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Abstract

Normative modeling frameworks such as Bayesian inference and reinforcement learning provide valuable
insights into the fundamental principles governing adaptive behavior. While these frameworks are valued
for their simplicity and interpretability, their reliance on few parameters often limits their ability to capture
realistic biological behavior, leading to cycles of handcrafted adjustments that are prone to research subjectivity.
Here, we present a novel modeling approach leveraging recurrent neural networks to discover the cognitive
algorithms governing biological decision-making. We show that neural networks with just 1-4 units often
outperform classical cognitive models and match larger neural networks in predicting the choices of individual
animals and humans across six well-studied reward learning tasks. Critically, we then interpret the trained
networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing
detailed mechanisms underlying choice behavior. Our approach also estimates the dimensionality of behavior
and offers insights into algorithms implemented by AI agents trained in a meta-reinforcement learning
setting. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-
making, offering insights into neural mechanisms and a foundation for studying both healthy and dysfunctional
cognition.

Introduction

Understanding the neural basis of adaptive behavior is a fundamental goal of neuroscience. Researchers have
long strived to develop computational models that encapsulate the complexities of learning and decision-making,
from early symbolic models1 to connectionist approaches2. Normative frameworks such as Bayesian inference3,4
and reinforcement learning5–8 have been particularly influential for their ability to elucidate the fundamental
principles governing adaptive behavior. These cognitive models formalize how agents accumulate and apply
knowledge from environmental interactions to make decisions, a process thought to be carried out by neural
circuits in the prefrontal cortex and striatum9–13. A key advantage of these models is their simplicity, as they
typically have few parameters and can be easily augmented with additional assumptions such as forgetting, choice
biases, perseveration, exploration, and capacity limitations12,14. While the simplicity and extensibility of these
models are advantageous in many ways, this approach is prone to bias and researcher subjectivity, potentially
leading to incorrect or incomplete characterizations of behavior15.

An alternative modeling framework employs artificial neural networks, a class of computational models consisting
of interconnected neuron-like units that can express a wide range of functions. Compared to classical cognitive
models, neural networks impose fewer structural assumptions, require less handcrafting, and provide a more
flexible framework for modeling behavior and neural activity16,17. A common approach involves adjusting the
network parameters to produce optimal behavior in a given task. This approach has been used in neuroscience to
explain the neural activity associated with vision,18,19, spatial navigation20–22, learning, decision-making, and
planning23–27. An alternative approach involves adjusting the network parameters to predict some patterns
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of biological behavior. Due to the large number of parameters used in most neural networks, this approach
often results in highly accurate predictions of future behavior28–31. However, this increased flexibility leads to
difficulties in interpreting the fitted models, hindering the identification of cognitive and neural mechanisms
underlying observable behavior.

Here, we present a novel modeling framework that combines the flexibility of neural networks with the inter-
pretability of classical cognitive models. Our framework involves fitting recurrent neural networks (RNNs) to the
behavior of individual subjects in reward learning tasks. The fitted RNNs describe how individuals accumulate
knowledge by interacting with their environment and how this knowledge is applied to decision-making. In
contrast to previous approaches, however, our framework uses very small RNNs, often composed of just 1-4 units,
which greatly facilitates their interpretation. In contrast to previous approaches, however, our framework uses
very small RNNs, often composed of just 1-4 units, which greatly facilitates their interpretation. We show that
these tiny RNNs outperform classical cognitive models of equal dimensionality in predicting the choices of humans
and animals, across eight datasets. We then interpret the fitted networks as discrete dynamical systems, leveraging
concepts and visualizations from dynamical systems theory to investigate their dynamics and to provide a direct
comparison with alternative models. We show that this framework reveals several novel behavioral patterns
overlooked by classical models, including variable learning rates, a new type of “reward-induced indifference”
effect, previously unrecognized forms of value updating, state-dependent choice perseveration, and choice biases.
Overall, our results show that tiny RNNs can not only predict behavior better than previous models, but also
provide deeper insights into cognitive mechanisms, addressing both the interpretability challenges of larger
neural networks and the subjectivity of classical models.

