellent position to build our 
understanding of how the combined system subserves memory storage 
and recall. A central question involves the dual role of this structure. The 
ability to form episodic memories, our catalogue of autobiographical 
experiences, is compromised by damage to the hippocampal complex1. 
Spatial memory—remembering the layout of our physical environment 
and our updated position within it as we move about—also centrally 
involves the hippocampus. Place cells fire at specific locations and 
environments2, and entorhinal grid cells represent spatial displace-
ments in the form of triangular grid firing patterns that repeat across 
environments3. It remains unknown why these two forms of memory 
are co-localized.

One hypothesis is that the circuit prioritizes spatial memory, such 
as where certain foods and dangers were found. In this view, epi-
sodic memory is an augmentation of the spatial memory system and 

representations are optimal for spatial, not episodic, memory. The 
second hypothesis is that the circuit is optimal for episodic memory, 
with spatial coordinates represented primarily as a stable and useful 
index for episodic memory46. The third hypothesis is that the circuit 
does not simply store spatial and episodic information side by side 
or with one in the service of the other, but that its highly structured 
architectures, representations and dynamics are equally optimal for 
both functions, even when the memory in question does not involve 
space. Thus, the low-dimensional states in the circuit that are inter-
preted as spatial may serve as equally critical scaffolds for linking 
together (potentially entirely non-spatial) elements of an episodic 
memory18,45–50.

We propose a neocortical–entorhinal–hippocampal memory 
model based on properties of the biological circuit. It excels at item 
memory, spatial memory and sequential episodic memory with 
content-addressable recall, avoiding the full erasure (memory cliff) of 
existing neural memory models when adding inputs beyond a fixed low 
capacity (Fig. 1a). Critically, the memory model: (1) separates dynamical 
fixed point generation (for pattern completion and error correction) 
from content encoding, with the former exploiting the structure of grid 
cell states; and (2) converts the problem of sequence memory into a 
simple process of low-dimensional transitions on the grid states. Grid 
cells are thus equally essential for non-spatial memory, supporting 
the third hypothesis.

This circuit, which we call Vector-HaSH because it assigns an 
error-correcting hash code to each input (a hash is a unique label 
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independent of content) and exploits the metric structure of grid 
cell states to enable sequence storage via low-dimensional vector 
transitions.

Factorization of dynamics and content
Hopfield networks are the paradigmatic model of content-addressable 
neural network memory25. Structured as monolithic recurrent net-
works, they exhibit a steep memory cliff: in an N-neuron network, up 
to approximately N patterns (of N bits each) are perfectly recovered, but 
adding more patterns leads to total loss of even previously memorized 
patterns (Fig. 1a). Variants of Hopfield networks all exhibit a cliff11,12,51.

Vector-HaSH is based on (known and inferred) connectivity of the 
hippocampus and entorhinal cortex8,52. Entorhinal grid cells, which 
project to hippocampus (Fig. 1b, orange), consist of multiple modules23 
with distinct periods λ. Each module expresses a set of low-dimensional 
states that are stabilized by recurrent connections and are invariant to 
task and behavioural state33,34,36–38. In non-spatial contexts, these states 
can be conceptualized as abstract representations that are constrained 
to lie on a two-dimensional torus. Processed extrahippocampal inputs 
carrying sensory and internally generated states enter the hippocam-
pus (Fig. 1b, purple) via non-grid entorhinal neurons and a few other 
cortical areas (Fig. 1b, green).

Critically, connections from grid cells to hippocampus are set as 
random and fixed. Hippocampus projects back to entorhinal cortex; 
those to grid cells are set once (for example, during pre- or post-natal 
development) by associative learning, then held fixed. Connections 
of hippocampus to non-grid cells remain bidirectionally plastic for 
memory acquisition and are set by associative learning. Activity propa-
gation between regions occurs in sequential order and discrete time, a 
simplification of the oscillations and synaptic latencies hypothesized 
to gate this information flow. We refer to the grid–hippocampal subcir-
cuit, with its unchanging weights, as the fixed scaffold of the network. 
Separately, we refer to the hippocampal–non-grid cortical feedback 
loop as the heteroassociative part of the circuit. We will see that small 
variations of this basic circuit enable content-addressable memory 
in various settings, from spatial to non-spatial memory to sequential 
episodic memory and memory palaces (Fig. 1c–f).

A vast library of robust fixed points
Grid cells are partitioned into a few (M) independent modules: a 
module (the ith module) can occupy one of Ki states, which lie on 
a two-dimensional torus. Together, the modules express ∏iKi ≈ ⟨K⟩M 
many distinct states, growing exponentially with M. An across-module 
grid state, if bidirectionally coupled to a hippocampal cell that 
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Fig. 1 | Biological memory: challenges and proposed architecture. a, Left, 
memory cliff. Mutual information (MI) between stored and retrieved patterns 
in a Hopfield network of N neurons drops sharply to zero after a critical number 
(approximately N) of stored patterns. Middle and right, MI in variants of Hopfield 
networks (sparse synapses; input patterns with sparseness p, f = pln(p); modern 
Hopfield networks) all exhibit a cliff. Dashed black line indicates theoretical 
limit for neural networks with N2 plastic synapses11,12. We explore whether it is 
possible for content-addressable memory to hug the bound, regardless of the 
number of stored patterns. b, Vector-HaSH architecture. Grid cell modules 

(orange) with fixed recurrent connectivity and states, hippocampal cells (pink) 
and non-grid entorhinal/neocortical (EC) processed sensory inputs (green). Solid 
and dashed black arrows indicate fixed connections and weights; grey arrows 
indicate plastic weights. Ng is the number of grid cells, Nh is the number of 
hippocampal neurons and Ns is the number of sensory input neurons. The light 
blue box represents a low-dimensional velocity ‘shift mechanism’ that changes 
the grid phases. c–f, Vector-HaSH variants that model item memory (c), spatial 
memory (d), episodic memory (e) and the memory palace technique (f).
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couples the modules30,32, can become a stable fixed point and enable 
error correction32. Because there are many more grid states than hip-
pocampal neurons53, this formulation cannot work for all grid states.

Remarkably, if grid cells project with random weights (a high-rank 
random projection) to hippocampus, and hippocampal cells (after 
thresholding their inputs) send return projections that are learned 
through Hebb-like learning to reinforce the corresponding grid states 
(Methods), then all grid states become stable fixed points (attractors) 
of the grid–hippocampal scaffold network (Fig. 2b,c), once the hippocam-
pus is above a minimal size (N *h ). We define a state as an attractor if it is 
restored to its non-noisy value through the scaffold dynamics after injec-
tion of noise of norm 0.25 times the average hippocampal state norm.

The minimum hippocampal size (N *h ) to convert all grid states to 
attractors is small (Fig. 2c)—it scales only linearly with the number of 
grid modules (Fig. 2d, left and Supplementary Fig. 1; proof in Supple-
mentary Information, section C.1) and is nearly independent of the 
scale (periodicity) of the grid modules (Fig. 2d, right and Extended 
Data Fig. 1; proof in Supplementary Information, section C.1). Thus, 
the number of attractors (approximately ⟨K⟩M) is exponential in the 
total number of scaffold (grid and hippocampal) neurons (Nh +  
M⟨K⟩ ≈ M(c + K)), where c is a constant. For example, M = 10, K = 102  
(10 grid phases per dimension) would generate ~1020 scaffold attractors 
with only ~103 combined hippocampal and grid cells.

A correspondence between the grid states and grid-driven hip-
pocampal states is critical: if the set of hippocampal states is ran-
domly reassigned to the grid states, with bidirectional learning of 
grid–hippocampal weights for self-consistent activity reinforce-
ment, the number of attractors collapses (Fig. 2c,d, light green 
curves; also see Supplementary Information Fig. 2). A similar col-
lapse occurs if hippocampal-to-grid weights are randomly set while 
the grid-to-hippocampal weights are associatively learned for 
self-consistency (Supplementary Fig. 3).

We derive theoretically that the scaffold has no spurious fixed points 
or attractors, thus the scaffold attractor basins are maximally large (all 
hippocampal states form the scaffold attractor basins). The basins are 

also all convex and essentially identical (Supplementary Information, 
sections C.2 and C.3). We test these analytical results by numerically 
computing the probability that a noisy hippocampal state flows to 
the true attractor (Fig. 2e). Injected noise of magnitude several times 
the hippocampal state norm is reliably corrected, and all basins have 
identical probability curves.

Strong generalization property of scaffold
A key property of the scaffold is ‘strong generalization’: associatively 
learning the hippocampal-to-grid cell weights to stabilize the exponen-
tially many (approximately K( )MO ) grid states does not require visiting 
them all. Visiting and performing associative grid–hippocampal  
learning on a vanishingly small fraction of the states stabilizes them all 
(Fig. 2f). We show that visiting any MK( )maxO  contiguous grid states, 
where Kmax is the number of states in the largest module, is sufficient 
for stabilizing all (approximately ⟨K⟩M) of them as scaffold fixed points 
(Extended Data Fig. 2 and Supplementary Information, section C.4); 
the results are robust to noise during learning (compare with Supple-
mentary Fig. 5). Replacing grid states with random patterns of matched 
sparsity (for example, by shuffling within each multi-module grid-coding 
state), as in memory scaffold with heteroassociation (MESH)54, results 
in near-total generalization loss (proof in Supplementary Information, 
section C.4), and visiting grid states in random order decreases the 
amount of generalization (Fig. 2f). Certain special sets of non-contiguous 
locations can also lead to strong generalization (Supplementary Infor-
mation, section C.4 and Supplementary Fig. 4). Strong generalization 
implies that restricted spatial exploration by juveniles in a small envi-
ronment is sufficient to set up the scaffold for the rest of the lifetime.

