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Abstract7

Across the brain, circuits with continuous attractor dynamics underpin the representation
and storage in memory of continuous variables for motor control, navigation, and mental
computations. The represented variables have various dimensions and topologies (lines,
rings, euclidean planes), and the circuits exhibit continua of fixed points to store these vari-
ables, and the ability to use input velocity signals to update and maintain the representation
of unobserved variables, effectively integrating the incoming velocity signal. Integration con-
stitutes a general computational strategy that enables variable state estimation when direct
observation of the variable is not possible, suggesting that it may play a critical role in
other cognitive processes. While some neural network models for integration exist, a com-
prehensive theory for constructing neural circuits with a given topology and integration
capabilities is lacking. Here, we present a theoretically-driven design framework, Manifold
Attractor Direct Engineering (MADE), to automatically, analytically, and explicitly con-
struct biologically plausible continuous attractor neural networks with diverse user-specified
topologies. We show how these attractor networks can be endowed with accurate integra-
tion functionality through biologically realistic circuit mechanisms. MADE networks closely
resemble biological circuits where the attractor mechanisms have been characterized. Addi-
tionally, MADE offers innovative and minimal circuit models for uncharacterized topologies,
enabling a systematic approach to developing and testing mathematical theories related to
cognition and computation in the brain.

8

Introduction9

The brains of species from insects to mammals contain circuits specialized to represent10

and integrate continuous variables (Figure 1A) [1, 2]: the head direction circuits in mammals11

[3, 4, 5], fish [6], and flies [7, 8, 9, 10], the oculomotor system of vertebrates [11, 12, 13, 14, 15],12

and grid cell networks in mammals [16, 17, 18] (see Figure 1B,C,D). These circuits receive13

velocity inputs, representing the rate of change of the represented variable, and update their14

internal state in proportion to the instantaneous velocity [1]. The oculomotor circuit integrates15

head velocity signals to counter-rotate the eyes and hold the gaze fixed during head movements16

[15, 11]; it also integrates saccadic velocity commands to generate stable fixations at different17

gaze angles between saccades [13]. In the head direction and grid cell circuits for spatial18

navigation, self-movement cues from turning and walking update the internal pose estimates19

[5, 19, 20, 21, 22]. This so-called path integration (PI) computation underpins behaviors that20

are core for survival [23, 24].21

Integration may also underlie the representation and mapping of other continuous domains22

including auditory sound spaces, parametric image variations, and emotional/aggression states23
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[25, 26, 27, 28, 29, 30, 31, 32], and thus support inference, reasoning, planning, and imagination24

in all these domains.25

Neural network models of these integrator circuit fall under the category of continuous26

attractor networks (CANs) [33, 1, 34, 35, 36, 15, 18]. All continuous attractor models posit27

recurrent circuitry to generate a continuous set of states that persist in the absence of external28

inputs (continuous attractors). However, not all CANmodels are integrators: integrators must29

additionally contain a mechanism for updating the internal state based on velocity inputs.30

CAN models generate extensive predictions about circuit connectivity, activity, population31

dynamics, and lesions, and have stimulated extensive experimental work across species and32

circuits to test their predictions. Core novel predictions of these models have subsequently33

been validated via physiology, imaging, and connectomics: the dynamics and connectivity of34

the oculomotor integrator [37, 14, 12, 38] have been shown to match the hypothesized circuit35

model in considerable detail. The one-dimensional ring attractor dynamics, including fixed36

point dynamics, isometric representation in the head direction circuit in mammals matches37

[3] the predicted population dynamics of the ring integrator models in detail [39, 35, 34]. In38

insects, the connectivity and physical layout of the head direction circuit form an actual ring39

[7, 10] and exhibit some of the shift-like asymmetries hypothesized by a subset of the ring40

attractor models [39, 35]. In the grid cell system, the invariant two-dimensional population41

dynamics [40, 41, 42, 43] and its localization [44] to the predicted torus of fixed point states42

[18, 45, 46] has been directly observed in experiments. Thus, when available, circuit models43

have propelled a conceptual understanding of the structure and function of the mechanisms44

involved in integration, memory, and control of continuous variables, and driven experiments45

that have confirmed their mechanistic hypotheses46

These models have been hand-crafted through intuition and insight, individually for each47

circuit or system in the brain. It is remarkable that the corresponding biological circuits48

have been found possess a structure, in the population dynamics and when direct physical49

comparisons have been possible in the circuit architecture, that closely matches these models50

[37, 14, 12, 40, 41, 42, 43, 7, 10, 38, 1]. This suggests that mathematically guided and51

conceptually minimal models are well-matched to the biology of the brain. Yet we lack a52

general mathematical theory to allow researchers to automatically construct such models53

for other continuous variables of a given dimension and topology, to generate predictions for54

future experiments and for potential use in machine learning applications involving such input55

variables.56
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Figure 1: Existing continuous attractor network models and the biological systems where they are found.
A. Left, schematic representation of a spatially embedded set of neurons and their connections. The neural connectivity
constrains the patterns of neural co-activation, thus determining the dimensionality and topology of neural activity in
the state space. Center, schematic representation of neural activity states, in this case forming a continuous manifold in
state space. Right, schematic representation of the states of a (latent) variable in the external world. B,C,D. Examples
of integrator circuits. Top row, integration in the oculomotor system. Center row, head direction system. Bottom row
shows the grid cell system. B. Schematic representation of CAN models architecture for line, ring and torus attractors.
C. Schematic illustration of the continuous manifolds of fixed points predicted and found to exist in the corresponding
circuits, adapted from published work [15, 14, 34, 47, 35, 3, 48, 18, 46, 44]. D. Schematic illustration of variable manifolds.
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Recent efforts to overcome this limitation center on training networks via gradient learning57

to perform continuous integration tasks on the desired variable [49, 50, 51, 52]. However, the58

difficulties of this approach for the formation of continuous attractor networks is that it is in-59

efficient, and the results are not usually interpretable. Specifically, training on M -dimensional60

manifolds requires of order kM samples [53, 54], scaling exponentially with manifold dimen-61

sion. In the few cases where the results become interpretable, it is only through mapping62

onto the original “hand designed” models. The combination of these factors and the striking63

match between biology and the minimal hand-crafted models suggests that a set of simple64

and general mathematical principles are used by biology to build such circuits and if discov-65

ered, can be used to directly construct circuit models for integration of arbitrary continuous66

variables.67

Here, we present such a small set of mathematical principles to directly construct minimal,68

interpretable continuous attractor networks that integrate variables of rich topologies and ge-69

ometries. The theoretical framework converts directly into a practical recipe for constructing70

integrating attractor networks of desired dimension and topology. Existing integration net-71

works known from biology appear as special cases of this framework. We name the method72

MADE (Manifold Attractor Direct Engineering). Thus, MADE can serve as a generally useful73

framework for making circuit predictions about connectivity and function in neural integrators74

not yet discovered, including in high-level areas that perform various cognitive tasks.75

Results76

Integration is the task of estimating the value of some (potentially latent) continuous77

variable x(t), based on an initial condition and inputs conveying information about ẋ(t) ≡78

dx(t)/dt, its instantaneous rate of change. For a variable to be integrable, it must be contin-79

uous and lie on a ‘differentiable manifold’: a smooth, continuous space that at small scales is80

similar to Euclidean space, though globally it may be non-Euclidean, with complex topology.81

For a neural circuit to integrate, its representations must form a differential manifold, and if82

the velocity signal is zero then the read out state should not change over time. In constructing83

a neural circuit that can integrate a given variable, we therefore need two components: a net-84

work that possesses a manifold of states that support a stable readout value, whose dimension85

and topology matches the variable, and a mechanism to allow velocity inputs to move states86

along the manifold. In what follows, we derive a general theory for achieving both with neural87

circuits, assuming that the stable readouts are stable population states on the manifold.88

Theory: Continuous attractor manifolds of desired dimension and topology89

Here we describe the theoretical elements sufficient to construct a neural network possessing90

a continuous set of attractor states with desired intrinsic dimensionality d (e.g., d = 1 for a91

ring lattice and d = 2 for a plane) and desired topology specified by a manifold P.92

Consider a set of N neurons and spatially embed them, equally spaced (in a lattice),93

according to the desired manifold topology P. With this embedding, each neuron has a94

unique d-dimensional coordinate θi. This spatial organization is used for the specification of95

network connectivity, Wij = W (θi, θj); it may but need not mirror the actual locations of96

neurons in neural tissue [18]. We use rate-based neurons with standard recurrent weighted97

sums and point-wise neural nonlinearity given by the function f . The activation of the neuron98

at θi is denoted sθi . For better analytical transparency — so that weights and activations99

can be written as functions instead of lists of numbers — we follow others [34, 55] and take100

the continuum neural field limit. The discrete lattice of positions on the neural manifold P101

and neural activations become θi → θ, sθi → s(θ), respectively. Additionally,
∑

i →
∫
dθ,102
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∑
j Wijsj →

∫
W (θ, θ′)s(θ′)dθ′, so that the neural network equations are:103

τ
ds(θ)

dt
+ s(θ) = f

[∫ ∞

−∞
W (θ, θ′)s(θ′)dθ′ + b

]
. (1)

We will use the rectifying nonlinearity, f(x) = x if x > 0 and f(x) = 0 if x ≤ 0. Derivations104

that follow are conceptually and qualitatively independent of this continuum limit.105