Results

Task description and model overview

We studied biological behavior in six reward learning tasks widely used in neuroscience and psychology, three
performed by animals and three by humans (Fig. 1, 2). These tasks capture fundamental processes by which
animals and humans learn to make decisions through environmental interactions, which our modeling framework
aims to describe. We first present our results for the animal tasks: a reversal learning task11, a two-stage task13,
and a transition-reversal two-stage task12 (Fig. 1d). In all of these tasks, each trial consists of a choice between
actions A1 and A2, resulting in either state S1 or S2. Each state is associated with a probability of receiving a
binary reward, and these probabilities switch unpredictably in moments called “reversals”. The subject’s goal is to
choose the action most likely to yield a reward. In the reversal learning task, each action leads deterministically to
one state (e.g., A1 leads to S1 and A2 to S2). The two-stage task introduces probabilistic transitions, where each
action can lead to either states with different probabilities (e.g., A1 leads to S1 with probability 0.8 and to S2 with
probability 0.2). The transition-reversal two-stage task adds a stochastic reversal to the action-state transition
probabilities (e.g., A1 leads to S1 and S2 with high and low probabilities, respectively, with these probabilities
switching during a reversal). We analyzed data from two monkeys (Bartolo dataset11) and ten mice (Akam
dataset12) performing the reversal learning task; from four rats (Miller dataset13) and ten mice (Akam dataset12)
performing the two-stage task; and from seventeen mice (Akam dataset12) performing the transition-reversal
two-stage task.

Our approach leverages RNN models to predict the choices of individual animals in these tasks and to interpret
the underlying cognitive mechanisms. As a benchmark, we also implemented over 30 classical cognitive models
previously used to describe behavior in these tasks, including Bayesian inference models, RL models, and many of
their variants (see Methods). Cognitive models and RNNs share the same input-output structure (Fig. 1a). Inputs
include the agent’s previous action at−1, second stage state st−1, and reward rt−1 (the current state is always the
same “choice state”, and thus is not included as input). Inputs update the agent’s internal state, described by a set
of d internal dynamical variables that summarize the agent’s prior experience (e.g., action values, belief states) to
guide future actions. The model outputs are the probabilities Pr(at = Ai) of executing each action Ai, known as
the agent’s behavioral policy.

Despite sharing the same input-output structure, each model employs distinct update rules for its dynamical
variables, causing these variables to represent different latent variables and, consequently, leading to different
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Fig. 1. Model overview andmodel performance on animal tasks. (a)Cognitive models and neural networks have similar architectures.
Inputs (previous action at−1, state st−1, reward rt−1) update d dynamical variables, which in turn determine output (action probability
P (at)) via softmax. Models are optimized to predict observed actions. (b) Recurrent layer examples: d = 1 (top) and d = 2 (bottom)
units. (c) Nested cross-validation. In the outer loop, the whole dataset is split into ten folds of consecutive trials, with each round using
one fold for testing and the other nine for the inner loop. Each inner loop round uses one fold for validation (e.g., hyperparameter tuning)
and the other eight for training. (d) Task structures: Subjects choose action A1 or A2 at the choice state, transitioning into one of two
second-stage states, S1 or S2, which probabilistically yield a reward. Reward probabilities change over time. In the transition-reversal
two-stage task, the action-state transition probabilities also change over time. (e) Model performance (cross-validated trial-averaged
negative log-likelihood; lower is better) vs. number of dynamical variables d. Tiny RNNs outperform classical models in all tasks. Identical
markers within a plot represent different variants of a model class. Error bars: SEM across rounds, averaged over individuals. Left: In
the reversal learning task with monkeys, the best performing model is a two-unit RNN. Center: In the two-stage task with rats, the
best-performing model is a two-unit RNN. Right: In the transition-reversal two-stage task with mice, the best performing model is a
four-unit RNN. (f) RNN reproduction of behavioral metrics: Left: Probability of choosing high-reward action pre-reversal (reversal
learning, d = 2 RNN). Shaded region (left): 95% CI across blocks. Center: Probability of taking the same action (stay probability) following
each trial type (two-stage task, d = 2 RNN). Transition C: common; R: rare; Error bars: cross-subject SEM. Right: Stay probabilities
(transition-reversal task, d = d∗ GRU). Transition C: common; R: rare; Error bars: cross-subject SEM.
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behavioral policies. The classical cognitive models can be clustered into three families: model-free RL, model-based
RL, and Bayesian inference. In the two RL model families, dynamical variables represent action values updated via
RL algorithms: model-free RL updates these values directly from reward input, and model-based RL updates them
indirectly through a state-transition model. In the Bayesian inference family, dynamical variables represent belief
states updated via Bayesian inference. We also implemented various extensions of these models accounting for
factors like choice perseveration or learned state-transition probabilities (see Methods). The RNN models, on the
other hand, have fewer constraints in the update of dynamical variables. Each network unit corresponds to one
dynamical variable that, through the network training procedure, comes to represent a possibly complex function
of network inputs and of previous unit activities (Fig. 1b). These functions are determined by the network weights,
a set of adjustable parameters that enables the model to learn diverse mappings from past observations to policies.
Our networks used gated recurrent units (GRUs), which employ a gating mechanism to selectively process past
information when incorporating inputs32, though other recurrent architectures could also have been used (see
Discussion).