Heteroassociation of inputs onto scaffold
A content-addressable memory should store user-defined inputs and 
recall them from partial or corrupted inputs. The scaffold states can 
be used for content-addressable memory via heteroassociation of 
external cues with the scaffold.

a b

Grid 

Hippocampus

1

2,...,T – 1

T

d ec f

N
h

N
g

Original grid state Original HPC state Noisy HPC state Noisy grid state Recovered grid state Recovered HPC state

Noise

P
(c

or
re

ct
)

||Perturbation||

||HPC vector||

1.0

0 0

1

2

3

No. of seen grid states

N
o.

 o
f �

xe
d

 p
oi

nt
s

×10
3

×10
3

0

100

200

Vector-HaSH
Max. GC states

Vector-HaSH
contiguous order

No. of grid modules

10
3

10
6

10
9

10
12

Nh = 450

Nh = 600

Nh = 750

Nh = 300

4

0.5

No. of grid modules

600

500

400

300

N
h*

N
o.

 o
f �

xe
d

 p
oi

nt
s

2 4 6 8 2 0 100 200 300 0 5 103 4 5

2

1

0

No. of HPC cells (Nh)

×10
4

 = {4,5,7}

 = {3,4,5}
 = {2,3,5}

Random HPC states
Random HPC states

700

Ng ≈ 100

Random HPC statesNh*

N
o.

 o
f �

xe
d

 p
oi

nt
s

20 1 3 4

Shuf�ed

Fig. 2 | The scaffold generates exponentially many attractors with equally 
large basins. a, Scaffold architecture, as in Fig. 1. 1,...,T indicates the flow of 
dynamics (order of updating) in the circuit. b, Left two images, grid state and 
corresponding hippocampal (HPC) state. Other images: scaffold initialized 
with noisy version of hippocampal state from the left is cleaned up by 
hippocampal–grid, grid–grid and grid–hippocampal scaffold dynamics.  
c, Number of scaffold fixed points increases exponentially with number of grid 
modules32,53, given enough hippocampal neurons. Diamonds are results of 
numerical simulation; dashed line represents an analytical curve (Supplementary 
Information, section C.1). Error bars represent s.d. over five runs (but are not 
visible). Light green line represents shuffled pairing of grid–hippocampal states, 
with grid–hippocampal weights bidirectionally learned. d, Left, minimal 
hippocampal size (N *h) to convert all grid states into fixed points is linear in 

number of grid modules. Right, N *h is nearly independent of the grid period λ. 
Error bars represent s.d. over five runs. e, Probability that noisy hippocampal 
state flows to correct attractor, versus noise magnitude (in multiples of mean 
hippocampal state norm). Grey curves show data for five different attractors. 
Black curve shows the average over 3,600 attractors. 100 random noise 
realizations per attractor. f, Strong generalization: number of formed scaffold 
attractors versus number of states used to associatively learn hippocampus- 
to-grid weights. Dark grey represents any contiguous sequence of grid states; 
black is an optimal sequence; light grey is a random sequence. Vertical dashed 
line represents the theoretical minimum number of states associatively learned 
to make all grid states into attractors. GC, grid cell; Max., maximum. Error bars 
represent s.d. over five runs.
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We will refer to inputs to the hippocampus from neocortex and 
non-grid entorhinal cells (Fig. 3a, green), as sensory inputs. A sensory 
input is associated with a randomly selected scaffold fixed point via a 
Hebb-like online implementation of the pseudoinverse rule between 
sensory input and the hippocampal state (simple Hebbian learning 
achieves the same asymptotic capacity with a reduced constant prefac-
tor; Extended Data Fig. 3 and Supplementary Information, section D.6). 
These weights impose self-consistency so that hippocampal drive to 
the sensory states approximates the sensory activations input to the 
hippocampus.

Once acquired, memories can be reconstructed from partial sensory 
cues: these inputs drive a hippocampal state, which settles towards 
a scaffold fixed point via hippocampal–grid dynamics; finally, a 
sensory state is reconstructed by hippocampal-to-sensory weights. 
Thus, Vector-HaSH behaves as a content-addressable memory net-
work (Fig. 3b).

A graceful item number–information trade-off
Memory recall in Vector-HaSH is perfect up to Nh input patterns (the 
circuit recovers all Ns bits per pattern correctly, where Ns is the sensory 

input dimension); after more than Nh patterns are stored, the informa-
tion recovered for each pattern scales inversely with the number of 
patterns (Fig. 3c). Thus, Vector-HaSH exhibits a graceful trade-off or 
‘continuum’ between pattern number and recall richness, rather than a 
memory cliff, and total information in the network remains parallel to 
the theoretical upper bound (the square of the number of synapses) out 
to the number of scaffold fixed points (Fig. 3c). Proof in Supplementary 
Information, section D shows perfect content-addressable recall for 
the first Nh states and near-optimal precision–pattern number trade-off 
beyond if the hippocampal states are a random projection from grid 
cells, passing through some nonlinear transformation; almost any 
nonlinear transformation, without fine-tuning, is sufficient (Supple-
mentary Figs. 10 and 11).

Increasing the sensory input dimension and thus information per 
pattern does not reduce the information fraction recovered because 
although pattern size grows, so do the number of heteroassociative 
weights (Fig. 3c, inset; also see Supplementary Fig. 6). The informa-
tion contributed per synapse approaches a constant non-zero value 
as the number of stored patterns increases (Fig. 3d), in contrast to 
Hopfield networks, where the value drops to zero11,12 past the memory 
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hippocampal firing rates. In c–f, shaded regions represent the s.d. over five runs.
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cliff (Fig. 3d). Other memory models (Supplementary Information, 
section D4) exhibit a similar cliff or only store one specific number of 
patterns for a fixed network architecture51.

After most or all scaffold states have been used, there are three pos-
sibilities: (1) no further inputs are stored; (2) each new input replaces an 
existing memory (based on sensory overlap, age or random selection); 
or (3) all heteroassociative weights slowly decay so that older memories 
fade and those scaffold states are identified for reuse.

Comparison with end-to-end trained deep networks
Vector-HaSH can be unfolded for interpretation as an autoencoder55 
(Fig. 3e, left, architecture schematic) that has recurrent weights and 
is highly constrained: encoding and recurrent weights in the bottle-
neck layer are fixed, as are weights from the encoder to bottleneck and 
bottleneck to decoder layers. All remaining weights are set through 
biologically plausible associative learning. For comparison, consider 
an unconstrained and end-to-end gradient-optimized (via backprop) 
autoencoder of the same dimensions, with the addition of a tail-biting 
(output-to-input identity) connection for iterative reconstruction55 
(Fig. 3e, left, architecture schematic). Notably, Vector-HaSH substan-
tially outperforms this autoencoder despite the much greater potential 
flexibility of the autoencoder (Fig. 3e), mirroring the results in ref. 54. 
The tail-biting exhibits a memory cliff, seen from curves (Fig. 3e, left) 
and reconstructions of a sample pattern (Fig. 3e, right). Vector-HaSH 
also outperforms optimized tail-biting and non-iterated autoencoders 
when cued with noisy sensory cues (Supplementary Fig. 7). Thus, the 
fixed scaffold provides a key inductive bias for robust high-capacity 
memory, which gradient optimization on an unconstrained architec-
ture apparently cannot find or achieve.

Mechanisms of the memory continuum
We probe the circuit to understand its continuum behaviour. As Nh is 
varied above its threshold value, precision of reconstruction varies 
across the circuit (Fig. 3f, left). Grid and hippocampal states are nearly 
always recalled exactly. The sensory state is recalled approximately, 
with a continuous dependence on hippocampus size. Even when 
sensory retrieval is approximate, it falls in the correct basin (within 
the Voronoi region of the original sensory pattern (Fig. 3f, left)). The 
approximate recalled sensory state is identical, whether the cue is the 
true memory pattern (Fig. 3g, left) or a highly degraded version of it 
(Fig. 3f, right and Supplementary Fig. 8). In other words, although the 
precision of sensory reconstruction systematically decreases with 
the number of patterns (the distance of the recalled state within the 
Voronoi cell from the true sensory pattern increases)—accounting for 
the memory continuum—the reconstruction is reliable: regardless of 
the cue (which might be noiseless or corrupted), the reconstructed 
pattern is the same. This property will be important when modelling 
memory palaces.

Mechanistically, sensory-to-hippocampal projections partially 
denoise input cues (the hippocampal state is closer to its fixed point 
(Fig. 3g, green to pink) than the cue may have been to the true input). 
Next, scaffold dynamics recover the exact fixed point (Fig. 3g, pink to 
orange to pink) even deep in the memory continuum (analytical proof 
in Supplementary Information, section D.1) and for highly corrupted 
hippocampal states, because of the convex large-basin property of scaf-
fold attractors. Finally, hippocampus-to-sensory projections decode 
the scaffold state to a reconstructed sensory state. Interference in 
the heteroassociative weights leads to growing approximation error 
with pattern number, but it remains continuous rather than cliff-like 
because decoding happens in a single feedforward pass rather than 
via iteration (proofs in Supplementary Information, sections D.2 and 
D.6). In sum, the factorization of attractor creation from content stor-
age enables both pattern completion (exact recovery via recursion in 
the scaffold) and graded memory precision behaviour (feedforward 
decoding) in Vector-HaSH.

Conceptually, conventional autoassociative memory networks 
perform poorly because the locations, basin widths and depths of 
their attractors are governed by pattern content, leading to uneven, 
non-convex, small basins and many spurious minima. In Vector-HaSH, 
the attractor landscape is set by the regular structure of grid cell states, 
which produce well-spaced attractors with large basins and no spurious 
minima. Content is simply hooked onto these pre-structured states, in 
analogy with a clothesline (the scaffold) to which any clothes (sensory 
patterns) can be attached (via heteroassociation) (Fig. 3h).

One-shot robust recognition memory
Memorized inputs, because they are associated with scaffold attrac-
tors, generate grid-defined hippocampal states that form a narrow 
distribution with highly similar firing rates. When a novel sensory input 
drives the hippocampal state, that state, as well as the projection into 
grid cells and their initial return projection back to hippocampus, form 
patterns that are far outside the usual distribution for both cell popula-
tions (Supplementary Fig. 12). A simple decoder that detects firing rate 
deviations in either direction from the usual mean in the hippocampal 
state—implemented with two hidden units and fixed parameters from 
the time of scaffold formation (independent of the sensory inputs or 
number of memories stored; Supplementary Information, section 
D.7)—acts as a reliable familiarity/novelty discriminator (Fig. 3i). Such 
a recognition memory can be used to decide a sensory input should 
be cleaned up (pattern completed) for recall or trigger new memory 
creation (association with a fresh scaffold state).

Spatial inference and memory
When self-motion signals drive transitions between grid cell states 
(Fig. 4a), the architecture and dynamics of Vector-HaSH support spatial 
memory without catastrophic forgetting and zero-shot spatial infer-
ence along novel paths.