We seek interaction weights consistent with the formation, through symmetry breaking, of106

a single activity bump state that can be positioned anywhere on the neural manifold P. The107

set of such bump states will form the continuous set of attractor states of desired dimension108

and topology.109

Let W be a kernel function, W (θ, θ′) = k(d(θ, θ′)), where d(θ, θ′) is a distance metric110

defined on P, and k is a continuous scalar function that is symmetric about the origin (see111

Figure 2A). Analogous to prior work [34, 48, 56], we set k to be locally excitatory and globally112

inhibitory. To avoid runaway excitability, we make it strictly inhibition-dominated (k(d) ≤ 0113

for all d) as in [57, 18]; network activity can be non-zero because of a compensatory spatially-114

and temporally-constant excitatory feed-forward drive b > 0. Specifically, k(d) = −k0+k1(d),115

where k0 > 0 is a positive number and k1(d) → 0 as d → ∞ with k1(0) = k0.116

Let the kernel’s length scale be given by σ, i.e., k1(d) ≈ 0 for d ≥ σ, with σ selected to be117

much smaller than the distances L over which the manifold P has curvature. Thus, within118

any ball Vl of radius l such that σ ≪ l ≪ L, P is flat. Since σ is the only spatial scale being119

introduced in the dynamics, we qualitatively expect that a localized bump state within the120

ball will have a spatial scale of O(σ). The conditions for the formation of a stable single bump121

state are thus the same as those for a globally flat manifold.122

low high
weights

low high
distance metrics activationsA B population 

    states

Figure 2: CAN construction and activity manifolds. A.Left, neural lattice P for the Plane (top) and Torus
(bottom) attractor networks. Black circles indicate the location of an example neuron, shades of green represent distance
from other points on the lattice. Bottom right, inhibitory connectivity strength between the example neurons and all
other points on the neural lattice. Middle inset, three examples of valid connectivity kernel functions k. B. Neural
manifold in state space (top,right) and activity patterns on the neural lattice P (top,left). Bottom row shows three
activity patterns with bumps at different locations corresponding to different points on the activity manifold N .

Since W is symmetric, Eq. 1 can be described through an energy function [58], and a123

stable steady state must exist. If the homogeneous state (all neurons equally active) were124

unstable, there must exist some other stable state, with broken symmetry. If the symmetry125

broken state is localized, we would refer to it as a bump state. Thus, we seek conditions under126

which the homogeneous steady state is unstable. The homogeneous steady state s(x) = s0127

must satisfy128

s0/τ = s0

∫
W (θ − θ′)dθ′ + b. (2)

We derive the existence and stability of the homogeneous state (Appendix 1) following the129

analysis in Ref. [59], to obtain two requirements for the formation of a stable bump state:130
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first, the Fourier transform of the kernel k1(d), which we denote as k̃1(ω), must be maximized131

at ω = 0; and second, this maximum must be larger than 1/τ . If k attains a positive maximum132

value at ω = 0, a rescaling can always make this maximum larger than 1/τ .133

A broad sufficiency condition for the first requirement is if k1(d) ≥ 0 for all d, then its134

Fourier transform is maximized at zero (proof in Appendix 1). This condition does not include135

all interaction kernels k1 whose Fourier transforms are maximized at zero, but is a sufficiently136

broad class.137

Thus, up to a rescaling of the strength of the interaction, an interaction W (d(θ, θ′)) will138

lead to the formation of a bump state if it can be rewritten as W (d(θ, θ′)) = k1(d(θ, θ
′))− k0139

for: k0 ≥ 0; a kernel k1 that satisfies k1(d) ≥ 0 and k1(d) → 0 for d ≥ σ ; and sufficiently small140

σ over which the manifold P is approximately flat. As a result, there is a set of stable fixed141

points corresponding to activity profiles that are in one-to-one correspondence with points on142

P: every stable single-bump activity pattern is centered at some point in P, and every point143

in P forms the center of some stable single-bump state (see Figures 2B). Thus, the set of144

stable states of the dynamics in Eq. (1) form a continuous attractor manifold N that has a145

bijection with the manifold of the neural layout P and thus to the target manifold. Moreover,146

importantly for representation and integration of continuous variables, we show in Appendix147

2 that P and N are isometric to each other, with respect to their intrinsic geodesic metrics.148

Theory: Integration on manifolds149

The theoretical and practical frameworks outlined above show how to construct neural150

networks whose activity states possess a set of attractors forming a manifold N of desired151

dimension and topology. Here, given the desired manifold N , we describe how the constructed152

attractor network with states matching the topology and dimension of N can be augmented153

to endow them with the ability to perform velocity integration.154

Note that to perform velocity integration of an external observed variable, the desired155

manifold N may, but need not, coincide in dimension and topology with the manifold on156

which the observed variable states lie. This possibility is exemplified by grid cells, where the157

manifold N of a grid module is N = T2 and is used to integrate animal velocities as animals158

move about in physical 2D space (thus M = R2). In a future work, we will consider the159

question of which internal manifolds N , not necessarily of the same topology or dimension160

as M, permit accurate integration of velocities on M. Here we show how to equip networks161

with attractor manifold N with accurate path integration functionality for velocity inputs of162

matching dimensionality.163

Previous models [34, 35, 18] constructed offset interactions between multiple copies of a164

continuous attractor network to permit external inputs to drive the state along the mani-165

fold. Here, we analytically derive the conditions required for an external input that has no166

knowledge about the structure and state of the continuous attractor network to generate167

appropriate movements along the nonlinear attractor manifolds of given topology, and show168

that offset interactions are necessary solutions.169

For simplicity, consider a one-dimensional manifold with linear transfer function f . The170

stable bump states are fixed points of Eq. 1:171

s(θ) =

∫
W (θ − θ′)s(θ′)dθ′ + b, (3)

where s(θ) denotes an activity bump centered at any point in P. Consider two such activity172

bump states: s0(θ) centered at θ0 and s0(θ + ϵ) centered at θ0 − ϵ. For the neural state to173

move from s0(θ) to s0(θ + ϵ) in time ∆t, the time derivative ∂s/∂t must equal174

∂s(θ, t)

∂t
=

s0(θ + ϵ)− s0(θ)

∆t
≈ ϵ

∆t

∂s0(θ)

∂θ
.
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The movement speed is v = ϵ/∆t. Multiplying by τ on both sides, we have175

τ
∂s(θ, t)

∂t
=

τϵ

∆t

∂s0(θ)

∂θ
. (4)

We can add 0 to the equation above, in the form
(
−s0 +

∫
W (θ − θ′)s0(θ

′)dθ′ + b
)
, which is176

zero because of the equality of Eq. 3), to obtain:177

τ
∂s(θ, t)

∂t
= −s0 +

∫
W (θ − θ′)s0(θ

′)dθ′ + b+
τϵ

∆t

∂s0(θ)

∂θ
. (5)

Comparing this expression to Eq. 1, we see that moving the bump with velocity v can be178

achieved by adding a feedforward input drive τϵ
∆t

∂s0(θ)
∂θ to the continuous attractor network.179

Though this appears to be a simple way to drive the activity bump on the manifold, it180

would require the external input to “know” the current value of ∂s0(θ)
∂θ , which varies along the181

manifold. Thus, the external input would need to know both the shape and current state on182

the internal neural activity manifold.183

Observing that ∂s0(θ)
∂θ =

∫ ∂W (θ−θ′)
∂θ s0(θ

′)dθ′ (from Eq. 3), and grouping like terms, we184

obtain185

τ
∂s(θ, t)

∂t
= −s0 +

∫ (
W (θ − θ′) +

τϵ

∆t

∂W (θ − θ′)

∂θ

)
s0(θ

′)dθ′ + b. (6)

This expression has now “internalized” the desired input to move the bump, converting it186

into the weight asymmetry term ∂W (θ−θ′)
∂θ , similar to [34]. The weight asymmetry is internal187

to the network, thus the velocity external input would not need to be aware of the internal188

state or shape on the attractor manifold to drive the bump. However, the external input189

would be required to dynamically modulate the degree of weight asymmetry, a biologically190

unrealistic requirement. As a final step, observe that for small τϵ/∆t ≡ δ, by Taylor expansion,191

W (θ − θ′) + δ ∂W (θ−θ′)
∂θ = W (θ − θ′ + δ). Thus, we obtain192

τ
∂s(θ, t)

∂t
+ s(θ) =

∫
W (θ − θ′ + δ)s(θ′)dθ′ + b (7)

Because we have that δ = τϵ/∆t = τv, the equation above results in a moving bump along193

the internal state-space manifold of fixed points N with speed v = δ/τ , without any external194

velocity input or temporally varying modulation of network weights. The network corresponds195

to the original continuous attractor network constructed in the previous section, with the196

modification that the weights, instead of being symmetric, have a small offset in a particular197

direction δ along the neural circuit manifold P. The speed of bump movement on N is198

proportional to the magnitude of the offset, |δ|, and inversely proportional to the neural199

time-constant.200

This continuous-speed flow may form a periodic cycle on specific manifolds (e.g. Ref.[18,201

35]). In these cases, the network is a limit cycle attractor. On generic manifolds, however,202

this flow need not close periodically on itself. The result will be a quasiperiodic attractor203

dynamics [60]. We therefore refer to these as Quasiperiodic Attractor Networks (QANs). The204

flow of activity patterns in a QAN defines a constant vector field Ψ on N .205

For several attractor manifolds N of dimension d (in particular, ‘parallelizable manifolds’206

such as the Euclidean spaces Rd and the Torii Td) it is possible to construct d QANs with207

linearly independent flows, and 2d QANs with two mutually opposing flows in each of d208

dimensions (defined by weight matrices W (θ− θ′ ± δm), where δm is a displacement vector of209

norm |δ| along the mth manifold dimension). Each sets up a constant vector field Ψ±m on N .210