Predicting choices with tiny RNNs

To analyze the experimental data, we optimized the parameters in all RNNs and cognitive models to predict
the animal’s recorded choices with maximum likelihood (equivalent to minimizing cross-entropy). Given the
substantial difference in the number of free parameters between RNNs (e.g, 40-80 for 1-2 unit RNNs) and cognitive
models (e.g, 2-10 parameters; Fig. S1), we compared models via nested cross-validation, a procedure that uses
different trials to train, validate, and evaluate the models (Fig. 1c; see Methods for why AIC or BIC are not
appropriate in this setting). We then averaged each model’s predictive performance across subjects in each
dataset. Our primary focus was comparing models with an equal number of dynamical variables (d), as these use
the same number of scalar variables to summarize past experiences and specify policies. Note that dynamical
variables are distinct from the model parameters: dynamical variables evolve over time, representing the agent’s
current beliefs about the task and dictating their actions; model parameters, in turn, are stable and specify the
rules by which the dynamical variables evolve over time.

We found that very small RNNs predicted animals’ choices more accurately than classical cognitive models and
all of their variants across all tested datasets (Fig. 1e for three datasets and Fig. S2 for two additional datasets,
evidenced by the fact that the lowest (best) scores in each plot are achieved by an RNN; also see Fig. S10a-c
for test accuracies). In particular, RNNs outperformed all ideal Bayesian observer models, which perform exact
inference based on knowledge of the task structure, suggesting that animal behavior in these tasks is not optimal.
At the group level, the highest predictive performance was achieved by very small RNNs — two-unit RNNs in
the reversal learning and two-stage tasks, and four-unit RNNs in the transition-reversal two-stage task. At the
individual subject level, the highest predictive performance was also achieved by similarly small RNNs (Fig. S3).
Crucially, each RNN with d units outperformed all classical cognitive models with d dynamical variables (Fig. 1e;
evidenced by the absence of data points dots below the blue line). The fitted RNNs also reproduced key behavioral
metrics commonly used to analyze each task, including choice probabilities around reversals in the reversal
learning task11, and stay probabilities in two-stage and transition-reversal two-stage tasks12,13 (Fig. 1f). Finally,
these fitted RNNs produced highly robust and consistent predictions across model instances, suggesting that the
strategies discovered by our approach are robust to variations intrinsic to empirical data (Fig. S12). These results
demonstrate that tiny RNNs are versatile models of behavior, reproducing well-known behavioral patterns in
reward learning tasks and capturing more variance in animal behavior than classical cognitive models.

Adding more dynamical variables to a tiny RNN did not always improve predictive performance, suggesting that
animal behavior in these tasks is low-dimensional (Fig. 1e; notice the blue line flattening or curving upwards
as d increases). The dimensionality of a given behavior (d∗) is defined as the minimal number of functions of
the past required to optimize the predictability of future behavior33,34 (also see Supplementary Discussion 2.3).
In the reversal learning and two-stage tasks, RNN predictions were optimized with just 1-2 units (Fig. S3a-d),
suggesting that most individual animal behaviors in these tasks have dimensionality d∗ = 1 or d∗ = 2. In
the transition-reversal two-stage task, RNN predictions were optimized with 1-4 units (Fig. S3e), suggesting
that individual animal behavior in this task has dimensionality ranging from d∗ = 1 to d∗ = 4. In some cases,
predictive performance even decayed when adding dynamical variables, indicating the lack of data for fitting
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more flexible models. The low d∗ values found for these tasks are unsurprising given the requirement for binary
choices and the presence of a single choice state. While tasks with this level of simplicity are extremely common
in neuroscience and psychology research due to a focus on experimental control and interpretability, one may
wonder if the performance of tiny RNNs is limited to such low-dimensional tasks. To address this question, we
will demonstrate in the next sections that tiny RNNs are also effective in more complex, higher-dimensional
scenarios, highlighting their versatility across various experimental paradigms.

Flexibility and data requirements of tiny RNNs

The superior performance of tiny RNNs compared to classical cognitive models stems from the increased flexibility
afforded by a much larger (4-40 times) number of free parameters. This flexibility allows RNNs to be molded into a
wider range of behaviors than possible with classical cognitive models. To evaluate the limits of this flexibility, we
simulated the behavior of RL and Bayesian inference agents in the reversal learning and two-stage tasks and fitted
both RNN and cognitive models to these synthetic data (see Supplementary Results 1.1, Fig. S4, S5, S6, S7). We
found that the tiny RNNs achieved predictive performance similar to the ground-truth model that generated the
behavior, with the best-performing RNN having the same dimensionality as the ground-truth model. These results
suggest that RNN models can serve as a superset of classical cognitive models despite using a single architecture
consistently across tasks and datasets and requiring only minimal manual engineering. Incidentally, these results
also demonstrate that these cognitive strategies are identifiable and robustly recoverable (see Supplementary
Results 1.1 and Fig. S11, S13), and that our training procedure successfully prevented overfitting, which can be
diagnosed when the fitted model achieves higher performance on the training dataset and lower on the test
dataset relative to the data-generating model.