At a landmark or corner of a novel room, grid module phases are 
initialized randomly. Velocity inputs update the grid phases by path 
integration8. Vector-HaSH learns a map of the room via associations 
between the grid-driven scaffold states and sensory cues. Its structure 
permits successful reconstruction from either input (Supplementary 
Information, section D), thus grid states can be recalled from sensory 
cues or vice versa (Fig. 4a). If a familiar room is traversed without access 
to sensory cues (in the dark or in-between landmarks), Vector-HaSH 
path integrates to update grid (and thus hippocampal) states. At a land-
mark, the hippocampal state is updated via the sensory-hippocampal 
weights (Fig. 3a,b), resetting any path-integration errors. Thus, without 
threshold modifications, hippocampal states can be determined by grid 
inputs alone, sensory inputs alone, or a combination of these. Grid cells 
and hippocampal cells exhibit realistic spatial tuning, including the 
localized and usually single-bump tuning typical of place cells (Fig. 4b 
and Supplementary Fig. 13).

After very sparse exploration in a novel room (trajectory of Fig. 4c, 
left), Vector-HaSH is able to predict expected sensory observations 
along an entirely new route through the room (trajectory of Fig. 4c, 
right). This zero-shot inference ability arises from the path invariance 
of velocity integration: velocity updating generates accurate grid states 
even along novel paths, which then reconstruct (predict) sensory cues 
associated with those states.

After sequential exposure to a set of rooms (Fig. 4d), Vector-HaSH 
learns distinct spatial maps, assessed for each by testing sensory-cued 
grid state inference (without path integration) after seeing that room 
(Fig. 4d,e). To examine gradual interference between rooms (cata-
strophic forgetting), we test Vector-HaSH in all prior rooms right 
after learning the ith room (Fig. 4d,e). Recall of hippocampal and grid 
states from sensory cues remains unchanged for all prior environ-
ments after subsequent acquisition of up to 10 rooms, without replay or 
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consolidative rehearsal. This is due to the exponential scaling capacity 
and architecture of Vector-HaSH, in which random grid phase initiali-
zations result in well-separated maps (Fig. 4g). Thus the model avoids 
not only a memory cliff but also catastrophic forgetting in grid and 
hippocampal recall.

In the ‘dark’ (no visible landmarks), after the initial grid state is speci-
fied for each room, the model is able to recall a large amount of sensory 
information (1 cue per location in every room) over 11 rooms, although 
the sensory cues in all rooms are recalled less vividly after learning 11 
rooms (rightmost part, black curves of Fig. 4f) because the circuit is 
in the memory continuum.

Hippocampal tuning is stable on repeated visits to the same room, 
with orthogonal representations of different rooms as in experiments 
(Fig. 4i,j). Additional properties, including the distribution of prob-
abilities that a hippocampal cell has a field in multiple rooms, match 
experimental data (Fig. 4k).

In a continuous-activation and continuous-space implementation of 
Vector-HaSH (Methods), the discrete scaffold attractors form a folded 
two-dimensional continuous attractor within the Nh-dimensional space 
of hippocampal states. The basins remain large (Nh − 2-dimensional 
instead of Nh-dimensional; Fig. 4l illustrates this using a one-dimensional 
continuous attractor). Vector-HaSH still performs robust associative 
memory retrieval and inference in the continuous limit (Fig. 4m).

Vector updating of grid states
Episodic memory centrally involves sequences of events in time. 
Sequence memory can be modelled with asymmetric Hopfield net-
works56 in which the user-defined pattern at one time drives, through 
learned weights, the next user-defined pattern. These models result 
in similar or stronger capacity limitations as for item memory12,55: such 
networks quickly fail (within approximately 50 steps) to reconstruct 
even an approximation of the next pattern (Fig. 5b). We will show that, 
remarkably, Vector-HaSH permits massive sequence memory by fac-
torizing the problem to construct high-capacity abstract sequences 
(a sequence scaffold) and then affixing content via heteroassociation.

First, we hypothesized that modelling hippocampus as an asymmet-
ric Hopfield-like network directly encoding the input patterns, with 
bidirectionally learned grid cell interactions to help denoise and pat-
tern complete the imperfectly reconstructed next hippocampal state, 
might support high-capacity sequence reproduction. This roughly 
doubled the sequence capacity (to approximately 100 steps), but did 
not fundamentally alter capacity scaling with network size (Fig. 5b).

Next, in the full spirit of the scaffold network, we reasoned that learn-
ing an abstract sequence of scaffold states rather than user-defined 
hippocampal states might be the solution. Hippocampal states were 
given by random grid state projections and hippocampus-to-grid 
weights were associatively set to be consistent with the next (rather 
than the current) grid state. Despite the full benefit of the scaffold 
architecture, sequence capacity remained low (Fig. 5b, failure within 
approximately 30 steps). We hypothesized that this happened because 
even abstract grid states are large and specific activity patterns, for 
which the previous hippocampal state must provide sufficient informa-
tion to reconstruct. This hypothesis gave us the critical insight that grid 
states, which can be specified from a previous one by a two-dimensional 
velocity input acting on the grid network via a velocity-shift mecha-
nism, could enable efficient sequence specification by memorization 
of a sequence of two-dimensional (and thus very low-information) 
velocity vectors.

Consider using the previous hippocampal state to cue the next grid 
state, but via the drastic dimensionality and complexity reduction 
of the velocity-shift mechanism: the previous hippocampal state 
specifies a two-dimensional velocity that signals where to move 
in the grid-coding space. A small and simple feedforward network  
(a multi-layer perceptron (MLP)) (Fig. 5a, top) associated the previous 

grid state, via the hippocampus, with a two-dimensional velocity 
vector. This architecture resulted in the accurate reconstruction of 
abstract scaffold sequences of 1.4 × 104 states, using the same small 
number of cells in the scaffold network as before (Fig. 5a, left). Alterna-
tively, recalled sensory states can drive the low-dimensional velocity 
transitions, without a separate MLP (Supplementary Information, 
section D.8).

To quantify sequence scaffold capacity, we statistically assessed how 
well the circuit could recall random velocity (shift) vectors assigned 
to each grid state (Fig. 5c). The sequence scaffold perfectly recalled 
approximately 1.5 × 105 state-velocity associations with Nh = 500 and 
Ng = 275 neurons, with grid periods 5, 9 and 13 (totalling approxi-
mately 3.4 × 105 grid states). The scaling of scaffold sequence length 
with the number of hippocampal cells is again sub-logarithmic, similar 
to scaffold capacity scaling for item memory (Fig. 5d, left); the num-
ber of MLP units needed to learn the hippocampal state-to-velocity 
mapping is linear with a very small coefficient (approximately 10−3) 
(Fig. 5d, right).

Using the sequence scaffold, Vector-HaSH supports high-capacity 
episodic or sequence memory by hooking external inputs experi-
enced over an episode onto a sequence scaffold (Fig. 5f). The abstract 
sequence scaffold may be formed concurrently with the learning of 
the heteroassociative weights that link sensory inputs to the scaffold, 
or inputs could be affixed to a pre-existing sequence scaffold that is 
learned once. For episodic memories without clear metric variables 
such as spatial position, the scaffold trajectory can be arbitrarily 
chosen.

Asymmetric Hopfield networks and tail-biting autoencoders55 
quickly diverge from the trained state sequence during recall; in a 
sequential version of the memory cliff, recalled states do not even 
approximately resemble the trained states (Fig. 5h). In Vector-HaSH, 
internal grid sequences are recalled with essentially perfect fidelity 
over very long sequences, and sensory states are recalled perfectly 
in terms of identity but only approximately in content depending on 
the total length of the memorized sequence (Fig. 5i) (the equivalent 
to the item memory continuum). Because sequence transitions are 
generated entirely within the scaffold, their continued fidelity does 
not depend on the fidelity of sensory reconstruction. As for item 
memory, the quality of sensory recall per state in the sequence (MI 
per input bit) degrades as the total memorized sequence content 
grows (Fig. 5i), but the information recalled per synapse remains finite 
and approaches a constant asymptotically (Fig. 5j), while it drops to 
zero for other models. To summarize, while in conventional memory 
models the current state and its recurrent projections must carry all 
the information to reconstruct the high-dimensional next state, in 
Vector-HaSH the current (scaffold) state and its recurrent projections 
must reconstruct merely the next two-dimensional velocity vector 
(Fig. 5k). The high-dimensional vector is then reconstructed via feed-
forward decoding in the sensory areas.

Our information-based hypothesis is that failure or success in 
sequence memory depends on how much information the current 
state must specify to construct the next state. We test this hypothesis 
by varying the amount of information that the network must recall at 
each step, by increasing the range of possible velocities (length of veloc-
ity vectors) to be recalled. The recalled sequence fraction decreased 
systematically with increasing velocity range (Fig. 5e), in proportion 
to the theoretically expected inverse proportionality to the number of 
information bits required to specify the velocity (blue). In sum, con-
straining sequence recall dynamics to a low-dimensional manifold 
where only low-dimensional tangent vectors (velocities) rather than 
the manifold states themselves must be reconstructed results in vast 
increases in recalled sequence length. Thus, the path integrability of 
the grid cell code can not only support spatial inference and mapping, 
but also serve as a scaffold for episodic and sequence memory even in 
the absence of any spatial inputs.
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Bottom, in Vector-HaSH, the previous state must reconstruct a mere two- 
dimensional vector, which requires far less information in the recurrent loop.
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Entorhinal and hippocampal phenomenology
While serving as a general-purpose memory circuit, Vector-HaSH 
recapitulates many grid cell properties shared with continuous 
attractor models (which constitute its core), and several hippocam-
pal and full-circuit properties. Immediately in novel environments, 
Vector-HaSH grid cells exhibit periodic activity bumps (Fig. 6a, top), 
which align with the regular pattern seen on further exploration57 
(Fig. 6a, bottom). Similar patterns are present during dark exploration 
(no sensory cues) over short times (Fig. 6b, left). Alternative models 
require extensive exploration and sensory cues for grid tuning emer-
gence9,45. Vector-HaSH exhibits grid resetting by sensory cues: After 
dark navigation and phase drift in a familiar environment, a sensory cue 
(‘lights’ turned on) resets the hippocampal (and then grid) states via the 
sensory-to-hippocampal in one cycle through the circuit (Fig. 6b, right), 
as in refs. 40,57. Vector-HaSH co-modular grid cells exhibit invariant 
relationships seen across behavioural states and environments where 
spatial tuning curves change33,34,36–38 (Fig. 6c, left) (Supplementary 
Fig. 18 shows relative phase invariance across environments of dif-
ferent dimensions), whereas hippocampal cells in Vector-HaSH and 
experiments globally remap36 (Fig. 6c, right).