For these manifold topologies [34, 35, 18], opposing-pair QANs numbering 2d, where d is the211
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manifold dimension, can generate smooth non-vanishing flows of any direction at every point212

and are thus sufficient to construct integrators. The combined dynamics is given by:213

τ
∂sσm(θ, t)

∂t
+ sσm(θ) =

∫ ∑
σ′∈{1,−1}

d∑
m′=1

W (θ − θ′ + σ′δm′)sσ′m′(θ′)dθ′ + b+ ẋσm (8)

where sσm indicates neural activities in the individual QANs and ẋσm is an input carrying214

information about the rate of change of the external variable in the mth direction.215

Coupled in this way, the QANs form a network whose combined activity state moves on216

N in a way controlled by the velocity inputs ẋ, which modulate the activity levels of the217

individual QANs. When ẋσm = 0 for all σ,m, the action of the opposing QANs along each218

dimension restores the symmetry of the system and s remains stationary (it does not flow219

along N ). Otherwise, the terms ẋσm differentially modulate the activation of the QANs,220

causing the activity bump on P to flow in the direction of the positively modulated QANs.221

The result is a time-varying vector field Ψt. For accurate path integration, the component222

vector fields must be smooth and the set of QANs must generate a complete basis set of223

non-vanishing vector fields at every point on N . This condition is satisfied by using 2d QANs224

for Euclidean spaces Rd and Torii Td, thus the prescription above is sufficient for integration225

on these manifolds.226

On other manifolds, 2d opposing QANs for the d manifold dimensions are not sufficient227

for accurate integration. For instance, in the case of even-dimensional spheres, the hairy228

ball theorem states that every continuous tangent vector field must vanish at some point(s)229

[61, 62, 63]. In other words, a continuous vector field Ψ±m generated by the QAN prescription230

above will be zero somewhere on the sphere; at that location, the QAN will not be able to231

drive bump movement; thus, d QAN pairs will not suffice for good integration everywhere.232

Further, on non-orientable manifolds such as the Möbius band, it is not possible to define233

continuous vector fields that are globally orthogonal everywhere and smooth. Thus, while the234

approach above provides a unified way to construct integrating continuous attractor networks235

— including all those with a single bump state currently found in the neuroscience literature236

[34, 35, 47, 48, 56] — it needs to be further generalized for manifolds that do not permit237

non-vanishing continuous tangent vector fields everywhere.238

Generalization: Killing vector fields. To enable accurate path integration over a sig-239

nificantly wider set of manifolds (excluding the Klein bottle), we now broaden and further240

generalize the concepts developed above. The approach replaces the constant weight offset241

vector fields Ψ±m with the more generally applicable Killing vector fields [62]: Killing fields242

are vector fields on a manifold whose flows preserve the structure of the manifold, i.e., they are243

continuous isometries on the manifold. Conceptually, if each point of an object on the mani-244

fold is displaced by the corresponding Killing vector, it will move without distortion. Killing245

fields form a ‘vector space’, such that linear combinations of Killing fields are also Killing246

fields. The manifold isometric property of Killing fields means that activity patterns are247

rigidly translated over P through the flow Ψt without changes in area, a necessary condition248

for accurate integration [34].249

To generate Killing fields in each QAN, the constant weight offsets are replaced by an250

appropriate position-dependent offset:251

k(θ + δ±m) → k(d(θ + δ±m(θ))), (9)

where ±δm(θ) is the offset vector of the σ,mth QAN at coordinates θ on P. This allows for252

weight offsets to vary at different locations on the manifold N consistent with non-constant253
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Figure 3: Quasiperiodic Attractor Networks for Path Integration. A. Schematic representation of a desired 2D
spherical set of fixed points in state space and corresponding connectivity on P. B. Example activity bump plotted
on the neural manifold P. C. Schematic illustration of Killing vector fields for the sphere manifold, left, and resulting
offset connectivity weights on P, right. D. Schematic illustration of the QAN approach to velocity integration. Left
two panels, relationship between changes in the variable on M and on the neural N manifold, and associated tangent
vectors. Center, each QAN receives a velocity-dependent input based on the tangent vectors at left projected onto its
Killing fields, and the activity of all networks is combined. Right: this results in a trajectory in the state-space N , which
corresponds to velocity integration of inputs from M.

Killing fields required on the sphere (Figure 3C). This simple change, and allowing the number254

of QANs to be larger than 2d, endows a much broader class of continuous attractor manifolds255

including spheres and Möbius band with integration functionality. For a two-dimensional256

sphere, three basis Killing fields (dkill = 3) are required (each corresponding to rotational257

symmetry along one principal axis; Figure 3C). Although each field vanishes at two points on258

the sphere, at least two fields are non-vanishing and point in independent directions along the259

manifold at any point, forming an overcomplete basis such that it is possible for the network260

to perform accurate path integration.261

Finally, we generalize how an external manifold M may be mapped to the internal inte-262

grating manifold N , by mapping velocity vectors in the external space to the QANs within263

the network. Throughout, our construction seeks to make P and N isometric, and indeed264

they are, as shown in Appendix 2. However, as noted at the start of this section, N need265

not exactly match the topology of the external variable: N = T2 of a grid module represents266

positions on M = R2 of the externals partial variable. Similarly, the dimensionality of N267

could equal or exceed that of M: a planar integrator network is capable of integrating an ex-268

ternal one-dimensional variable if the velocity inputs are one-dimensional. For instance, grid269

cell responses on a linear track appear to be generated as a slice through their 2D manifold270

of states [41, 64].271

Define π as the mapping of M to N (which can be the identity map or the isomorphism272

map when M and N are isomorphic, such as when head direction is represented in a ring273

attractor, or a many-to-one map as when spatial position is represented in a single grid274

module). The Jacobian π⋆ is a map from the tangent space of M to the tangent space of275

N : it is the operator that maps tangent vectors from M (i.e. ẋ) to tangent vectors of N276

[63, 65]. In other words, the velocity vector ẋ is ‘pushed forward’ through the map π into277
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π⋆(ẋ) (Figure 3D). The coupled system dynamics can be written as278

τ
dsσm(θ, t)

dt
+sσm(θ, t) = f

∫ ∑
σ′∈{0,1}

dkill∑
m′=1

Wσ′m′sσ′m′(θ′, t) dθ′ + b+ δσm(θ) · π⋆(ẋ)

 . (10)

where Wσm refers to the Killing-field weights from Eq. 9, dkill defines the minimal number279

of independent Killing fields. The term δσm · π⋆(ẋ) refers to the projection of the velocity280

pushed through π onto the (σ,m)th QAN. Note that in general, the Jacobian π⋆ maps the281

tangent space at a specific point on M to the tangent space at a specific point on N , making282

it dependent i principle on both x ∈ M and s ∈ N . Thus, neural circuits generating π⋆(ẋ)283

would require access to both the integrator’s neural state and the external variable. While284

the neural state s is available to the brain, x cannot be directly observed. However, if the285

integrator network maintains an accurate estimate of this variable — an expected property286

of a reliable integrator — then the brain can instead evaluate π⋆ at the integrator’s state on287

M as a proxy for x.288

The constant vector fields on the ring and torus manifolds described above (and effectively289

discovered in previous work) are Killing fields. Therefore, this approach encompasses previous290

work and provides a broader general framework for constructing minimal biologically plau-291

sible continuous attractor neural networks capable of path integration on spaces of various292

dimension and topology. Next, we demonstrate how to practically construct the networks,293

the examine the effectiveness of the approach through extensive numerical simulations of path294

integration in MADE integrator networks.295

Practical construction of CAN integrators with MADE296

With the complete conceptual and mathematical frameworks in place, we now illustrate297

through numerical simulation how to apply the MADE prescription to construct various298

CANs and integrators of desired dimension and topology. The simulations also allow us to299

validate the functionality of the resulting CANs and integrators. For simplicity, here we focus300

our description on one and two-dimensional surfaces, allowing us to construct line, ring, plane,301

cylinder, torus, sphere, Möbius band and Klein bottle topologies and geometries (Figure 4A).302

The procedures outlined here can be straightforwardly generalized to apply to manifolds of303

different dimensionality.304

We first construct a neural surface P that is isometric to the target state-space manifold305

N . For the sphere attractor, we construct P as an embedding of the two-dimensional unit306

sphere in R3, and for the Klein bottle attractor P was an embedding of a finite cylinder307

manifold with appropriate identification of the cylinder end-points to each other in R4). For308

several other manifolds (including all others from Fig. 4), which admit a flat metric, we define309

a rectangular two-dimensional space [0, L1]× [0, L2] (Figure 4B) and provide an appropriate310

distance function on the rectangular space. For example, for the torus manifold, L1 = L2 =311

2π, and distances are computed respecting the periodic boundary conditions that identify 0312

and 2π as the same point.313

Given P, we next approximately evenly place neurons on the surface. For manifolds with a314

flat metric, this involved placing neurons on an n×n rectangular lattice on this space, where315

n2 is the total number of neurons. For the sphere, we spaced neurons at regular intervals316

along a Fibonacci spiral over the unit sphere (see Methods)to approximate an even placement317

on the sphere. Thus, for each neuron we define their P coordinates θi.318

Next, we computed the connectivity of the network Wij , which depends on the (geodesic)319

distances d(θi, θj) between pairs of neurons with coordinates θi and θj on P. With appropriate320

coordinate parametrization for the neurons, these geodesic distances can be computed via321
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analytical expressions (for instance, as Euclidean distance with periodic boundary conditions322

on a torus attractor), or via a simple numerical computation (see Methods). Connectivity323

is then given by the n2 × n2 matrix with entries Wi,j = k(d(θi, θj)), where k is a kernel324

function (Figures 2A, 3A, 4B) satisfying the requirements described earlier for the formation325

of activity bump states (see also Appendix 1). We used a scaled Gaussian kernel such that the326

connectivity between pairs of neurons was strictly negative and Wij = 0 if d(θi, θj) = 0 (see327