An important caveat of the flexibility of RNNs is that these models often require more training data than simpler
models to achieve optimal performance. This is not a concern if enough data is available to support the continual
improvement of the RNN fits, which can improve beyond the point where cognitive models plateau (Fig. S8). If
data is scarce, however, the training procedure may not adequately constrain the RNN parameters. Indeed, we
found that the performance of RNNs decayed rapidly as fewer data were used for training, eventually dropping
below the performance of simpler, data-efficient cognitive models. Specifically, we found that 500-3,000 trials were
required for training and validation before RNNs could outperform cognitive models (Fig. S8). While datasets
of this size are typical in animal experiments, this requirement presents a challenge for human studies, which
typically rely on less data but multiple participants to achieve statistical power.

To overcome the limitation of RNNs in scenarios of limited data per participant, we developed a knowledge
distillation framework whereby data frommultiple participants can be used to enhance the predictive performance
of individual-level RNNs35. This approach consists of first training a single large “teacher” model on data from
all subjects and then using the teacher model to train smaller and more interpretable “student” RNNs for
individual subjects (Fig. 2a). Each student RNN is trained on data from a single subject, but instead of predicting
binary choices, it aims to match the probabilistic policy of the larger teacher model. Applying this method to a
representative mouse in the transition-reversal two-stage task (Fig. 2b), we found that the tiny student RNNs
outperformed cognitive models (the best model-free model with the same dimensionality) with as few as 350 trials
per subject, compared to the 3,000 trials required without knowledge distillation (“solo RNNs”). This demonstrates
that tiny RNNs, when leveraging data from multiple participants, can outperform classical cognitive models even
with dataset sizes typical in human experiments.

Predicting choices with tiny RNNs for human tasks

To expand the applicability of our approach, we next examined how tiny RNNs perform on human decision-
making tasks, which typically involve fewer trials per subject and use slightly more complex designs than animal
studies. We applied our method to analyze three tasks, representing a range of experimental paradigms commonly
used in cognitive neuroscience research: a three-armed reversal learning task (three actions; 160 trials per subject),
a four-armed drifting bandit task (four actions and continuous rewards; 150 trials per subject), and the original
two-stage task (six actions and three choice states; 200 trials per subject) (Fig. 2c). Given the limited per-subject
data, we used knowledge distillation and implemented an interspersed split protocol to train and evaluate the
models (see Methods; also see the cross-subject split protocol in Fig. S39). As before, we compared tiny RNNs to
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Fig. 2. Model performance on human tasks using knowledge distillation. (a) Knowledge distillation framework: A large teacher
network (TN) is trained on data from multiple subjects; the subject ID corresponding to each datapoint, provided as input, enables
subject-specific embeddings es to be learned. A tiny student network (SN) is then trained on single-subject data to match TN’s output
probabilities. (b) Model predictive performance for a representative mouse in the transition-reversal two-stage task, across varying
dataset sizes. Student RNN outperforms the best model-free RL model for all dataset sizes. Note different x-axis scales for < 3000 and
> 3000 trials. (c) Human tasks structures. Left: Three-armed reversal learning: Subjects choose between actions A1-A3, each associated
with a reward probability that changes over time. Center: Four-armed drifting bandit: Subjects choose between actions A1-A4, with
each associated with a 0-100 reward that fluctuates over time. Right: Original two-stage task: Subjects first choose action A1 or A2
at the choice state, transitioning into one of two second-stage states, S1 or S2. Subjects then choose action B1/B2 or C1/C2, each
probabilistically yielding a reward. Reward probabilities change over time. (d)Model performance (cross-validated trial-averaged negative
log-likelihood; lower is better) vs. number of dynamical variables d, averaged over subjects using interspersed split protocol. Tiny RNNs
outperform classical models in all tasks. Identical markers within a plot represent different variants of a model class. Error bars: SEM
across individuals. Left: Three-armed reversal learning. Center: Four-armed drifting bandit. Right: Original two-stage.
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over 10 established cognitive models for these tasks.