Vector-HaSH recapitulates grid–place cell correlations45,58: the frac-
tion of grid cells whose fields overlap with that of a place cell across 
environments (dashed line; Fig. 6d) is significantly larger (P value of 
0.0) than shuffle controls (place fields randomly reassigned across 
cells; Fig. 6d), consistent with other models where grid cells drive place 
fields10,35,45.

Grid cells determine hippocampal states in Vector-HaSH, yet there 
is a strong reverse influence: If the hippocampus is lesioned when grid 
velocity inputs are noisy, grid cell spatial tuning is destroyed (Fig. 6e, 
left), as in ref. 59. Nevertheless, grid cells maintain their relative phase 
relationships (Fig. 6f; Methods), consistent with ref. 60. Thus, place 
cells are critical for reliable grid spatial tuning. By contrast, with suf-
ficient sensory inputs, hippocampal tuning remains unchanged after 
grid lesioning61 (Fig. 6e, right). Thus, the circuit exploits all avail-
able means to estimate position: velocity (via grid cell integration), 
external cues (via hippocampus), both, or either. It mechanistically 
reconciles the question of whether place cells emerge from grid cells 
or vice versa.

Vector-HaSH generates splitter cells62–64, whose spatial tuning 
depends on context, recent memory and other factors, via the mech-
anism of grid phase remapping when internally generated context is 
appended to the hippocampal sensory input. In a spatial T-maze alter-
nation task, context in the central stem is distinct for incoming trajec-
tories from the right or left return tracks. A distinct context appended 
to the sensory input produces grid phase remapping in Vector-HaSH 
(differential grid phase shifts across modules; Supplementary Figs. 23 
and 24), total hippocampal remapping (Fig. 6g) and hippocampal cells 
that are contextually selective. The same process yields directionally 
selective place cells on linear (Fig. 6i) and circular one-dimensional 
tracks, tree mazes, and radial mazes (Supplementary Figs. 19–22). The 
resulting ratios of splitter to non-splitter and direction-dependent to 
directionally untuned hippocampal cells were similar to values from 
experiment64 (Fig. 6h,j) with the predictions that grid cells will possess 
splitter-like and directional tuning (Supplementary Fig. 24) and that 
splitter and directionally tuned hippocampal cells are not a separate 
biophysical type; this contrasts with the possibility that splitter (and 
direction-dependent) cell tuning is generated within the hippocampus 
by (possibly) distinct cell types.

An untested prediction is that grid activations should be periodic and 
hippocampal states that are much lower-dimensional than expected 
(relative to the dimensionality from randomly shuffling hippocampal 
fields) when traversing abstract domains and even recalling episodic 
memories, if the states are plotted as a function of the relevant abstract 
variable (Fig. 6k).

Finally, for hippocampally dependent memories, items that are seen 
or recalled repeatedly are more resistant to hippocampal damage65, 
a phenomenon known as hippocampal memory consolidation. We 
exposed Vector-HaSH to several inputs, some of which were presented 
multiple times, leading to additional increments of the corresponding 
hippocampus-to-sensory weights (Fig. 6l). Memories thus reinforced 
were remembered with richer detail (Fig. 6m), and recall was relatively 
robust to neuron removal (Fig. 6n and Supplementary Fig. 16). Addition-
ally incrementing hippocampus-to-grid and sensory-to-hippocampus 
weights produced no further consolidation (Fig. 6o). The primary role 
of directed synapses from hippocampus to cortex is consistent with 
and provides specific predictions about mechanisms for consolidation 
of hippocampus-dependent memory66. An alternative hypothesis is 
that repeating inputs form associations with multiple scaffold states. 
Vector-HaSH simulations (1,000 runs; data not shown) did not support 
this hypothesis: associating an input with two different scaffold states 
always (100% of runs) resulted in the activation of a third, unrelated 
scaffold state when presented with a partial sensory cue.

Mechanism for the memory palace technique
Vector-HaSH provides the first model to explain the power of the 
method of loci (memory palaces), a mnemonic technique that has 
been used for millennia and is currently widely exploited by memory 
athletes13. Given a randomly ordered deck of playing cards, memory ath-
letes take an imagined walk through a familiar and richly remembered 
space, and ‘place’ the cards near landmarks they encounter along the 
way. At recall time, they walk through and ‘collect’ the items they had 
placed. Counterintuitively, by adding to their memory task the demand 
of also recollecting the correct item–landmark associations, they are 
able to perform highly accurate one-shot memorization and recall.

The hippocampus (and Vector-HaSH, via vector-based sequence 
memorization) already enables rich memory for sequences, as we have 
seen. However, deep in the continuum, sensory recall is only approxi-
mate: a long new sequence of items cannot be exactly memorized 
using the native mechanism (Fig. 3e, upper row). However, the whole 
of Vector-HaSH, working in the regime of recall of a familiar sequence 
in the memory continuum, can itself be converted into a new scaffold 
for precise memory, as follows. Suppose Vector-HaSH is initialized 
to a starting location in a highly familiar environment, and items at 
locations along the path taken by the memory athlete are recalled. 
Crucially, even though the recalled sensory states are only an approxi-
mation of the actual items, each time they are recalled they are reliably 
the same (Fig. 3g, green); thus, even deep in the memory continuum, 
these recalled sensory states can have the role of perfectly retrievable 
abstract scaffold states for heteroassociation of the new neocortical 
inputs (Fig. 7b,c). For this new extended scaffold, the heteroassocia-
tive linkages are well before its continuum regime, and the inputs can 
be recalled with high fidelity (Fig. 7d, blue) even when associated with 
sensory states that are a poor approximation of the original sensory 
inputs. Another advantage of using this extended scaffold is that the 
effective information capacity bottleneck, which was previously the 
size of the hippocampus, is now the size of the sensory input area and 
could be much larger, meaning that perfect memorization of a much 
larger number of inputs is possible (Fig. 7e). Memory athletes cycle 
between using different memory palaces to refresh recently used pal-
aces; in terms of the model, this presumably corresponds to erasure 
of heteroassociative linkages with the palace and refreshes the ability 
to reuse that scaffold in a non-continuum regime.

A key prediction of Vector-HaSH is that during memory palace use, 
grid, hippocampal and sensory area cells should be reliably activated 
in a way that correlates with location in the palace, and the correla-
tion with location should be more faithful than correlation with the 
neural responses to the actual sensory inputs that were present when 
experiencing and acquiring memories of the palace. Another is that 
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Fig. 6 | Vector-HaSH reproduces multiple aspects of entorhinal and 
hippocampal phenomenology. a, Grid fields are present in first steps in an 
environment (top) and are consistent with the map formed after fuller exploration 
(bottom). b, Grid fields form in dark; they may eventually wash out without 
corrective sensory input (left three panels); rapid phase reset occurs when cue 
is made visible if there was a phase error (remaining panels). c, Left, grid cell 
tuning curves shift across environments. Right, relative phases (closest peak to 
cross-hairs in cross-correlation) of co-modular neurons are preserved. This is 
not the case for hippocampal cells. d, Fraction of grid cells that exhibit across- 
environment coactivation with a hippocampal cell (red); the distribution after 
shuffling place field locations is shown in black. PDF, probability distribution 
function. e, Top left, grid cell spatial tuning with noisy velocity inputs before 
and after hippocampal inactivation. Top right, grid cell inactivation. Bottom, 
hippocampal tuning with sensory cues present, before and after grid network 
inactivation. f, Similarity in correlation matrix of co-modular grid cells, before 
and after hippocampal inactivation lesion (red), versus similarity after shuffled 
correlations (black). g, Left, alternation task, with left-to-right (red) and 

right-to-left (blue) trajectory contexts. Remapping in grid space (middle) yields 
distinct hippocampal tuning for the two contexts (right). h, Hippocampal left/
right selectivity ratios in central stem62. i, Left, left/right trajectories in 1D. Middle, 
as in g. Right, hippocampal cells, ordered by rightward run field locations for 
rightward (red outline) and leftward (blue outline) runs. j, Directionality 
index63,64 for Vector-HaSH (left) and experiments (right). k, Vector-HaSH grid 
and hippocampal cells have structured responses; plotted in the relevant 
continuous space (for example, time) for abstract domains (for example, 
traversal though an episodic memory). l, Memory consolidation. Repeated 
patterns drive further hippocampal-to-sensory weight increments (red outlined 
arrow). Unrep, unrepeated. m, Patterns (top) and recall (middle) in the 
continuum regime. Bottom, consolidation of pattern 2 but not pattern 1 leads 
to selectively richer recall. n, Patterns (top) and recall without consolidation after 
20% hippocampal lesion (middle). Bottom, consolidated patterns (dark green 
outline) are protected at the cost of unconsolidated ones (light green outline). 
o, Same as n, with additional increments in sensory-to-hippocampus and 
hippocampus-to-grid weights. Error bars in n,o indicate s.d. across three runs.
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memory palaces could be built from familiar non-spatial sequences 
involving rich sensory data.

Discussion
Extensions
There are many paths for extending Vector-HaSH, which include mod-
elling the subregions of hippocampus; incorporating hippocampal 
cells that respond to a simultaneous combination of grid and sen-
sory inputs to model partial remapping; including local field poten-
tial oscillations as possible gating processes for the between-region 
iterations that we have assumed occur in ordered cycles; model-
ling how the circuit enables goal-directed behaviours; and many  
others.

Relationship to anatomy
Anatomically, entorhinal projections to hippocampus derive from 
superficial layers and return projections arrive at deep layers, whereas 
Vector-HaSH predicts a tight and fully self-consistent loop from grid 
cells to hippocampus and back. This can be tested connectomically, 
and indeed, new discoveries still surprise: deep entorhinal layers send 
a copy of their outputs back to the hippocampus67.

Random fixed grid-to-hippocampal weights are important and 
sufficient for several properties of Vector-HaSH, and several types of 
non-random weights are insufficient, but this does not eliminate the 

possibility of non-random solutions. For instance, expander graphs 
for error-correcting codes admit non-random solutions in principle, 
but they have been difficult to find, whereas random connections are 
sufficient. Of note, ref. 68 shows that the layer II MEC stellate cell cir-
cuit (these comprise most grid cells) is the first to mature, and activity 
in this network then drives maturation of the hippocampal circuit, 
followed by entorhinal layer 5, and finally, layer II of LEC. This matura-
tion order is exactly consistent with what our model would predict on 
the basis of how it must be structured: the scaffold has to be formed 
first, and within it, the grid cell circuit is formed first, followed by 
the formation of fixed connections to hippocampus, then the hip-
pocampal circuit, and finally the hippocampal–non-grid entorhinal  
circuit.