Methods). Other choices of kernels yield similar results (data not shown). Neural activity is328

simulated based on these weights according to Eq. 2. We will provide Python and Julia code329

that implements the MADE prescription for CANs (see Methods).330

Validation of CAN states and dynamics331

To validate the MADE CANs, we first characterize where the states of the constructed332

networks localize. To do so, we sample population activity data from each model by randomly333

initializing each network and allowing the initial state to settle to a stationary state (see334

Methods). This state forms one population vector sample; we repeat the process 2500 times335

for each network. We apply nonlinear dimensionality reduction via ISOMAP, which has336

proven useful for the visualization of nonlinear low-dimensional manifolds in real data [3], to337

the resulting point cloud of stationary population activity states. The resulting structures338

(Figure 4C) visually matched the desired manifolds (Figure 4A): the population responses of339

the MADE CANs localize to low-dimensional sets of states that appear homeomorphic to N .340

To quantify the structure of the resulting population states, we use persistent homology, a341

Topological Data Analysis [66, 67] technique that has been applied with success in neuroscience342

[68, 3, 44]. Persistent homology supplies Betti numbers that characterize the topology of the343

set of stationary states of each network (see Methods). Betti numbers catalog the number of344

“cavities” of each dimension present on a manifold; the first three Betti numbers correspond345

to the number of connected components, rings and two dimensional cavities, respectively.346

Betti numbers don’t provide a complete or unique description of manifold structure (e.g., the347

ring and the cylinder share the same Betti numbers while having different dimensionality),348

but they provide a quantitative confirmation that the MADE CANs match their intended349

targets. The Betti numbers of all MADE CANs population states match those of their target350

manifolds (Figure 4 D).351

We next visualize the instantaneous population activity states as functions on the neural352

lattice. The localized kernel connectivity on the manifold was expected to stabilize single353

activity bump states on the manifold. A stationary population activity state can be directly354

visualized on the neural lattice by coloring neurons according to their activity level. Indeed,355

we see that the stationary population states correspond to localized bumps of activation on356

the neural lattice P and activity manifold N (Figure 4E).357

Next, we characterize the intrinsic dimensionality [3, 69] of the stationary states of the358

MADE CANS. Intrinsic dimensionality at a point on a manifold is the numbers of degrees of359

freedom of movement along the manifold at that point. Intrinsic dimensionality would allow360

one to distinguish, for example, a ring (one dimensional) from a cylinder (two dimensional).361

Dimensionality is generally a difficult (and ill-posed) quantity to estimate in noisy data, and362

existing works use various methods [3, 70, 71, 72, 73]. For MADE CANs, which we can run363

in a noiseless setting, intrinsic manifold dimension is well-defined.364

We adopt an approach [73, 72] based on estimating the dimensionality of the tangent space365

to a manifold (see Methods)(Figure 5 A, left). The tangent space TsN at a point s ∈ N is the366

best linear approximation of the manifold at that point and has the same dimensionality as367

the underlying manifold [74, 63, 65]. We consider the set S of points in a small neighborhood368

of s (see Methods)and apply PCA to determine the number of large principal components369
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Figure 4: Stationary states and manifold topologies of the MADE CANs A. Desired population activity
manifold topology for CANs constructed with MADE for several manifolds (from top to bottom): line, ring, plane,
cylinder, torus, sphere, Mobius band and Klein bottle. B. Distance functions over the neural lattice P for selected
example neurons. C. Low dimensional embedding of the neural activity manifold N . D. Betti number and persistent
homology bar code for each CAN’s neural population states (in N ). E. Left: Activity of one example neuron over N
(low dimensional embedding). Right: Stationary population activity states form localized bumps on the neural lattice
P.

needed to describe the data. This gives us the dimensionality of the tangent space at s and370

thus the local intrinsic dimension of the manifold.371

Repeating this analysis across multiple randomly selected sample points s for each MADE372

CAN, we confirmed that all manifolds had the expected intrinsic dimensionality given their373

topology: line 1 ± 0.0 (mean ± standard deviation, across multiple repeats), ring: 1 ± 0.0,374

torus: 2 ± 0.0, sphere: 2 ± 0.0, Möbius band: 1.96 ± 0.16, cylinder: 2 ± 0.0 and plane:375

2.05± 0.23 (Figure 5 A). By contrast to the small intrinsic dimensionality of the constructed376

CAN manifolds, their extrinsic linear dimensionality, estimated by the minimum number of377

principal components required to represent the manifold as a whole, is large (Figure 5 B).378

Finally, we examined whether the stationary manifolds of the MADE CANs are neutral379

attractor states, with rapid decay of off-manifold perturbations, together with no state drift380

along the manifold in the absence of noise and external inputs [34, 1]. First, we consider381

manifold stability by computing Betti numbers of the population states in networks simu-382

lated with varying noise conditions, and find that except in the most severe noise case, we383

recover the same Betti numbers for the noisy dynamics – indirectly showing that the man-384

ifold is attractive and robust to noise (see Methods)(Figure S1). Second, we more directly385
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Figure 5: Dimensionality and attractor dynamics of the MADE CANs. A, Left, tangent planes approach
to computing the intrinsic manifold dimension (schematic) of N . Right, estimated tangent space dimension for each
manifold, which estimates the low intrinsic dimensionality of the CAN networks. B Cumulative manifold variance
explained by global PCA analysis: the slow saturation of the curves shows that the linear (embedding) dimension of the
manifolds can be large. C Numerical simulations to probe attractor dynamics. Inset: activity manifold, perturbation
vector (black) and on-manifold (red) and off-manifold (blue) components of the perturbation. Main plot: Time-varying
distance from the starting point in the off-manifold and along-manifold dimensions.

perturb the neural population state with a randomly oriented vector of fixed magnitude (see386

Methods), repeating this experiment for multiple initial states and random perturbations,387

and observe the dynamics by which the perturbed state evolves. To quantify on- and off-388

manifold dynamics following perturbation, we again used PCA to estimate the manifold’s389

tangent space in the neighborhood of the initial state. The distance between the perturbed390

and initial (pre-perturbation) states along the tangent space dimension was considered the391

on-manifold perturbation component; the rest (along the remaining N−d dimensions) was the392

off-manifold perturbation(see Methods). We find very limited on-manifold drift and strong393

decay of the off-manifold component of the perturbation, as intended (Figure 5 C).394

Practical construction of integrators with MADE395

To generate the QANs that combine to create neural integrator circuits, we slightly modify396

the connectivity structure of MADE CANs. We start with the same procedure as before to397

construct P and compute the distance function d. For a QAN indexed by σ,m we simply398

apply a shift δθσm to the ith neurons coordinates before computing d such that Wi,j = k(d(θi+399

δθσm, θj)). For some manifolds with a flat metric (e.g. plane, torus) δθσm was identical for all400

points θ ∈ P and was taken to be a vector of magnitude |δ| oriented along the mth direction401

on P. In others (e.g. the sphere), the offset vector varied as a function of position along the402

manifold. For each dimension m we defined a Killing Vector field Ψ±m and evaluated it at θi403

to obtain the offset vector (see Methods). Given an external velocity signal for a trajectory404

on M, we use the map π from M to N to obtain the inputs to each QAN. Network activity405
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is simulated based on weights and these inputs according to Eq. 10. We will provide Python406

and Julia code to implement the MADE prescription for neural integrators (see Methods).407

Validation of MADE integrators408

To examine the performance of each MADE integrator in representing and tracking time-409

varying external variables, we provide the circuit with the velocity of a simulated random410

trajectories of the variable x(t) ∈ M and track how the network’s internal state changes.411

We first consider how the firing of a single cell varies with the external variable, by plotting412

its tuning curve or firing response as a function of the external variable, estimated over a413

long velocity trjectory (Figure 6A). The existence of a localized activity bump (Figure 6A,414

top three panels) means that the circuit has correctly inferred external position: the cell415

fires at a specific position and not other random positions, and the network has transferred416

the internal bump activity pattern into a corresponding pattern as a function of location on417

the external manifold M. In cases where the external manifold M is not isomorphic to the418

internal manifold N , such as when a plane in M is represented by a cylinder or a torus in N , a419

continued linear trajectory along one direction in M corresponds to a periodic traversal on N ,420

and thus one would expect repeating bumps in the tuning curve along that dimension, as we421

find (Figure 6A, panels 4-5). Note that based on the details of how we periodically connected422

the boundaries of our rectangular neural lattice to obtain a torus, we would obtain a square423

grid tuning curve (as shown) or a triangular grid tuning curve (as previously described for424

grid cells in [48, 56]). Finally, the tuning curves for the sphere and Mobius strip are single425

bumps, as expected (Figure 6A, last two panels).426

We can more directly quantify how closely the network tracks the external variable x(t) by427

decoding it from the network’s internal state s(t), as x̂t = θargmax(s(t))+ω where ω is an offset428

used to account for the fact that, in some cases, N was periodic while M was not (e.g. torus429

and plane, respectively) (see Methods). When M and N are chosen such that π is either an430

identity map or a periodic mapping, the networks show very accurate integration over periods431

of several seconds of simulated activity (Figure 6B,C). Decoding error remains low even in432

the presence of moderate noise (Figure 6D) (see Methods). Thus, MADE networks support433

accurate integration, even in non-trivial scenarios such as the cylinder-torus manifold pairing434

and even on the Möbius band manifold, which have not been described previously.435