We found that student RNNs with 5-20 units provided the best fit to human behavior, despite the limited trials
per subject. This suggests that human behavior in these tasks had higher dimensionality compared to the animal
studies (Fig. 2d; also Fig. S9 for the distribution of dimensionality), likely because these tasks had more actions,
and, in some cases, also more choice states and continuous rewards. Notably, however, even RNNs with just 2-4
units outperformed all cognitive models of equal dimensionality (Fig. 2d; also see Fig. S10d-f for test accuracies).
These results demonstrate that tiny RNNs can efficiently capture complex behavior and outperform cognitive
models in predicting single-subject behavior across a range of human decision-making tasks.

Interpreting and comparing one-dimensional models

A major advantage of smaller RNNs is their potential to yield interpretable insights into cognitive processes,
which has historically been challenging with larger neural networks due to their complexity. We propose
an interpretative framework grounded in the theory of discrete dynamical systems, which describes how a
system’s state (e.g., dynamical variables in an RNN or cognitive model) changes over time as a function of inputs
(rewards, observations, and past actions). We begin by examining models with a single dynamical variable (d = 1;
Fig. 3a). In these models, the state at trial t is fully characterized by the policy’s logit (log-odds, defined as
L(t) = log (Prt(A1)/ Prt(A2))), representing the agent’s current preference for one action over the other. The
evolution of this state is given by the logit-change (∆L(t) = L(t + 1)− L(t)), representing how different inputs
alter the agent’s preferences between trials. Intuitively, the “logit” and “logit-change” incurred by an “input” are
analogous to the “position” and “velocity” of a system subject to a “force”. By visualizing L(t) and ∆L(t) for
each trial in a phase portrait, we can reveal important insights about the system’s behavior.

To illustrate this interpretative framework, we first compared the phase portraits of two widely used cognitive
models: a one-dimensional model-free RL and a one-dimensional Bayesian inference model, each fitted to the
choices of one monkey in the reversal learning task (Fig. 3b). In model-free RL, a reward for action A1 (dark
blue) is associated with a positive logit-change, while a reward for A2 (dark red) is associated with a negative
logit-change, reflecting increases and decreases in preference for A1 over A2, respectively. Unrewarded actions
(light blue and light red) generally lead to smaller preference changes. In contrast, the Bayesian inference model
treats an unrewarded action as equivalent to a reward for the other action. We can also compare the fixed points of
the models (L∗

I ), representing states in which preferences are unaffected by a given input (∆LI = 0). Model-free
RL exhibits three types of stable fixed points (attractors), corresponding to high preference for A1, high preference
for A2, and indifference. Bayesian inference has only two types of attractors corresponding to high preferences
for either action, as the reward-action symmetry prevents convergence to an indifference state. The shape of
the portraits (straight or curved) illustrates how each model processes unexpected rewards. When a disfavored
action is rewarded (dark blue dots with extreme negative logit values), a model-free RL agent will experience a
large state change (because of a large prediction error), while a Bayesian inference agent will experience only a
small state change (because of a strong prior at extreme logit values).

Having shown how phase portraits enable insights into models for which the ground truth is known, we next
applied this approach to analyze tiny RNNs, aiming to uncover cognitive processes underlying animal behavior.
Since RNNs can mimic the behavior of both model-free RL and Bayesian inference agents (Supplementary Results
1.1, Fig. S4, S5, S6, S7), their phase portrait can reveal whether signatures of either cognitive model are present.
Applying this rationale to a one-unit RNN fitted to the same data as above, we found that its phase portrait
showed multiple model-free RL characteristics (Fig. 3c, see S14g for results with another monkey). For example,
unrewarded trials moved the system towards indifference (note attractor at L = 0), unexpected rewards caused
large preference changes (large positive logit-changes for dark blue dots in the left region), and unrewarded
actions were not treated as rewards for the unchosen action (non-overlapping light red and dark blue curves). This
suggests that the monkey’s behavior aligns more closely with a model-free RL agent than a Bayesian inference
model. While these conclusions could have been achieved with conventional model comparisons, the phase
portraits offer a more nuanced understanding of how specific aspects of the monkey’s behavior relate to each
model.

Besides revealing signatures of known models in the RNN dynamics, phase portraits also support the discovery
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of entirely novel signatures. For example, curved lines suggest a non-constant, state-dependent learning rate (Fig.
3c). The decoupling of the two R = 0 (light blue and light red) curves, a sign of choice perseveration, is only
present for extreme values of logit, suggesting a peculiar pattern of preference-dependent choice perseveration.
The asymmetry between the two non-zero fixed points suggests greater sensitivity to rewards from action A1
than to rewards from A2, akin to a reward-dependent choice bias (Fig. 3c). These three signatures — “state-
dependent learning rate”, “preference-dependent perseveration”, and “reward-dependent bias” — are absent from
all cognitive model variants considered and from any published analysis of these tasks in the literature. Some of
these signatures were found across animals, while others are individual-specific (e.g., Fig. S16a), highlighting
the importance of modeling individual subjects. Crucially, we validated each of these insights using targeted
hypothesis testing (see Supplementary Results 1.2, Fig. S14) or using a novel behavior-feature identifier approach
(see Methods and Fig. S27).