Experimental tests
We have highlighted a number of model predictions throughout. 
Central parts of our model could be invalidated if, for instance: 
grid-to-hippocampal synapses were plastic at a timescale faster than the 
hippocampal-to-grid synapses; if grid cell lesions did not affect episodic 
memory; or if, when imagining traversing a childhood home, the grid 
representations were distinct from those when using the same home 
as a memory palace when using the method of loci. Finally, because 
Vector-HaSH is a dynamical neural network, it can be directly queried 
for experimental predictions about representation, dynamics and 
learning under a large variety of conditions and perturbations.
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palace technique. b,c, Circuit for the memory palace technique (b); the full 
Vector-HaSH circuit for episodic memory (compare with Fig. 5 or Supplementary 
Information, section D.8) is a scaffold for new inputs via heteroassociation 
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new abstract scaffold states. When new sensory data are (hetero)associatively 
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with high fidelity (bottom). e, Memory curve for items remembered using 
Vector-HaSH as a memory palace scaffold (blue). The curve applies to newly 
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Related models
Together with the bipartite expander network and MESH network 
models44,54, Vector-HaSH defines a new class of memory models 
that we name robust hash-based memory: they create exponentially 
many fixed points with large basins as abstract error-correcting states 
for memory. Furthermore, existing models do not implement the 
low-dimensional shift mechanism of Vector-HaSH for efficient sequence  
memory.

Vector-HaSH resembles the models in refs. 7,10, which involve 
pre-structured grid cell representations interacting with hippocam-
pal cells. Learning of grid-to-hippocampus weights prevents these 
models from having high-capacity, large robust basins and strong gen-
eralization, and avoiding the memory cliff and catastrophic forgetting. 
Vector-HaSH further contrasts with models that learn the structure of 
the explored space, such as successor representation9, principal com-
ponents analysis41 and the Tolman–Eichenbaum machine45, because 
their internal representations derive from the geometries and dimen-
sionality of the environment so can be non-grid-like, and require sen-
sory inputs to form representations in new environments.

Any model of hippocampal memory necessitates compression of 
cortical inputs. Modelling hippocampus as a bottleneck layer in an 
cortico-hippocampal autoencoder (Fig. 3 and refs. 55,69) is a form of 
content-based compression. These models lack the capacity, resist-
ance to catastrophic forgetting and sequence memory properties 
of Vector-HaSH. In Vector-HaSH, the hippocampus is a content- 
independent pointer or hash for content localized in cortex, related 
to the models of refs. 70,71. The circuit performs locality-sensitive 
hashing for episodic memory, with locality defined in the temporal 
domain (temporally contiguous inputs map to contiguous grid states).

Nevertheless, commonalities among these models point towards a 
converging view of the hippocampal complex. The highly performant 
features of Vector-HaSH suggest a first-draft understanding of the 
circuit mechanisms of the hippocampal complex as a general memory 
system.
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Methods

Reference 55 introduced the MESH associative memory architecture, 
leveraging a three-layer network to store numerous independent 
memory states. This architecture allowed a high-capacity memory 
with a trade-off between the number of stored patterns and the fidel-
ity of their recall. However, MESH did not require specifically grid cell 
encodings, did not exhibit strong generalization in scaffold learning, 
and did not exhibit a high sequence capacity.

In Vector-HaSH, the memory scaffold consists of a recurrent cir-
cuit incorporating MEC grid cells and a hippocampal layer that may 
be interpreted as the proximal CA1 and distal CA3 regions of the hip-
pocampal complex. In addition, vVector-HaSH includes a sensory layer 
that is associatively linked to the hippocampal layer, as we describe in 
additional detail below. Activity propagation between regions occurs 
in sequential order and discrete time, a simplification of the oscillations 
and synaptic latencies that are hypothesized to gate this information 
flow. Most simulations involve discrete-valued inputs and grid cell 
activations, which we then later show can generalize to continuous 
space and activations.

We represent the MEC grid cells as outlined in ref. 73, where each 
grid module’s state is expressed using a one-hot encoded vector that 
represents the module’s phase (and thus the active grid cell group 
within the module). The states are on a two-dimensional discretized 
hexagonal lattice with period λ. Thus, the state of each grid module is 
represented by a vector with a dimensionality of λ2.

M such grid modules are concatenated together to form a collec-
tive grid state g ∈ {0, 1}Ng , where the ∑N λ= M Mg

2 . The continuous 
attractor recurrence in the grid layer8 is represented by a module-wise 
winner-take-all dynamics, which we denote as CAN. This ensures that 
the equilibrium states of g always correspond to a valid grid-coding 
state.

g t g t( + 1) = CAN[ ( )]. (1)

We represent these equilibrium states by →g x
, where we index the cod-

ing states by the two-dimensional location →x . For coprime periods 
λM, the grid states can encode a spatial extent of ∏N λ= M Mpatts

2  spatial 
locations.

This layer of grid cells projects randomly onto the hippocampal 
layer, through a Nh × Ng random matrix Whg, with each element drawn 
independently from a Gaussian distribution with a mean of zero and 
s.d. of N(0, 1). This matrix is sparsified such that only a γ fraction of 
connections is retained, leading to a sparse random projection. This 
projection constructs an Nh-dimensional set of hippocampal sparse 
states, →h x  defined as

→ →h W g θ= ReLU[ − ]. (2)x xhg

The return weights from the hippocampal layer back to the grid cell 
layer is set up through Hebbian learning between the predetermined 
set of grid and hippocampal states, →g x

 and →h x .

∑
→

→ →W
N

g h=
1

. (3)
x

x x
T

gh
h

The dynamics of the hippocampal scaffold is then set up as

g t W h t( + 1) = CAN[ ( )] (4)gh

h t W g t θ( + 2) = ReLU[ ( + 1) − ] (5)hg

These equations maintain each → →g h,x x  state as a fixed point of the 
recurrent dynamics, as we prove in Supplementary Information,  
section C.1.

This constructed hippocampal memory scaffold is then used to gen-
erate independent memory locations to store information presented 
through a sensory encoding layer, representing the non-grid cell com-
ponent of the entorhinal cortex. Information to be stored is presented 
as a binary encoding of states in the sensory layer, and is ‘tagged’ onto 
a memory location →x  of the scaffold through pseudoinverse learned 
heteroassociative weights.

W HS= (6)hs
+

and

W SH= , (7)sh
+

where H is a Nh × Npatts-dimensional matrix with columns as the prede-
termined hippocampal states →h x , and S is a Ns × Npatts-dimensional 
matrix with columns as the encoded sensory inputs to be stored at 
location →x . As discussed in the main text, the pseuodoinverse compu-
tation can be performed through a biologically plausible iterative 
pseudoinverse learning rule74,75. However, to reduce computational 
time-complexity, we use an exact pseudoinverse rather than an iterative 
pseudoinverse for calculation of these inter-layer weights, unless  
otherwise specified.

Given the above equations, we can now perform bidirectional infer-
ence of sensory inputs from grid states and vice versa:

h t W s t( + 1) = ReLU[ ( )] (8)hs

g t W h t( + 2) = CAN[ ( + 1)] (9)gh

and

h t W g t θ( + 1) = ReLU[ ( ) − ] (10)hg

s t W h t( + 2) = sgn[ ( + 1)] (11)sh

The above two sets of equations can then be combined to use 
Vector-HaSH as a content-addressable memory to recover stored sen-
sory inputs from corrupted inputs—first the grid states are inferred 
from the corrupted sensory input, and then the true sensory input is 
recalled from the inferred grid state.

The above equations have been written considering sensory inputs 
to be random binary states. In cases in which sensory states are continu-
ous valued (as in Fig. 3b, for example) the s reconstruction equation, 
equation (11) is replaced with simply s(t + 2) = Wshh(t + 2).

Equations (1)–(11) describe the core working of Vector-HaSH—this 
core version and its variants can then be used to generate item memory, 
spatial memory, episodic memory, as well as a wide range of experimen-
tal observations, such as those discussed in Fig. 6. In general, across 
all models, we assume that the relevant synapses are plastic during 
input presentation for memory storage, and are frozen during testing 
of memory retrieval.

High-capacity pattern reconstruction
For the basic task of pattern storage and reconstruction, we utilize the 
simplest form of Vector-HaSH without any additional components. 
To examine reconstruction capacity, Npatts sensory cues are stored in 
the network via training the Whs and Wsh weights as described in equa-
tions (6) and (7).

The Npatts sensory cues need to be stored corresponding to distinct 
scaffold states. In our implementation, for simplicity, we selected scaf-
fold states in a ‘hairpin’-like traversal, similar to that shown in Fig. 5a, 
right to achieve this.

Then, a clean or corrupted version of a previously stored pattern is 
presented to the network in the sensory encoding layer, which then 



propagates through the network via equations (8)–(11), finally generat-
ing the recalled pattern s.

In all numerical examples that we consider in the main text we either 
construct random binary {−1, 1} patterns, or consider images from 
mini-imagenet (https://www.kaggle.com/datasets/whitemoon/mini-
imagenet). In particular, we took 3,600 images from the first 6 classes 
{‘house-finch’, ‘robin’, ‘triceratops’, ‘green-mamba’, ‘harvestman’ and 
‘toucan’} and centre-cropped them to consider the middle 60 × 60 
image and converted them to greyscale. We refer to this set of greyscale 
images as bw-mini-imagenet. In all models, the memorized patterns 
are a noise-free set, then we test memory recall with noise-free, partial 
or noisy cues.

In Figs. 2 and 3, the recall performance and quality was examined in 
networks with three grid modules, γ = 0.6, and θ = 0.5.

The capacity in Fig. 2c,d, right was evaluated by injecting a noise 
into the hippocampal layer of magnitude 20% of the magnitude of 
the hippocampal state vector, and requiring the iterated dynamics to 
return the hippocampal state to within 0.6% of the original hippocampal 
state (here magnitudes and distances were calculated via an L2 metric).

In Fig. 2d, left and Extended Data Fig. 1, the critical N *h  is estimated 
as the smallest value of Nh such that all scaffold states have been stabi-
lized as fixed points. The corresponding module periods for data points 
plotted in Extended Data Fig. 1 for two and three modules are listed in 
Table 1. Similarly, the grid module periods for the data in Fig. 2c, left 
are listed in Table 2.