We performed additional experiments on circuits requiring Killing vector fields to integrate.436

To show the necessity of Killing fields, we built torus (N = torus, M = plane) and sphere437

(M = N = sphere) integrator networks, but varied the QAN weight offsets relative to the438

Killing field prescription. For the torus, we varied the orientation of the offset vectors, while439

for the sphere we changed their lengths to be of constant magnitude everywhere (except at440

two poles, where the magnitudes were left at 0), (see Figure 6E, left), (see Methods). The441

constant-magnitude non-Killing field on the sphere may be considered a direct extension of442

the constant offset vector fields used for flat manifolds and used in all prior work in the443

construction of neural integrators. In both cases, we observed a dramatic deterioration in444

integration accuracy, Figure6E (right). The result underscores the importance of Killing445

fields for integration on manifolds with a non-flat metric.446

Finally, we considered integrating velocities from a cylindrical external variable on a net-447

work with Möbius band topology. Both manifolds are two-dimensional with one periodic and448

one non-periodic dimension. However, while a rectangle is glued without a twist to make a449

cylinder (which has two surfaces, inner and outer), it is glued with a twist to make a Möbius450

band (which has a single surface) with the consequence that there is no simple continuous451

mapping between the two. Proceeding naively by simply mapping the two manifolds onto452

each other by ignoring the flipped boundary of the Möbius band, it is unsurprising that in-453
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tegration is significantly less accurate (Figure6F). In future work, it will be interesting to454

consider which pairings of external to neural manifolds will provably permit accurate path455

integration.456
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Figure 6: Numerical simulations of path integration performance with MADE path integrators. A. Tuning
curves of single example neurons as a function of the external (latent) variable x. Insets show the manifold topologies
of the external variable (red) and neural population states (blue): these pairings might be of identical manifolds, or e.g.
a 2D Euclidean manifold in x could be mapped to a cylinder or torus, etc. in the neural population states. B. Example
input trajectory (red) and decoded trajectory from the neural population response (blue). C. Decoding error across
multiple simulations for various external-neural manifold pairs. Decoding error is shown as percentage of trajectory
length over M. Colored boxes show the interquartile range, white lines the mean, circles outliers and vertical lines
the 95th percentile confidence interval. D. Same as B but for torus attractors with varying amounts of noise. E. Left:
Killing and non-Killing weight offsets for the torus (top) and sphere (bottom). Right: Same as C for integrators correctly
constructed with Killing weight offsets, and with the non-Killing weight offsets from the left. F. Same as C for Möbius
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Discussion457

Summary Here, we have presented MADE, a mathematical theory and recipe for con-458

structing biologically plausible neural CANs and integrator networks of desired topologies459

and geometries, with single- or multi-bump tuning curves. The mathematical theory unifies460

existing biologically plausible continuous attractor and integrator models involving bump-like461

activation functions, which emerge as specific cases of the MADE theory.462

The theory provides a first-principles derivation showing that multiple copies of a basic463
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network must be coupled together for integration with biological constraints, in part to relieve464

demands for rapid synaptic modulation and in part to remove the need for velocity estimating465

regions from knowing the full nonlinear structure and current state of the integrator network.466

It also predicts that manifolds without a flat metric will require an overcomplete set of network467

pairs in the form of QAN networks, relative to the intrinsic dimensionality of the manifold:468

thus, integration on a two-dimensional spherical surface requires more than 2 QAN pairs.469

We envision MADE to be useful to distinct fields: for deep-learning models that might470

require accurate low-dimensional neural network attractors and integrators, and for neuro-471

science, where MADE provides de novo models and novel circuit-level mechanistic predictions472

for the structure of other possible integrators in brain that may be uncovered in the future.473

Indeed, given recent discoveries that path-integrating neural circuits generalizably repre-474

sent multiple cognitive variables, it is likely that such circuits are used by the brain to perform475

cognitive tasks in which variables of interest are not directly observed and only information476

about their rate of changes is available (e.g., mental object rotation) [25, 75, 27]. MADE mod-477

els could then act as test beds to generate mechanistic hypotheses for the network dynamics478

underpinning integration computation in such cognitive tasks.479

Activity bumps and tuning curves MADE provides a basic prescription for the construc-480

tion of continuous attractor and integrator networks of a desired dimension and topology. We481

numerically implemented a particular (Gaussian) kernel shape to illustrate the framework.482

The shape of the population activity bumps that result will depend on the kernel shape,483

which can be varied and selected as desired, according to the constraints supplied by our484

theory. Recent theoretical work on symmetry breaking for pattern formation also suggests485

that the set of potential kernels forms a large function space.486

The tuning curve shapes of single cells depends both on the population activity bump shape487

as well as on the mapping from the external variable manifold to the internal neural state488

space manifold. As we have seen, if the external manifold is unbounded in some dimension489

but the internal representation is compact and periodic, then the spatial tuning curve will be490

periodic in that dimension. More subtle details of the mapping can affect the geometry of the491

periodic mapping, as we have described above.492

We have focused our illustrations on simple and non-trivial manifolds of intrinsic dimension493

≤ 2 for visualization and convenience. However, the theory and recipe for continuous attractor494

and integrator network construction generalizes in a straightforward manner to manifolds of495

higher dimension and different topologies.496

Related work Computational models first described attractor networks [76, 36, 34, 35,497

15, 11] and the mechanisms by which they could enable velocity integration [34, 47, 35,498

15, 11, 46, 48, 18] long before experimental data verified the existence of such mechanisms.499

Intriguingly and surprisingly, in every case experimentally probed to date, the proposed neural500

circuit models closely resemble the hand-designed attractor models [40, 3, 42, 43, 44, 38, 15,501

37, 14, 13]. Why is this the case? Presumably this match arises because the models were502

minimal in the sense that they implemented the essential elements and symmetries required503

to form the desired attractor, and circuits in the brain evolving under efficiency pressures504

arrived at similarly minimal models. MADE adopts a very similar mathematically minimal505

approach, recovering all of the known integrator models with bump-like tuning (except for506

the oculomotor integrator, which does not have bump-like responses).507

An alternative approach to building models of integrating circuits in brains is to train508

artificial neural networks to perform tasks requiring integration [50, 49, 51]. After training, the509

networks’ solution is analyzed to reverse engineer the relation between network connectivity,510

neural dynamics and task performance [50, 77, 78, 79]. However, such approaches often fail to511

provide novel testable predictions or interpretable mechanisms to guide further experimental512

investigations, unless there was already a hand-crafted model available to which the trained513
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network could be compared.514

The network engineering approach [80, 81, 82, 83, 84, 82, 85, 86, 87] constructs circuits515

starting from the detailed desired dynamics of a system (precise states, fixed points, or specific516

tuning curves), then directly searching or solving for some network connectivity with those517

dynamics. Typically, these works further constrain the problem to make it well-posed by518

searching for low-rank weights or the lowest-dimensional embedding space for the dynamics519

while satisfying the desired properties. These methods are complementary to our approach:520

they permit construction of a broader set of dynamical systems, for instance trajectories521

ending in discrete fixed points, stable and unstable fixed points, etc., while our focus is522

specifically on biologically plausible continuous attractors that integrate. Conversely, those523

approaches do not provide a framework for building biologically realistic continuous attractor524

networks that integrate and lack known matches or easy interpretability to compare with525

biological circuits in known cases.526

In conclusion, MADE allows for easy generation of interpretable, mechanistic, models of527

CAN networks that can integrate. We hope that MADE will endow researches with tools528

required to generate detailed, testable, hypotheses about the neural underpinnings of integra-529

tion in diverse settings and in various cognitive processes, accelerating our understanding of530

the critical role that this class of computations play in many aspects of brain function and531

allowing for easy incorporation of such circuits in deep learning applications.532
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Methods766

All simulations and figures were implemented in custom Julia code available at GeneralAt-767

tractorsTheory. We will provide a minimal Python package for creating CANs and QANs768

using MADE: MADE-Python.769

CAN construction770

In MADE, CAN engineering depends on computations of the pair-wise on-manifold dis-771

tances between neurons in a lattice P. Thus, we begin by specifying a set of n equally spaced772

points on P. For the Line attractor, n = 256 and P was taken to be the interval [−6, 6]. For773

the Ring attractor, n = 256 and P was taken to be the interval [0, 2π] with the two ends774

identified (i.e. we ensured not to have a neuron at θi = 0 and one at θi = 2π). For all remain-775

ing networks, n = 482 was used. The following rectangular intervals were used: for the plane776

attractor P = [−10, 10] × [−10, 10], cylinder: P = [−5, 5] × [0, 2π], torus: P[0, 2π] × [0, 2π],777

Möbius band: P = [−2, 2] × [0, 2π] and Klein Bottle: P[0, 2π] × [0, 2π]. For the sphere at-778

tractor, the n points were chosen to be on a Fibonacci spiral on the unit sphere embedded in779

R3.780

Next, to implement custom manifold-specific distance metrics d we used the Julia package781