Although phase portraits provide a comprehensive characterization of a system’s dynamics, they can be chal-
lenging to interpret, especially for tasks with a large (or infinite) number of inputs. In such cases, the essential
information from phase portraits can be simplified and summarized by the model’s preference setpoints, which
summarize the effect of each input on the model’s dynamics. A preference setpoint uI for input I represents an
agent’s normalized, asymptotic preference for one action over another after repeated exposure to input I (i.e.,
uI = L∗

I/ maxI L∗
I ). Beyond representing long-term behavior, preference setpoints indicate the instantaneous

direction of change in the system’s state when presented with input I . Essentially, uI summarizes the effect of
input I in the model: |uI | = 1 indicates convergence to a state of maximum preference, and uI = 0 indicates
convergence to a state of indifference. We computed uI for all fitted models for the reversal learning task, the
two-stage task, and the transition-reversal two-stage task (Fig. 3d-f). In the two-stage task, the RNN’s preference
setpoints revealed a “reward-induced indifference” phenomenon where rewards following rare transitions led to
indifference (|uI | ≈ 0) rather than an increased preference for a specific action (Fig. 3e; dark blue marker for
A1, S2 and the dark red marker for A2, S1). A similar but weaker effect (|uI | < 1) was found in the transition-
reversal two-stage task (Fig. 3f). This “reward-induced indifference” was absent from all cognitive model variants
considered and from the literature more broadly, despite being found in several rats and mice (Fig. S15). Impor-
tantly, the strength of this effect correlated with better task performance across animals (ρ = 0.62, p = 0.008,
Fig. S17), demonstrating that behavioral patterns discovered by our approach can have meaningful behavioral
relevance.

Interpreting and comparing multi-dimensional models

We next extended our interpretive framework to models with more than one dynamical variable (d > 1). While
these models can still be analyzed with phase portraits, the policy logit can no longer fully characterize their state.
For models with d = 2 dynamical variables, we can instead compute the 2D vector field, where axes represent
both dynamical variables and arrows indicate how the state changes in each trial. To illustrate this approach, we
analyzed vector fields of a two-dimensional model-free RL model and a two-unit RNN with diagonal readout
(see Methods) fitted to the choices of one monkey in the reversal learning task (Fig. 4a-b; Fig.S20). We found
that arrows in the model-free RL vector field were axis-aligned, indicating that only the value of the chosen
action changed on each trial; in contrast, arrows in the RNN’s vector field were slightly tilted in rewarded trials,
indicating a decay (forgetting) in the value of the unchosen action (Fig. 4a). Additionally, arrows in both models
converged to a line in the space, indicating line attractor dynamics (white crosses in Fig. 4a). Interestingly, in
the RNN’s vector field, arrows in unrewarded trials converged to the diagonal (h1 = h2) line, suggesting that
the value of an unrewarded action drifted towards the value of the alternative action and not towards zero as
expected. As a validation of this peculiar “drift-to-the-other” prediction, we found that a model-free RL model
augmented with drift-to-the-other outperformed a model-free RL model augmented with conventional forgetting
(drift-to-zero) and performed nearly as well as the two-unit RNN (Fig.S21).