To estimate the basin sizes of the patterns stored in the scaffold, 
as shown in Fig. 2e, we compute the probability that a given pattern 
is perfectly recovered (that is, remains within its correct basin) as we 
perturb the hippocampal states with a vector of increasing magnitude. 
We assume that the size of any given basin can be estimated as the 
typical magnitude of perturbation that keeps the system within the 
same basin of attraction—this is not generally true for non-convex 
basins, particularly in high-dimensional spaces. However, this estimate 
is relevant in the context of testing robustness under corruption with 
uncorrelated noise. Furthermore, we later demonstrate in Supple-
mentary Information, section C.3 that the basins are indeed convex. 
Here grid module periods λ = {3, 4, 5}, number of grid cells Ng = 50, and 
Nh = 400 hippocampal cells were used. Probability that a given pattern 
remains within its correct basin was estimated by computing the frac-
tion of runs in which a given pattern was correctly recovered for a 100 
different random realization of the injected noise.

Figure 2f examines the learning generalization in Vector-HaSH, 
that is, the capability of Vector-HaSH to self-generate fixed points 
corresponding to scaffold grid–hippocampal states despite training 
on a smaller number of fixed points. For a given number of training pat-
terns, we calculate the number of generated fixed points by counting 

the number of states that, when initialized at a scaffold state, remain 
fixed after iteration through equations (4) and (5). As discussed in the 
main text, when training on a given number of training patterns (that is 
less than the complete set of all patterns), the ordering of the patterns 
is crucial in controlling the generalization properties of the model. 
For Vector-HaSH, we order patterns such that a two-dimensional con-
tiguous region of space is covered (see Supplementary Information, 
section C.4 for additional details of the ordering and the freedom of 
possibilities in this ordering), resulting in the strongest generaliza-
tion (Supplementary Information, section C.4). For comparison, in 
Fig. 2f we also consider ‘shuffled hippocampal states’, wherein scaffold 
states are randomized in order before subsets are selected for train-
ing. We also consider ‘random hippocampal states’: here we consider 
each hippocampal state vector and randomize its indices, in effect 
constructing a new state vector with exactly the same sparsity and 
statistics, but now uncorrelated to the grid state corresponding to 
that hippocampal state. Then, we use bidirectional pseudoinverse 
learning between grid and hippocampal states and construct this as 
a scaffold. This lack of structured correlations between grid and hip-
pocampal population vectors (PVs) results in catastrophic forgetting, 
with no observed fixed points remaining once all scaffold states have 
been used for training.

All curves shown in Fig. 3c–f are averaged over five runs with differ-
ent random initialization of the predefined sparse connectivity matrix 
Whg, error bars shown as shaded regions represent standard deviation 
across runs. In Fig. 3b,e,h, grid module periods λ = {3, 4, 5}, Ng = 50, 
Ns = 3,600 was used. The total capacity of the network in this case is 
capped by ∏N λ= = 3,600M Mpatts

2 . For the other associative memory 
models55,76–81 used in Fig. 3d, all shown networks have ~5 × 105 synapses. 
Number of nodes in these networks are as follows: (1) Hopfield network 
of size N = 708, synapses = N2. (2) Pseudoinverse Hopfield network of 
size N = 708, synapses = N2. (3) Hopfield network with bounded syn-
apses was trained with Hebbian learning on sequentially seen patterns. 
Size of the network N = 708, synapses = N2. (4) Sparse Hopfield network 
(with sparse inputs) with a network size of N = 708, synapses = N2, 
sparsity = 100(1 − p). (5) Sparse Hopfield network. Size of the network 
N, synapse dilution κ, synapses = κ × N2 = 105. (6) Tail-biting overpa-
rameterized autoencoder with network layer sizes 900, 275, 38, 275, 
900. Vector-HaSH uses λ = {2, 3, 5}, and layer sizes: Ng = 38, Nh = 275, 
Ns = 900.

For stored patterns of size N, recall of an independent random vector 
of size N would appear to have a MI of N~1/ , which when evaluating 
the total MI across all N( )O  patterns or more would appear to scale as 

N( )O , despite no actual information being recalled. To prevent this 
apparent information recall, in Fig. 3f if the information recall is smaller 
than N1/  we then set it explicitly to zero.

To examine Vector-HaSH’s performance on patterns with correla-
tions, in Fig. 3e we trained it on bw-mini-imagenet images using grid 
module sizes λ = {3, 4, 5}, and layer sizes: Ng = 50, Nh = 400, Ns = 3,600. 
The plotted curve shows the mean-subtracted cosine similarity between 
recovered and stored patterns illustrating that Vector-HaSH shows 
gradual degradation as the number of stored patterns is increased. The 
resultant curve is an average over 5 runs with different sparse random 
projections Whg.

Table 1 | Grid module periods, number of grid cells and total 
number of patterns for data in Fig. 2e

λ Ng Npatts

2, 3 13 36

3, 4 25 144

4, 5 41 400

5, 6 61 900

6, 7 85 1,764

7, 8 113 3,136

1, 2, 3 14 36

2, 3, 5 38 900

3, 4, 5 50 3,600

4, 5, 7 90 19,600

5, 6, 7 110 44,100

Table 2 | Grid module periods, number of grid cells and total 
number of patterns for data in Fig. 2f

λ Ng Npatts

7, 8 113 3,136

3, 5, 8 98 14,400

3, 4, 5, 7 99 176,400

1, 3, 4, 5, 7 100 176,400

https://www.kaggle.com/datasets/whitemoon/miniimagenet
https://www.kaggle.com/datasets/whitemoon/miniimagenet
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Mapping, recall, and zero-shot inference in multiple spatial 
environments without catastrophic interference
Here we add a path-integration component to Vector-HaSH, that utilizes 
a velocity input to change the grid cell population activity akin to ref. 
8, such that the phase represented by each module changes in corre-
spondence to the velocity input. Corresponding to the discrete hex-
agonal lattice space used to represent each grid module, for simplicity 
the velocity is assumed to have one of six directions, and magnitude 
is assumed to be fixed at a constant such that the phase of each grid 
module updates by a single lattice point in a single time-step. This input 
velocity vector, that we call a velocity-shift operator, v→, is thus repre-
sented by a six-dimensional one-hot encoded vector determining the 
direction of the shift.

In order to capture the inherent randomness and uncertainty pre-
sent in real-world scenarios, a small amount of neuronal noise was 
introduced by adding random perturbations to the activation values 
of hippocampal cells in Vector-HaSH. This noise, generated from a 
uniform distribution between 0 and 0.1, mimics the fluctuations and 
disturbances observed in individual neurons, and corresponds to a 
noise magnitude of roughly 25% the magnitude of the hippocampal 
state vectors.

In Fig. 4a,c we first demonstrate bidirectional recall of grid states 
from sensory inputs and vice versa. Here we consider Vector-HaSH 
with λ = {3, 4, 5}, Ng = 50, Nh = 400, Ns = 3,600. We train the model on a 
total of 600 sensory inputs taken from bw-mini-imagenet (including 
the 4 landmarks placed in the room shown in Fig. 4c). To demonstrate 
zero-shot recall in panel c, the model dynamics are simulated on a 
novel trajectory (right) through the same room with some locations 
overlapping with the previous trajectory. Note that the reconstructed 
landmarks do not have perfect recall. Instead, the reconstructions are 
degraded relative to the originally stored landmarks since the total 
number of stored landmarks in the model exceeds Nh = 400 (Fig. 2f).

For all other panels of Fig. 4, we use Vector-HaSH with grid module 
periods λ = {3, 4, 5, 7}, Ng = 99, Nh = 342, γ = 0.1, and θ = 2.5. The total 
capacity of this grid-coding space is 176,400 ≈ 2 × 105. Each room is 
stored by allocating a random 10 × 10 patch of the grid-coding space to 
it. This is constructed by first choosing any random point in the room 
to map to a randomly chosen area of the grid-coding space. Then as the 
model moves in the room, path integration correspondingly updates 
the grid phases in each grid module. The region of grid-coding space 
explored as the model physically explores a room is then the patch of 
grid-coding space storing the particular room.

To each of the 100 locations comprising a room, we simulate an inde-
pendent sensory landmark as a binary {−1, 1} vectors. At initialization, 
before observing any room, we begin with a pre-trained memory scaf-
fold, wherein the Whg and Wgh matrices have already been constructed 
and trained corresponding to equations (2) and (3).

When first brought to a room, the grid state is initialized to the grid 
state vector corresponding to the random region of grid-coding space 
allocated to the room. Then, as path integration updates the grid state 
after moving around the room, the observed sensory landmark states 
are associated with the corresponding grid–hippocampal scaffold 
states through learning the Whs and Wsh matrices following equations (6) 
and (7).

In the first two tests of each room (first tested right after each 
room has been learned, and then tested after all rooms have been 
learned; shown in Fig. 4d) sensory landmark cues can be observed by 
Vector-HaSH. Using equation (8), the observed sensory landmarks 
can be used to reconstruct the hippocampal state, resulting in the 
reliably reconstructed hippocampal tuning curves as seen in Fig. 4e. 
For testing stable recall in dark (Fig. 4d,e), Vector-HaSH is provided a 
random single sensory landmark cue from any given room. This land-
mark is used to ascertain the grid state corresponding to that landmark 
through equation (8). Thereafter, path integration is used to construct 

the grid–hippocampal scaffold state as room is explored in the absence 
of any further sensory cues. As seen in Fig. 4e, this also reliably recon-
structs the hippocampal state at each location in every room.

In Fig. 4f, we examine the dark recall of 3,600-dimensional sensory 
landmarks in each room in a continual learning setting. Here we begin 
again with simply the pre-trained grid–hippocampal scaffold. As the 
ith room is explored, the sensory-hippocampal weight matrices are 
updated to store the thus far observed landmarks and their locations. At 
each step of exploration within the ith room, vVector-HaSH is queried 
on the current and all previous rooms as follows: for any completed 
room j (that is, 0 ≤ j < i), Vector-HaSH is dropped randomly anywhere 
in the room and allowed to observe the sensory landmark solely at that 
start location and no further sensory landmarks. Then the model moves 
around the room through path integration, and attempts to predict the 
sensory landmarks that would be observed at each location. We then 
compute the average MI recovered for each landmark at each position 
in the room, which is shown in Fig. 4f. For the partially completed room 
i, Vector-HaSH is similarly dropped randomly in the room, restricted 
to the set of previously observed locations within the room. The MI 
recovered during sensory prediction is similarly only evaluated over 
the previously observed portion of the room.