Distances.jl. The standard Euclidean metric was used for the line and plane attractor, for782

the ring a one dimensional periodic Euclidean metric (period 2π) was used, for the torus a783

two dimensional periodic Euclidean metric (period 2π in each direction) and for the Cylinder784

a heterogeneous periodic and standard Euclidean metric for the periodic and non-periodic785

dimensions respectively. For the sphere the great arc spherical distance for points on the786

unit sphere (implemented in the Manifolds.jl package [88]) was used. For the Möbius band a787

custom metric function was used to account for the non-orientable nature of the manifold.788

For the Klein Bottle, a different approach was used. First, we defined an embedding of789

the Klein Bottle in R4 mapping each lattice point θ = (u, v) to a point q ∈ R4:790

q1 = (2 + cos(v)) cos(u)

q2 = (2 + cos(v)) sin(u)

q3 = sin(v)

q4 = sin(v) cos
(u
2

)

Next, we computed the pairwise Euclidean Distance in R4 for the embedded points and791

selected the 8 nearest neighbors of each point. We then constructed a graph where each792

node was a lattice point and two nodes were connected if one belong to the neighborhood793

of the other. Each edge was assigned a weight equal to the Euclidean distance between the794

two points. Thus, the graph structure was taken to represent the local topological structure795

(connectivity) of the Klein Bottle. Given two points θi, θj then, their on-manifold distance796

was given by summing the edge weights (local distances) along the shortest path on the graph797

from the node corresponding to θi to the one corresponding to θj as a way to numerically798

approximate the geodesic distance between them.799

Following computation of pairwise distances, the connection weights between two neurons
was computed using as kernel function:

k(x) = α exp
(
−x2/(2σ2)

)
− α
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yielding strictly non-positive values for the connection strength. This gave a connectivity800

pattern characterized by global, long-distance inhibition, and no, or reduced, inhibition locally801

such that a localized pattern of activation on the neural lattice P would remain localized and802

not result in activation of all neurons in the network. The parameters α, σ were varied based803

on the CAN topology and are indicated in table 1804

line ring plane cylinder torus Möbius Sphere Klein Bottle
α 1 1 2.5 2.5 2.5 2.5 2.5 2.5
σ 1 1 25 25 2 2.5 40.5 150

Table 1: Kernel function parameters

CAN simulation805

Network dynamics were approximate to discrete time using forward Euler integration with806

∆t = 0.5ms using:807

s(t+∆t) =
f [W s(t) + b+ η(t)]− s(t)

τ

where s(t) is a vector representing the activity of each neuron in the network at time808

t, τ = 5ms was used as time constant. The constant input b = 0.5 was used throughout.809

The term η(t) was used to simulate Poisson noise in the recurrent dynamics, it represents a810

vector of length n whose entries are given by: ηi(t) = rand(−0.5, 0.5) ∗ σnoise
√

(si) where811

σnoise ∈ {0, 1.5, 3, 5}. Unless explicitly stated, σnoise = 0 was used.812

For each CAN, 2500 simulations of 25ms in duration were performed to generate data for813

the analysis of the activity manifold topology. We chose 25ms since we observed this to be814

sufficient for the network to settle into a steady state (i.e. one in which the network’s activity815

does not change between simulation steps).816

For the first 15ms of each simulation, the activity of neurons at a distance d > 0.5 from a817

selected neuron θ0 (randomly selected for each simulation) was artificially set to 0 to induce818

the formation of a stable bump of activity around θ0 to promote uniform coverage of the entire819

manifold. The final activation vector s(T ) for each simulation was then stored for subsequent820

analysis. For the torus attractor network, additional simulations were performed varying the821

noise parameter to assess the effect of noise on the attractor dynamics.822

Attractor manifold analysis.823

The final activation vector of each of 2500 CAN simulations for each manifold were collected824

into a matrix of dimensionality n× 2500 with n being the number of neurons in the network.825

For networks other than the line and ring attractors in which n > 400 a first dimensionality826

reduction step using PCA was performed to reduce the data to a 400 × 2500 dimensional827

matrix. Then, further reduction to three dimensional data for visualization (Figure 4) was828

achieved using Isomap [89]. To reduce computation Isomap was fitted to 10% randomly se-829

lected data points and then used to embed the entire dataset for visualization. For subsequent830

Topological Data Analysis (TDA) point cloud data was subjected to PCA dimensionality re-831

duction to generate a 200 × 2500 data matrix and Isomap was then used to further reduce832

dimensionality to 10 (Isomap fitted to 10% of the data) [3].833
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Topological data analysis834

To perform persistent homology analysis the Julia packages Ripserer.jl and PersistenceDi-835

agrams.jl [90] were used. To reduce computation, the TDA filtration was computed using836

a subset of randomly selected data points (20% of the entire dataset) to obtain the persis-837

tence diagrams shown in Figure 4 A. Only intervals with a lifespan > 7 were kept to remove838

features due to noise and the number of persistent intervals of each dimension (up to two839

dimensional cavities) were counted to obtain Betti numbers, which were then compared with840

those expected for manifolds of the given topology.841

Visualizing neural tuning curves842

To visualize neural activation turning curves over N in Figure 4, we used PCA and ISOMAP843

to reduce the dimensionality of neural activity to three dimensions. We thus obtained 2500844

low dimensional points which we colored according to the activity of one selected neuron in845

the corresponding neural state. To visualize activity over the neural lattice P, we started by846

selecting one random neural state from the 2500 simulations. Then, we uniformly sampled P847

and for each location θi ∈ P we identified the closest neuron in the CAN (by coordinates).848

We then colored each point in P according to the activation of the closest neuron.849

Intrinsic manifold dimensionality analysis850

To estimate the manifold’s intrinsic dimensionality all data points in the n-dimensional state851

space were utilized. Pairwise Euclidean distance between each data point was computed to852

obtain each data point’s k nearest neighbors (using the NearestNeighbors.jl package). While853

Euclidean distance in state space does not necessary match on-manifold geodesic distance854

on N in general, on a sufficiently small scale a manifold’s Euclidean structure makes this855

approximation acceptable. Next, 250 random data points (10% of the total) were selected856

for estimation of local dimensionality in their neighborhood. For each, the k closest points857

were selected and PCA fitted to the data. The number d of principal components required to858

explain at least 75% of the data was used as estimate of local dimensionality and the manifold’s859

intrinsic dimensionality was taken to be the average across repeats. Thus, the dimensionality860

estimation procedure depended on two hyperparameters: k and the percentage of variance861

explained. Preliminary tests on artificially generated data with known dimensionality and862

variable Gaussian noise were used to select the parameters used here, and we’ve found the863

estimated intrinsic dimensionality to be robust across a wide range of parameters values (data864

not shown). For the analyses shown here we used k = 500 throughout. Our preliminary tests865

showed that much smaller values of k resulted in noisy estimates (especially in the face of noise)866

and very large values of k led to an overestimation of the manifold intrinsic dimensionality867

(likely due to the higher global embedding dimensionality).868

Attractor dynamics analysis869

To explicitly quantify attractor dynamics, a torus network was constructed as described above870

and simulated without external stimuli for a simulation time of 250ms (given 100 random871

initializations). Next, the network’s state was perturbed by addition with a random vector v872

of the same dimensionality as the network activity. For each of 100 simulations the vector was873

chosen to have a random orientation but fixed magnitude. The magnitude was computed to be874

50% of the average distance between states on the torus manifold and the origin. Following the875

stimulus, the simulation was continued for 750ms more for a total simulation time of 1000ms.876

Data for each simulation was collected for the analysis of on- vs off-manifold dynamics. For877
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each repeat the state just prior to stimulus application was used as seed for local PCA using878

k-nearest points from the point cloud data used for previous estimation of manifold topology,879

as described above (i.e. the steady states from previous simulations without the inputs were880

used to estimate the tangent plane to the manifold). The top two principal components were881

retained as approximation of the manifold’s tangent plane. The neural trajectory was then882

decomposed into on-manifold and off-manifold components by projection onto the tangent883

plane and remaining N − 2 dimensions. The euclidean distance in each subspace from the884

initial condition over time was then computed to asses drift following stimulus application885

and averaged across repeats.886

QAN construction887

To construct quasi-periodic attractor networks for integration, first a choice of variable (M)888

and neural lattice (P) manifolds was made, ensuring that an identity or periodic mapping889

existed between the two (unless explicitly stated otherwise). Next, a map π : M → P and890

its inverse π−1 were defined (e.g. mapping each point on the plane, P, to a corresponding891

point on the torus, N ). To compute connection weights in each QAN, points on P were892

selected as before and the same distance metrics and kernel functions were used applying893

an offset to the neurons’ coordinates during distance computation. For the Line and Ring894

attractor, two QANs were constructed using the offset vectors δ±m = ±0.15. For the Plane,895

Cylinder, Torus, Möbius attractors four QANs were constructed using δ±1 = [±0.25, 0] and896

δ±1 = [0,±0.25] as offset vectors. For the sphere attractor, six QANs were constructed using897

as offset vectors δ1± = ±[0,−z, y], δ2± = ±[z, 0,−x] and δ3± = ±[−y, x, 0] where [x, y, z]898

represents coordinates on the unit sphere embedded in three dimensional euclidean space.899

For the sphere, therefore, the offset vector magnitude varied as a function of position on900

the sphere to ensure that Killing vector fields were used (which are constant for the other901

manifolds used). The same vectors were used to compute the velocity-dependent stimulus902

ω±m(ẋ) to each QAN. For some simulations, non-Killing vector fields where used. In the903

Torus, the offset vectors δ̂±1 = ±[cos(x), sin(y)], where θ = [x, y], and δ̂±2 = Rδ̂±2 where904

used (where R is the rotation matrix R = [[0, 1], [−1, 0]]. For the sphere, the same vectors as905

above were used, except they were normalized to be of unit length everywhere on the sphere906