To interpret models with more than two dynamical variables (d > 2), we introduce an alternative method based on
“dynamical regression”. This method approximates the one-step dynamics of the model’s internal state as a linear
function of its current state. Applied to the two-unit RNN studied above, the dynamical regression coefficients
indicate that the value of an unrewarded chosen action is positively influenced by the value of the alternative
action — a re-discovery of the drift-to-the-other pattern (Fig. 4b). We then used the same approach to analyze
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Fig. 3. Dynamical systems analyses for interpretation and comparison of one-dimensional models. (a) Schematic showing how
the agent’s preference evolves over consecutive trials. When action A2 is favored (logit L(t) < 0), a positive logit change (∆L(t) > 0)
results in a reduced preference for A2. When neither action is favored (indifference; logit L(t) = 0), a negative logit change (∆L(t) < 0)
results in a preference for A2. A preference level associated with a zero logit change (∆L(t) = 0) is a stable fixed point. Colors indicate
the preferred action (blue: A1; red: A2) and preference change (dark: increase; light: decrease). (b-c) Phase portraits illustrating how
action preferences change as a function of current preferences (logit), action taken (A1, blue; A2, red), and reward received (R = 0, light;
R = 1, dark). Points represent trials and are colored according to the trial input; colored arrows indicate the flow direction of the model
state (logit) after receiving the corresponding input. (b) Two one-dimensional cognitive models fitted to the choices of one monkey in the
reversal learning task. (c) One-unit GRU fitted to the same monkey data. (d-f) Preference setpoints (uI ): Long-term action preferences
after repeated exposure to input I (or, analogously, the instantaneous effect of I on normalized preferences). Colors indicate input types;
error bars show standard deviations across model instantiations in nested cross-validation. (d) Reversal learning task; monkey data. (e)
Two-stage task; rat data. (f) Transition-reversal two-stage task; mouse data.
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human behavior in the three human tasks introduced previously (Fig. 2c), performing separate regressions for
each subject-specific RNN trained with knowledge distillation. From the distributions of dynamical regression
coefficients, we obtained several novel insights into human behavior in these tasks: (1) in the three-armed reversal
learning task, trial outcomes affect preferences for all actions, but differently for chosen versus unchosen actions
(Fig. 4c); (2) in the four-armed drifting bandit task, rewards can sometimes reduce the value of unchosen actions
(Fig. 4d); (3) in the original two-stage task, the value of a rewarded action drifts towards a nonzero setpoint that
depends on the transition type (Fig. 4e). None of these patterns are captured by classical cognitive models, and
augmenting these models with the corresponding mechanisms derived from RNN analyses leads to improved
performance (see Supplementary Results 1.4, 1.5, 1.6 and Fig.S28, S29, S30, S31, S32, S33, S34, S35, S36)

Interpreting behavior in task-optimized neural networks

Our interpretative framework can be used not only to analyze models fit to behavior, but also to analyze the
behavior of larger neural networks trained to achieve optimal task performance in decision-making tasks, offering
a new way to compare behavior in biological and artificial systems. To illustrate this, we trained an RNN agent
within a meta-reinforcement learning (meta-RL) framework to maximize total rewards in a two-stage task (Fig.5a;
Fig.S25). While previous work suggested that such agents use a model-based RL strategy based on patterns “stay
probability” and “prediction errors”24, these patterns could also have been generated by alternative strategies36.

To gain mechanistic insights into the behavior of meta-RL agents, we compared their phase portraits with those
of different cognitive models. We found that the dynamics of the trained meta-RL agent (Fig. 5b) resembled a
one-dimensional Bayesian inference agent (Fig. 5c), and not a model-based RL strategy as previously suggested
(Fig. 5d). The dynamics of the trained meta-RL agent also did not resemble the dynamics we inferred in animals
performing the same task (Fig. S15). Interestingly, before converging to a Bayesian inference strategy, the agent’s
representations differed substantially from any known cognitive models (Fig. S26b). Even after convergence, we
identified subtle deviations from the Bayesian inference model (Fig. 5b-c). In particular, each logit value in the
meta-RL agent was associated with a range of logit-change values (Fig. 5b, note parallel lines), in contrast to the
single logit-change value observed in the Bayesian inference agent. Our analyses determined that these adjacent
curves reflect a “history effect” whereby exact Bayesian inference is distorted by the representation of historical
input sequences (see Fig. S26c). This illustrates how our approach contributes to understanding computational
processes in both biological and artificial systems.

Discussion

We introduce a new method for modeling decision-making behavior using tiny recurrent neural networks
(RNNs). We demonstrate its effectiveness across six reward learning tasks and eight datasets where tiny RNNs
outperformed classical cognitive models in predicting individual subject behavior. Our approach leverages a
dynamical systems framework to interpret the trained networks, revealing novel cognitive strategies without
extensive model comparisons. These include state-dependent learning rates, a “reward-induced indifference”
effect, and new forms of value updating, choice perseveration, and choice biases. Our approach also estimates the
dimensionality of behavior and analyzes decision-making mechanisms in task-optimized neural networks. Overall,
tiny RNNs offer a powerful tool for understanding decision-making across species, combining the flexibility of
neural networks with the interpretability of cognitive models.

Despite their small size, tiny RNNs are remarkably flexible and can capture both normative and suboptimal
behaviors. This flexibility stems from the increased number of free parameters, allowing tiny RNNs to model
a wider range of behaviors than classical cognitive models. In particular, tiny RNNs can mimic the choices of
normative agents based on reinforcement learning and Bayesian inference. Leveraging this flexibility, however,
requires sufficiently large datasets. We found that tiny RNNs need up to a few thousand trials per subject to
outperform cognitive models. While common in animal studies, this is rare in human studies. Tomitigate this issue,
we proposed a knowledge-distillation approach, which leverages data from multiple subjects to achieve excellent
performance with only a few hundred trials per subject. This significantly expands the potential applications of
our approach, particularly for human studies in cognitive neuroscience and computational psychiatry.