For the baseline model shown in Fig. 4f, we first construct the grid–
hippocampal network through random hippocampal states with the 
same sparsity as those in Vector-HaSH, and bidirectional pseudoinverse 
learning between grid and hippocampal layers. Thereafter, the sensory 
landmarks are associated with the hippocampal layer as in Vector-HaSH 
described above, and this baseline model is subjected to an identical 
test protocol to examine continual learning. The number of nodes in 
the baseline model is kept identical to Vector-HaSH.

For Fig. 4h, we follow the same analysis as in the experiment72. Dot 
product between PVs across all combinations of the 11 test rooms were 
computed. To construct the PVs, we record the activations of hippocam-
pal cells for each of the 10 × 10 positions in the simulated room. We 
stack these into 100 composite PVs, 1 for each position in the room. To 
compute overlaps between representations, the activation of each 
hippocampal cell in any particular room was expressed as a ratio of its 
activation to the maximal activation of that cell across all rooms. The 
overlap was then calculated as the normalized dot product between 
the hippocampal cell activation vectors in 2 rooms, that is, the sum of 
the products of corresponding components divided by the total num-
ber of hippocampal cells (Nh = 342) for a given position/pixel, averaged 
over 100 positions. The colour-coded matrix in Fig. 4h shows the aver-

age dot product values for PVs across rooms ( 
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= 55 room pairs). 

Repeated exposures to three familiar rooms were also added to this 

analysis leading to a total of  
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2

= 91 room pairs.

For Fig. 4j, we plot the distribution of PV normalized dot products 
computed above (for multiple visits to all the rooms) and use this PDF 
to compute the corresponding cumulative distribution function. 
Similarly, the cumulative distribution functions for shuffled data are 
computed through the same procedure, but using shuffled data to 
compute the PV normalized dot products. Shuffled data are obtained 
either by random assignment of rate maps across rooms (shuffle room) 
or by shuffling of cell identities within rooms (shuffle cells) or by a com-
bination of the two procedures (shuffle room and cells). The number 
of different shuffles generated in each case was 1,000.

Extension of Vector-HaSH to continuous space
So far we have considered the grid states to be {0,1}-valued discretely 
varying modular one-hot states. This leads to a finite number of grid 
phases per module, and hence a finite number of grid PVs that can be 
exactly enumerated, leading to the wealth of theoretical advancements 
and results described above. To bring Vector-HaSH closer to biologi-
cal realism, we constructed continuous-valued grid states (Fig. 4l), as 



a Gaussian bump of activity on a two-dimensional lattice of neurons 
with periodic boundary conditions, similar to the one-hot states on a 
periodic lattice considered earlier (compare with Fig. 2b). Continuous 
attractor dynamics were approximated through a circular mean to 
determine mean activity location, and reinitialization of a Gaussian 
bump centered at the calculated mean location. Since the number of 
phases in each module is now infinite (the Gaussian bump need not be 
centred on a neuron in the lattice) it is computationally challenging 
to demonstrate memory capacity results similar to our analysis for 
the discrete model above. As a proof of concept, we demonstrated 
landmark reconstruction from grid phases and vice versa in Fig. 4m.

For Fig. 4m, we used 3 grid modules, consisting of 81, 144 and 225 cells 
each. The Gaussian bump of activity in each module was constructed 
to have a standard deviation of 0.5.

We also used this continuous extension of Vector-HaSH in Fig. 6b,e–f. 
The results presented in Fig. 6f are computed similarly to those in ref. 
60. We first compute the temporal correlation between every pair 
of grid cells before and after hippocampal activation. We compute 
the correlation between these temporal correlations (shown by the 
vertical red dashed line). We then generate 1,000 random shuffles of 
the temporal correlations post hippocampal activation, and use these 
shuffles to generate a control distribution of the correlation between 
the temporal correlations (shown as the null distribution in black).

Path learning in the hippocampal scaffold
Here again, we add a path-integration component to Vector-HaSH as 
described in the section above, such that a velocity-shift operator, v→, 
can be used to path integrate and update the grid cell population activ-
ity akin to ref. 8, such that the phase represented by each module 
changes in correspondence to the input shift.

For learning of trajectories in space, this vector v→ is either associated 
with spatial locations and corresponding hippocampal state vectors  
(as in path learning) or with sensory landmark inputs (as in route  
learning).

All networks in Fig. 5j were constructed to have approximately 
5 × 105 synapses, with network parameters identical to those in Fig. 3d.  
Figure 5i,j considers random binary patterns, and Fig. 5g,h considers 
bw-mini-imagenet images.

Path learning. Learning associations from the hippocampal layer  
directly to the velocity inputs through pseudoinverse learning would 
result in perfect recall for only Nseq ≤ Nh, which may be much smaller 
than the grid-coding space, and would hence result in an incapability 
to recall very long sequences. To obtain higher capacity, we learn a map 
from the hippocampal cell state to the corresponding velocity inputs at 
that spatial location through a multi-layer perceptron, MLP. For all the 
results shown in Fig. 5c,d, left, for example, we use a single hidden layer 
in the MLP with 250 nodes. The dynamics of the network are as follows:

v t h t→( ) = MLP[ ( )] (12)

g t g t v t( + 1) = PI[ ( ); →( )] (13)

h t W g t θ( + 2) = ReLU[ ( + 1) − ] (14)hg

s t W h t( + 2) = sgn[ ( + 2)] (15)sh

Thus, when cued with a sensory state at the start of an episode, the 
sensory inputs to hippocampus reconstruct the corresponding hip-
pocampal and grid states. Then, through the MLP, the hippocampal 
state projects to a low-dimensional velocity vector that is used to update 
the grid cells via path integration. From this updated grid state, the cor-
responding hippocampal state is constructed, which then reconstructs 
the next sensory pattern of the episode. The new hippocampal state 

also maps to the next velocity vector, that continues the iteration by 
updating the grid state. In this way, the memory scaffold along with 
the MLP successively construct grid and hippocampal states, and the 
heteroassociative weights to the sensory layer successively construct 
the memorized patterns of the episode.

Route learning. Since detailed sensory information cannot be recalled 
at very high capacities, route learning is performed by learning asso-
ciations between the recollection of the sensory inputs at a location  
→x , and the velocity-shift vector v→ determining the direction of motion 
of the trajectory being learned at that location. This association can 
be learned directly through pseudoinverse learning as

W VS= , (16)vs r
+

where, Sr is a Ns × Nseq-dimensional matrix with columns as the recalled 
sensory inputs →s x

, and V is a 6 × Nseq-dimensional matrix with columns 
as the corresponding velocities. These associations can then be used 
to recall long trajectories through

v t W s t→( ) = WTA[ ( )] (17)vs

g t g t v t( + 1) = PI[ ( ); →( )] (18)

h t W g t θ( + 2) = ReLU[ ( + 1) − ] (19)hg

s t W h t( + 2) = sgn[ ( + 2)] (20)sh

As argued in Supplementary Information, section D.9, this results in 
perfect sequence recall for Nseq ≤ Ns, which can scale as the exponentially 
large capacity of the grid-coding space. Note that the results in Sup-
plementary Information, section D.9 rely on Sr being a rank-ordered 
matrix. While this holds for random binary patterns through equa-
tion (20) applying a sign nonlinearity, this does not directly hold for 
continuous-valued sensory states, where no nonlinearity is necessary. 
In this case, we take the input sensory patterns, and apply an inverse 
sigmoid function to them before storage in the Wsh matrix. Then, we use 
equation (20) with the sign nonlinearity replaced with the sigmoid non-
linearity. This application of the inverse sigmoid and then the sigmoid 
ensures that the final recovered states correspond to the inital patterns, 
but the sensory states are recovered through a nonlinear readout.

Reproducing entorhinal–hippocampal phenomenology. For Fig. 6e,f 
we used the continuous extension of Vector-HaSH (see details in ‘Exten-
sion of Vector-HaSH to continuous space’). We describe the methods 
details for other panels below.
Grid–hippocampal correlations. We follow in Fig. 6d a similar analysis 
to ref. 45. We consider two 10 × 10 rooms. Then, we choose a hippocam-
pal cell that is active in both rooms at some location. Then, we calculate 
the fraction of grid cells that are active at both of these locations, shown 
in red. Then, we generate 100 shuffles of all place cell PVs, and generate 
a control distribution of the fraction of grid cells that are co-active with 
these shuffled place cells shown as the black histogram.
Goal and context-based remapping. When initialized in a new envi-
ronment, we model the grid state population activity to be randomly 
initialized in the grid-coding space (a mechanistic model for such ran-
dom initialization will be discussed in future work), that is, the grid 
state undergoes remapping. This grid-coding state, along with the 
corresponding hippocampal coding state and sensory observations 
at that location are then stored in the corresponding weight matrices, 
that is, Whs and Wsh, via equations (6) and (7). When brought back to a 
previously seen environment, these weight matrices in Vector-HaSH 
use the observed sensory observations to drive the hippocampal cell 
(and thus grid cell) population activity to the state initialized at the 
first traversal of that environment.
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Similar to new environments, we also model contextual information 

(such as goals, rewards, start-end location pairs) to be appended to the 
sensory inputs. We allow new contextual information to also trigger 
reinitialization of grid state, which then permits storage of multiple 
paths that involve the same spatial location, provided that they are 
distinguished by a contextual signal.

We use this set up of manual reinitialization of the grid state to repro-
duce the experimental observations of splitter cells62, route-dependent 
place cells63, directional place fields in one-dimensional environments64 
and on directed routes in two-dimensional environments82 in Fig. 6g–j 
and Supplementary Fig. 19; and of directional place fields in a radial 
eight-arm maze82 in Supplementary Fig. 21. In all of these cases, we first 
generate trajectories corresponding to the paths that the animals are 
constrained to traverse in the given experiment. These trajectories, 
are then stored in Vector-HaSH at a random location in the grid-coding 
space through a path learning mechanism. At new contextual cues, the 
grid state in the model is reinitialized and the agent then continues at a 
new location in the grid-coding space. This results in different spatial 
firing fields, irrespective of whether the agent is at the same spatial 
location as in a different previous context.