(except where they vanished).907

QAN dynamics simulation908

Similarly to CANs, network dynamics were simulated using forward Euler integration. For
each QAN in a network performing integration the discrete time dynamics were:

s±m(t+∆t) =
f [W±ms(t) + ω±m(ẋ(t)) + b]− s(t)

τ

where s(t) =
∑

±m s±m and ω±m(ẋ(t)) = Jx(t) · δ±m where J is the Jacobian of the map909

π evaluated at a point x̂ ∈ M decoded from the neural state s and δ±m is the offset vector910

at a point θ ∈ P corresponding to the location of the neuron with highest activation in the911

network. The velocity input ẋ(t) was computed by simulating the random walk of a point912

particle in the variable manifold M.913

To assess integration accuracy we generated 50 random trajectory (each corresponding to914

1 second of simulated time) and simulated integration with the QANs. For each simulation,915

a trajectory γ̂ ∈ M was decoded from neural activity and compared to the input trajectory916

γ ∈ M. The simulation error was computed as a fraction of the trajectory length and was917

given by:918
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ℓ =

∑
t d(γ(t), γ̂(t))

Lγ

where d is a metric function for M as described above and Lγ the trajectory length of γ on919

M. More precisely, for decoding we used γ̂t = θ∗t where θ∗t = θargmax(s(t)) + ω. Here ω is a920

correction factor used only when M and N had different topologies such that M had non-921

periodic dimensions (plane) and N had periodic dimensions (torus). At each decoding step,922

we added or subtracted 2π to ω when necessary to account for the neural state ”wrapping923

around” the boundary dimension(s). Here ω is a d-dimensional vector and each value is set924

to 0 for non-periodic dimensions in N and is k2π for some integer k otherwise.925

To generate the trajectories, we first defined a set of 2d vector fields Φi over M, each926

corresponding to a vector field Ψi over P. Then, we generated smoothly varying vectors Ai
927

such that at each time t the velocity vector ẋt was given by
∑

Ai
tΦi. These weights vectors928

were given by the sum of two sine waves with random periods and scaled to have amplitude929

< 0.1. We then computed X, the trajectory over M by, at each time step, computing ẋt and930

xt = xt−1 + ẋt/dt (with dt the simulation time step, 0.5). Finally, we computed V the set931

of inputs to the QANs. For each time point t, the input vj to the jth QAN was given by932

π⋆(ẋt) ·Ψj where π⋆ was the push forward of the map π : M → N .933

In some conditions we artificially injected Poisson noise in the QAN neural dynamics as934

described previously to assess the effect of noise on path integration.935

Neural tuning curves on M936

To visualize neural tuning curves with respect to M in Figure 6, we generated a single937

trajectory densely sampling from M (5-10 seconds of simulated time). After simulating path938

integration, we selected one random neuron to visualize its tuning curve. The visualization939

method varied based on the manifold topology. For one dimensional manifolds we simply940

plotted decoded value, x, against the neuron’s activity. For most two dimensional manifolds,941

with the exception of the sphere, we generated a heatmap by binning x and quantifying the942

average neuron’s activity for samples from each bin. A small amount of noise was added to x943

before binning to improve visualization. For the sphere, we first sampled 2000 points uniformly944

distributed on M. Then, for each point we looked at the closest decoded value. We then945

colored each point on the sphere according to the neural activity value at the corresponding946

sample.947

Non Killing fields and non-periodic manifold mapping948

To demonstrated that path integration depended on the weight offset vector fields Ψ being949

Killing fields we generated two variants of the torus and sphere QANs. For the torus, we950

kept the magnitude and relative orientation of the offset vector fields constant, but gradually951

rotated their position by an angle cos(θ1) (i.e. only as a function of position along one man-952

ifold dimension). This ensured that vector fields at the boundary conditions were identical,953

as expected. For the sphere, we started with the Killing vector fields we had, and simply954

normalized each vector such that all vectors had constant length. We then ran 50 simulations955

using random trajectories as described previously.956

To assess path integration when no trivial or periodic mapping between M and N existed,957

we performed path integration simulations with M as a cylinder and N as a sphere. We used958

the same procedure described above to generate 50 random trajectories over the cylinder and959

computing the corresponding velocity vectors over P.960
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Supplementary Information961

Noise: 0.0 1.5 3.0 5.0

(1, 2, 1) (1, 2, 1) (95, 22, 0) (3, 0, 0)

Figure S1: Torus CAN activity manifold (top) and persistence diagram (bottom) for varying noise
intensity levels (columns).

1 Kernels constructed through distance metrics produce sin-962

gle bump states963

Here we estimate the conditions on the interactions that lead to the formation of bump states964

on the lattice of neurons, P.965

As earlier, consider an interaction weight matrix W (θ, θ′) = k(d(θ, θ′)). We rewrite the966

kernel k as k(d) = −k0 + k1(d), where k1(d) → 0 as d → ∞ and k1(0) = k0 > 0; and967

correspondingly write W (d(θ, θ′)) = −W0 +W1(d(θ, θ
′)). We assume that the kernel k has a968

length scale σ, i.e., k1(d) ≈ 0 for d ≥ σ.969

Since σ is the only spatial scale being introduced in the dynamics, we qualitatively expect970

the localized bump states will have a scale ofO(σ). If σ is much smaller than the distances over971

which the manifold P has curvature, P will be approximately flat within a ball Vσ centered972

on any x ∈ P. In this approximation, the conditions for the formation of a stable bump state973

are the same as those for the formation on a bump state on a globally flat manifold.974

To examine the conditions for the existence of a bump state, we will first calculate the975

homogeneous steady state supported by Eq. 1. Next, we note that since W is symmetric976

in this case, thus Eq. 1 can be described through an energy function[58], and thus a stable977

steady state must exist. If the homogeneous state is unstable, there must then exist a stable978

symmetry broken state of the system. If this symmetry broken state is localized, we refer to979

it as the bump state.980

The homogeneous steady state s(x) = s0 must satisfy

s0/τ = s0

∫
W (θ − θ′)dθ′ + b

= s0k0[k̄ − V ] + b,

where V is the volume of the manifold,
∫
dθ, and k̄ =

∫
k1dθ. Rearranging, we obtain981
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s0 =
b

1/τ + k0[V − k̄]
(11)

Since the kernel k1 is supported on a small volume of the entire manifold, V > k̄, and thus982

the right-hand side of Eq. 11 is positive, consistent with the assumed rectifying nonlinearity983

f of Eq. 1.984

To examine the stability of this homogeneous state, consider a small perturbation, s(x, θ) =985

s0 + exp(α(ω)t+ iω · θ) to Eq. 1. Following the analysis in Ref. [59], we obtain986

α(ω) = F [W ](ω)− 1/τ, (12)

where F [W ] is the Fourier transform of the interaction W .

F [W ](ω) =

∫
W (θ) exp(iωθ)dθ

=

∫
W1(θ) exp(iωθ)dθ − 2πW0δ(ω),

= F [W1]− 2πW0δ(ω)

where δ(ω) is the Dirac delta function, obtained from the Fourier transform of a constant.987

Thus, the homogeneous steady state will be unstable if F [W ](ω) > 1/τ for some ω. Since α(ω)988

denotes the rate of exponential growth, the maxima of Eq. 12 will determine the dominant989

growing mode. If F [W ] were maximized at |ω| > 0, then the growing perturbation would have990

a periodic component, and would thus likely not form a localized mode. Instead, if F [W1](ω)991

were maximized at ω = 0, then F [W ](ω) will be maximized at ω → 0 (F [W ](ω) cannot be992

maximized strictly at ω = 0 itself due to the −2πW0δ(ω) contribution to F [W ](ω)). In this993

case, the growing perturbation will be unimodal, likely leading to the formation of a localized994

state.995

Thus, for the formation of a stable bump state on a general manifold, we obtain two996

requirements: First, the Fourier transform of the kernel k1(d) must be maximized at ω = 0;997

and second, this maximum must be larger than 1/τ . If we are solely interested in interaction998

shapes that lead to bump formation, we assume we have freedom to rescale the interactions.999

Thus, if a positive maximum is attained at ω = 0 a rescaling can always make this maximum1000

larger than 1/τ . Thus, we primarily focus on the first requirement.1001

While we do not provide an exhaustive classification of interaction kernels k1 whose Fourier
transforms are maximized at zero, we provide a broad sufficient condition — if k1(d) ≥ 0 for
all d, then its Fourier transform will be maximized at zero. This can be proved as:

F [k](ω) =

∫
k(d) exp(iωd)dd ≤

∫
k(d)| exp(iωd)|dd =

∫
k(d)dd = F [k](0).