For all the simulations in Fig. 6g–j and Supplementary Figs. 19 
and Fig. 21, Vector-HaSH with λ = {3, 4, 5, 7}, Nh = 500, Ng = 99, θ = 2.5 
and γ = 0.10 was used. The total size of the grid-coding space is 
420 × 420 ≈ 105. In order to capture the inherent randomness and uncer-
tainty present in real-world scenarios, a small amount of neuronal noise 
was introduced by adding random perturbations to the activation 
values of hippocampal cells in Vector-HaSH. This noise, generated from 
a uniform distribution between 0 and 0.1, mimics the fluctuations and 
disturbances observed in individual neurons.

Splitter cells: For Fig. 6h, we follow an analysis method similar to 
the analysis done on the experimental data62. The central stem is 
divided into four equal regions (Supplementary Fig. 22b), and the 
mean activation of every hippocampal cell is computed in each of 
the four regions. Supplementary Fig. 22c plots mean activations in 
each of the four regions, of cells that show different activity patterns 
as Vector-HaSH traverses the central stem on left-turn and right-turn 
trials. The ‘activation ratio’ on right-turn trials versus left-turn trials 
is then calculated for each cell in the region for which the given cell 
has maximum difference in activations. The distribution of these 
activation ratios is plotted in Fig. 6h, that shows the frequency dis-
tribution of cells with preferential firing associated with left-turn or 
right-turn trials. Note that the distribution of cells preferring left-turn 
and right-turn trials is approximately even. The percentage of hip-
pocampal cells with non-differential firing was found to be ~3.896%, 
and the percentage of hippocampal cells with differential firing was 
found to be ~96.103% in Vector-HaSH (using a threshold of 2 on the 
activation ratio).

Route encoding: In Supplementary Fig. 19a,c we employed an ensem-
ble analysis approach mirroring that used in ref. 63 to validate if hip-
pocampal cells demonstrate route-dependent activity. Our simulated 
session comprised 4 blocks, each representing one of 4 routes (0–3), 
with 11 trials per block. We performed ensemble analysis on the maze 
region common to all routes.

We compared the PV—activations of all hippocampal cells on an 
individual trajectory—to the average activation of these cells across 
all trajectories on each route (route-PV). Specifically, we compared 
the PVs for each trajectory to the average activation PVs (route-PVs) 
of all four routes, excluding the trajectory in consideration from its 
route-PV calculation to avoid bias.

Using cosine similarity, we assessed the likeness between each 
trajectory PV and each of the four route-PVs. We then calculated the 
fraction of correct matches (the highest similarity score was with its 
corresponding route-PV) and incorrect matches (a higher similarity 
score was with a different route-PV). The comparison results are shown 
in Supplementary Fig. 20a, left.

We repeated the process 10,000 times with randomized data to 
estimate the chance probability of correct matches. We randomized 
the session data by shuffling trials across blocks, randomly assign-
ing each trajectory to one of the four routes, thereby disrupting any 
correlation between the hippocampal cell activations and a specific 
route. Supplementary Fig. 20a,right depicts a typical result from one 
such shuffle.

For each matrix element (i, j), we plotted the distribution of data from 
these 10,000 matrices in Supplementary Fig. 20b. We then estimated 
the PDF from this distribution using a Gaussian kernel (Python’s scipy.
stats.gaussian_kde method). To gauge the chance probability of cor-
rect matches in our original, unshuffled analysis, we calculated the 
percentile position of our observed match proportion, referencing 
the same matrix element (i, j) from the unshuffled matrix in Supple-
mentary Fig. 20a.

Supplementary Fig. 19c presents the probability of correct matches 
in the unshuffled analysis based on these distributions from 10,000 
shuffles. Low diagonal values indicate that trajectories significantly 
match only their corresponding route-PVs.

Directional cells: For Fig. 6j and Supplementary Figs. 19d and 21, the 
directionality index is defined similar to that defined for the experi-
mental data analysis63,64. Given the activation (A) of a hippocampal cell 
in positive and negative running directions (A+ and A−), we define the 
directionality index as ∣A+ − A−∣/∣A+ + A−∣. By this definition, a direction-
ality index of one indicates activity in one direction only, and a direc-
tionality index of zero indicates identical activity in both directions.

We use the same definition of directionality index to compute the 
directionality of the grid cells in Vector-HaSH, shown in Supplemen-
tary Fig. 24.
Multiple traces theory. In Fig. 6l–o, we consider Vector-HaSH with 
λ = {3, 4, 5}, Ng = 50, Nh = 400, Ns = 3,600, γ = 0.6, and θ = 0.5. We use 
random binary patterns in Fig. 6n, right, o, and bw-mini-imagenet 
patterns in Fig. 6m,n, left. The results are averaged over 20 runs. For 
sensory inputs presented multiple times, the sensory-hippocampal 
weights are reinforced multiple times using online pseudoinverse 
learning rule74, and the grid–hippocampal weights are reinforced 
multiple times using Hebbian learning (Fig. 6l). The Whs weights are 
invariant to reinforcement due to the iterative pseudoinverse caus-
ing perfect hippocampal reconstruction from sensory inputs. Given 
a particular lesion size, the cells to be lesioned are randomly chosen 
from the set of all hippocampal cells, and their activation is set to 
zero. Sensory recovery error is defined as the mean L2-norm between 
the ground truth image and the image reconstructed by the model. 
During testing, the model receives the ground truth sensory image 
as input, and the reconstruction dynamics follow equations (8)–(11). 
Additional results from each layer of Vector-HaSH while testing the 
Multiple-Trace Theory are shown in Supplementary Fig. 16, right. 
Furthermore, Supplementary Fig. 16, left shows the results when only 
Wsh weights are reinforced, assuming pre-trained scaffold weights 
Wgh. In both case, same parameter settings were used as in Fig. 6n, 
right and Fig. 6o.

Parameter values. Figure 2: across all panels: γ = 0.6, θ = 0.5. Stable 
states counted if they can correct noise of magnitude 20% of the typi-
cal hippocampal state magnitude, and requiring dynamics to return 
to within 0.6% of the original hippocampal state. Figure 2e,f use three 
modules with λ = {3, 4, 5} and Nh = 400.

Figure 3: across all panels: γ = 0.6, θ = 0.5. In Fig. 3b,e,i, λ = {3, 4, 5}, Ng 
= 50, Ns = 3,600. In Fig. 3c,e,f, right,i, Nh = 400. Capacity is computed in 
Fig. 3f through injecting 2.5% noise in the sensory inputs, and demand-
ing perfect (0 error) recall. In Fig. 3d, all shown networks have ~5 × 105 
synapses, with Vector-HaSH module periods λ = {2, 3, 5}, and layer sizes: 
Ng = 38, Nh = 275, Ns = 900. Number of nodes in other networks are as 
follows: (1) Hopfield network of size N = 708, synapses = N2. (2) Pseu-
doinverse Hopfield network of size N = 708, synapses = N2. (3) Hopfield 



network with bounded synapses was trained with Hebbian learning on 
sequentially seen patterns. Size of the network N = 708, synapses = N2. 
(4) Sparse Hopfield network (with sparse inputs) with a network size 
of N = 708, synapses = N2, sparsity = 100(1 − p). (5) Sparse Hopfield net-
work. Size of the network N, synapse dilution κ, synapses = κ × N2 = 105. 
(6) Tail-biting overparameterized autoencoder55 with network layer 
sizes 900, 275, 38, 275, 900.

Figure  4: across all panels: γ = 0.1,  θ = 2.5. Figure  4a,c used 
λ = {3, 4, 5}, Nh = 400 and Ns = 3,600. In Fig. 4m, we used 3 grid modules, 
consisting of 81, 144 and 225 cells each, and Nh = 1,000. The Gaussian 
bump of activity had standard deviation of 0.5. All other panels in Fig. 4 
used λ = {3, 4, 5, 7}, Nh = 342. In Fig. 4c, we show the model 596 other 
landmarks before observing the 4 shown landmarks.

Figure  5a, left,b–e used λ = {5,  9,  13},  γ = 0.6,  θ = 0.5,  Nh = 500.  
Figure 5a, right,g used λ = {3, 4, 5}, Nh = 400, Ns = 36,00. Hopfield net-
work in Fig. 5h used 3,600 nodes. Figure 5g,h stored a sequence of 
length 1,000. Figure 5i also used Nh = 400. Figure 5a,c,d, left,e used 
250 MLP nodes. Parameters used in Fig. 5j were identical to those used 
in Fig. 3d.

Figure 6: all panels used γ = 0.1, θ = 2.5. Figure 6b,e,f used the continu-
ous version of Vector-HaSH, using the same parameters as Fig. 4k,m. 
All other panels in Fig. 6 used λ = {3, 4, 5}, Nh = 400, Ns = 3,600.

Figure 7: all panels used λ = {4, 5, 7}, Nh = 400, γ = 0.6, θ = 0.5. The 
mnemonic input layer had 3,600 nodes.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data were collecting by running the codes available at https://github.
com/FieteLab.

Code availability
Codes used to run the model and analyse data are available at https://
github.com/FieteLab.
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Extended Data Fig. 1 | Critical number of hippocampal cells necessary to 
support all scaffold fixed points is asymptotically independent of the 
number of grid cells. For a given number of modules, the critical number of 
hippocampal cells, N *h increases slowly with the number of grid cells, but then 
asymptotically approaches a constant, as expected from the theoretical results 
in Sec. C.1.



Extended Data Fig. 2 | Learning generalization approaches theoretical 
expectations with increasing Nh. The number of generated fixed points 
approaches the maximal scaffold capacity for a very small number of learned 
patterns (see also Fig. 2f). As the number of hippocampal cells increases, the 
number of learning patterns necessary for complete generalization approaches 
the theoretical expectation of M × Kmax, as proved in SI Sec. C.4.
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Extended Data Fig. 3 | Hebbian learning between sensory layer and scaffold 
also produces memory continuum. A memory continuum is obtained in 
Vector-HaSH even if the weights between the sensory and hippocampal layers 
are bi-directionally trained using Hebbian learning (instead of pseudoinverse 
learning, as in Fig. 3. This continuum is also asymptotically proportional to the 
theoretical bound on memory capacity (forest green dashed line indicative of 
slope of theoretical upper bound, vertical and horizontal position of dashed 
line is arbitrary). However, the proportionality constant is lower, with the gradual 
degradation of information recall occurring well before Nh. Vector-HaSH 
parameters identical to Fig. 3c with λ = {3, 4, 5}.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Data collection We wrote custom Python codes to perform numerical simulations of the constructed model. The code will be available at https://github.com/
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Data analysis We wrote custom Python codes to analyze the results obtained by the numerical simulations. The code will be available at https://
github.com/FieteLab
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Data exclusions No data was excluded from the analyses
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