Thus, we finally conclude that, up to a rescaling of the strength of the interaction, an1002

interaction W (d(θ, θ′)) will lead to the formation of a bump state if it can be rewritten as1003

W (d(θ, θ′)) = k1(d(θ, θ
′))− k0 for: k0 ≥ 0; a kernel k1 that satisfies k1(d) ≥ 0 and k1(d) → 01004

for d ≥ σ ; and sufficiently small σ over which the manifold P is approximately flat.1005

2 Manifold of single bump states N is isometric to manifold1006

of neural lattice P1007

Here we will show that the manifoldN of neural activity, formed through single bump states at1008

each point of the neural lattice P, is isometric to P. Specifically, we provide a distance metric1009
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dN on the manifold N , such that (N , dN ) is isometric to (P, dP ), where dP represents the1010

geodesic distance considered as the distance metric during the MADE construction described1011

in the main text.1012

While we will not prove this in complete generality for any P, we will assume that if P1013

has a sufficiently large separation of lengthscales (as assumed in the previous section), it will1014

suffice to show this result for P given as the flat Eucldiean manifold Rn (and correspondingly,1015

dP being the usual L2 metric).1016

To prove the existence of an isometry, we first argue that N and P are diffeomorphic. In1017

Apx. 1, we argued that the prescribed connectivity kernel leads to the formation of activity1018

bump states centered at any x ∈ P. Define the function f from P to N to characterize1019

the shape of the activity bump, i.e., for any x0 ∈ P, we let fx0(x) = f(x − x0) be the1020

shape of the activity bump centered at x0. Since these activity bump states are generated1021

through radially symmetric kernel interaction functions, the bump states f(x−x0) must also1022

be radially symmetric, i.e., f(x− x0) = F (|x− x0|). In this case, we can see that Φ : x → fx1023

is now a diffeomorphism, since it is a smooth function and has a smooth inverse (the inverse1024

map is simply computing the center of the radially symmetric activity bump).1025

Next, we examine candidate metrics on N that may lead to an isometry with (P, L2).1026

Note that a direct L2 norm on N does not suffice, since for sufficiently distant x0 and x1,1027

the distance between fx0 and fx1 given by
√∫

|f(x− x0)− f(x− x1)|2dx is approximately1028 √∫
2|f(x)|2dx. Thus the distance between fx0 and fx1 is bounded, whereas the distance1029

between x0 and x1 is not, indicating that there cannot exist a direct isometry.1030

Instead, we construct here a metric of intrinsic length induced by the Riemannian metric
on the tangents of N . For any two vectors u(x) and v(x) in TsN , the tangent space of N at
s. Define the Riemannian metric as g(u, v) = ⟨u, v⟩ =

∫
uvdx. Then, for any path γ(t) ∈ N ,

we can define the length of the path L[γ(t)] as

L[γ(t)] =

∫
|γ′(t)|dt,

where the norm of a tangent vector γ′ is defined as
√
g(γ′, γ′). This can now be used to define1031

the geodesic metric between fx0 and fx1 on N given as the infimum of the lengths of all paths1032

between fx0 and fx1 . Here we will show that under this geodesic metric, the spaces (N , dN )1033

and (P, dP ) are isometric. Specifically, we will show that the metric tensor (the Riemannian1034

metric computed for coordinate basis vectors) is proportional to identity, the metric tensor1035

for flat Euclidean space.1036

Assume that N is an n dimensional manifold. Let (x1, · · ·xn) be a coordinate chart in
the neighborhood of a bump state fx0 = f(x − x0). A basis for the tangent space is then
given by the differentials {∂/∂x1, · · · ∂/∂xn}. Note that since f(x) is radially symmetric,
f(x) = F (|x|), the basis vectors can be simplified as

∂f(x)

∂xi
= F ′(|x|)∂|x|

∂xi
= F ′(|x|) x

i

|x|
.

We can now compute the metric tensor gij = g(∂/∂xi, ∂/∂xj)

gij =

∫
Rn

∂f(x− x0)

∂xi
∂f(x− x0)

∂xj
dx

=

∫
Rn

∂f(y)

∂yi
∂f(y)

∂yj
dy (13)

=

∫
Rn

F ′(|y|)2 y
iyj

|y|2
dy, (14)
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where Eq. 13 is obtained by performing the change of variables y = x− x0. From Eq. 14 we1037

can make two crucial observations: first, since the integrand is odd in yi and yj , thus gij = 01038

for i ̸= j; second, gii is independent of x0, and by symmetry is also independent of i — it is1039

entirely determined by the shape of the bump state F (|x|). Thus, the metric tensor gij has1040

constant entries on the diagonal, and zero on the off-diagonal elements, i.e., g is proportional1041

to the identity matrix. We denote this proportionality constant as α.1042

The length of an infinitesimal line element ds is then given as ds2 =
∑

i,j gijdx
idxj =1043

α
∑

i(dx
i)2 = |dx|2. The length of a path γ from fx0 to fx1 is then simply

∫
|γ′(t)|dt =1044 √

α
∫
|dx|, which is the Euclidean path length from x0 to x1 scaled by

√
α. Thus, the geodesic1045

metric from fx0 to fx1 is the infimum of Euclidean path lengths, i.e., the Euclidean straight-1046

line distance
√
α|x0 − x1|. We can additionally redefine a new metric g̃ on the tangent space1047

as g/α, leading to the new geodesic distance to be exactly the Euclidean distance |x0 − x1|.1048

Thus, under the approximation of P being treated as a flat space without curvature at1049

scales smaller than σ, the metric space (N , dN ) is thus isometric to the metric space (P, dP ).1050

3 External velocities ignorant about network structure and1051

state require shifted-kernel networks to control bump flow1052

In this section, for analytical simplicity, we will ignore the neural transfer function nonlinearity1053

f .1054

The fixed points resulting from symmetric kernels in Eq. 1 satisfy:1055

s(θ) =

∫
W (θ − θ′)s(θ′)dθ′ + b, (15)

where s(θ) denotes an activity bump centered at any point in P. Consider two such activity
bump states: s0(θ) centered at θ0, and a nearby state sϵ centered at θ0−ϵ, i.e., sϵ(θ) = s0(θ+ϵ).
For a neural state s(θ) to move from s0 to sϵ in time ∆t, the time derivative ∂s/∂t must equal

∂s(θ, t)

∂t
=

s(t+∆t)− s(t)

∆t

=
sϵ(θ)− s0(θ)

∆t

=
s0(θ + ϵ)− s0(θ)

∆t

≈ ϵ

∆t

∂s0(θ)

∂θ
(16)

We can use Eq. 15 to evaluate this space derivative as

∂s0(θ)

∂θ
=

∫
∂W (θ − θ′)

∂θ
s(θ′)dθ′,

≈
∫

[W (θ − θ′ + δ)−W (θ − θ′)]

δ
s(θ′)dθ′,

=
1

δ

∫
[Wδ(θ − θ′)−W (θ − θ′)]s(θ′)dθ′,

=
1

δ

[∫
Wδ(θ − θ′)s(θ′)dθ −

∫
W (θ − θ′)s(θ′)dθ′

]
,

=
1

δ

[∫
Wδ(θ − θ′)s(θ′)dθ′ − (s0(θ)− b)

]
.
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where Wδ represents a kernel with a small offset δ, i.e., Wδ = W (θ − θ′ − δ). We can insert1056

this in Eq. 16 to obtain1057

∂s(θ, t)

∂t
=

ϵ

δ∆t

[∫
Wδ(θ − θ′)s(θ′)dθ′ − s0(θ) + b

]
δ∆t

ϵ

∂s(θ, t)

∂t
+ s(θ) =

∫
Wδ(θ − θ′)s(θ′)dθ′ + b.

Comparing the above equation with Eq. 1, we find that the neural time constant τ = δ∆t/ϵ.1058

Since the speed of the activity bump is ϵ/∆t, we obtain a speed of1059

v = δ/τ. (17)

Thus, a network built with a kernel with offset δ in particular direction leads to activity1060

flow along that direction. Coupling multiple copies of such networks with opposing directions1061

of kernel offsets leads to an equilibrium, with the bump state at a fixed position. This can1062

be intuitively seen by noting that Wδs+W−δs ≈ (W + δ∂θW )s+ (W − δ∂θW )s = 2Ws, and1063

thus opposing offset kernels acting on the same state are equivalent to the state being acted1064

on by a kernel with no offset.1065

To control the flow the bump in arbitrary directions, we will next demonstrate that the
magnitude of the feed-forward input b in a particular subnetwork can bias the motion of the
bump. To see this, we first consider Eq. 1 scaled by a factor α,

τ
dαs(θ)

dt
+ αs(θ) = f

[∫ ∞

−∞
W (θ, θ′)αs(θ′)dθ′ + αb

]
.

Thus, scaling b by a factor α (i.e., b → αb) results in an equivalent solution of the dynamical1066

equation with the states s also scaled by the same factor α (i.e., s(θ) → αs(θ)).1067

Consider two such coupled networks with opposing offsets, with feedforward inputs scaled
by α1 = (1+α)/2 and α2 = (1−α)/2. As noted above the neural firing rates can be assumed
to be scaled by the same factors. Heuristically, we will assume that the firing rates of the
coupled network can be approximated through individually scaled firing rates of independent
offset networks. This leads to the effective interaction through the offset kernels as

Wδα1s+W−δα2s ≈ α1(W + δ∂θW )s+ α2(W − δ∂θW )s

= [W + δ(α1 − α2)∂θW ]s

≈ Wδ(α1−α2)s = Wδαs.

Thus, the effective interaction is similar to that obtained by a kernel with an offset of δα,1068

leading to a bump speed of δα/τ .1069

Finally, we note that while the above argument has been constructed for offsets along a
single dimension, it readily generalizes to higher dimensions: For continuous and differentiable
W , a directional derivative can be written as a linear combination of partial derivatives along
coordinate axes, i.e.,

α
∂W

∂êi
+ β

∂W

∂êj
=

∂W

∂(αêi + βêj)
.

Thus, subnetworks with differently scaled feedforward inputs lead to differently scaled firing1070

rates s which leads to an interaction kernel that has an effective offset in the vector direction1071

determined by the scaling coefficients. This effective offset in a particular direction causes the1072

activity bump to flow along the manifold along that direction, leading to controllable flow of1073

the activity bump through differential feed-forward inputs to the coupled network.1074
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