We developed a unified approach for interpreting and comparing cognitive models and RNNs, revealing novel
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Fig. 4. Dynamical systems analyses for interpretation and comparison of multi-dimensional models (a) Vector field analysis of
two-dimensional models fitted to the choices of one monkey in the reversal learning task. Each panel illustrates the effect of one input
on the state variables (axes). Black arrows: flow lines indicating state changes per trial; white crosses: attractor states; dashed lines:
indifference states; orange arrows: readout vectors; background-color: dynamics speed (purple: slow; green: medium; yellow: fast). Left:
Model-free RL model; axis-aligned arrows indicate that only the value of the chosen action is updated in each trial, with values converging
to the reward magnitude. Right: Two-unit RNN. Top: in unrewarded trials (R = 0), convergence of arrows to diagonal line suggest a
drift-to-the-other pattern. (b) Dynamical regression analysis for 2D model-free RL (left) and two-unit RNN (right). Pi, ∆Pi: preference
and preference change for action Ai. Regression coefficients describe how each action preference changes in each trial as a function of its
own current value (βPi

), of the current preference for the other action (βPj
), and independently of one’s current preferences (baseline

β0). Points represent mean coefficients across outer rounds and error bars represent standard deviations across outer rounds. Circled
coefficients in the RNN model indicate a drift-to-the-other pattern. (c-e) Dynamical regression analysis for a model-free RL model and
an RNN with equal dimensionality d > 2, fitted to human behavior. Violin plots show distributions over subject-level coefficients. (c)
Three-dimensional models fitted to data from three-armed reversal learning task. Pi, ∆Pi: preference and preference change for action
Ai. β0 is the constant term in the linear regression. (d) Four-dimensional models fitted to data from four-armed drifting bandit task. Pi,
∆Pi: preference and preference change for action Ai. βR is the coefficient for the continuously-valued reward in the linear regression.
(e) Three-dimensional models fitted to data from the original two-stage task. Li, ∆Li: logit and logit change for each choice state (L1:
first-stage, L2, L3: second-stage states).
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insights into the underlying cognitive processes. This approach views a decision-making agent as a dynamical
system whose internal state changes over time as a function of rewards, observations, and past actions. Given the
low dimensionality of our fitted models, we could leverage graphical and analytical methods from dynamical
systems theory to visualize, compare, and interpret the dynamics of each model. Additionally, our proposed dy-
namical regression approach could effectively summarize the dynamics of models of with higher dimensionalities.
This unified framework enables direct comparisons between the strategies learned by RNNs and those assumed
by cognitive models. Importantly, we validated these strategies identified by our approach using standard model
recovery and validation techniques14.

The number of RNN units needed to optimally predict behavior estimates that behavior’s dimensionality33,34. In
our study, tiny RNNs performed as well as or better than larger RNNs, suggesting that the studied behaviors
have low dimensionality. This finding is consistent with other studies showing low-dimensional dynamics in
the brain23 and the effectiveness of low-rank RNNs in modeling complex neural dynamics37. Our study also
highlights the important distinction between the dimensionality of dynamics (number of dynamical variables)
and their complexity (e.g., nonlinearity), mirroring a similar separation in low-rank RNNs37–40. We note that
the identification of dynamical variables from experimental data is an active research area across neuroscience,
complex systems, and physics, with efforts to extract key variables from neural data, physical system recordings,
and multiscale complex systems37,41–43.

In developing our approach, we made several key technical decisions with specific advantages and limitations.
First, we chose to use gated recurrent units (GRUs) due to their Markovian property and ability to process
information selectively32. However, the GRU updating equation may limit the complexity of dynamics captured
by tiny RNNs (see theoretical analysis in44 and Fig. S37 for the case of one-dimensional discrete dynamics). While
sufficient for the tasks studied here, more complex behaviors may require different architectures. Additionally,
our choices in model training and regularization balanced flexibility and generalization. While effective across
multiple tasks, our approach may face challenges in scaling to more complex tasks. Future work should thus
explore alternative architectures, training methods, or interpretability techniques to address these limitations.

Our findings have broad implications for understanding cognitive and neural mechanisms, with potential applica-
tions in computational psychiatry and other fields. The ability of tiny RNNs to accurately model individual-subject
behavior makes them promising for studying individual differences in decision-making (e.g., Fig. S14, S3, S9, S15,
S16), a key aspect of computational psychiatry. In the future, we aim to extend our framework to more complex,
naturalistic settings and other cognitive domains, such as perceptual decision-making and memory. Finally, the
potential of our approach to link neural activity with behavior could lead to more integrated models of cognition,
bridging computational and neurobiological levels of analysis. In conclusion, our work with tiny RNNs opens
new avenues for research in cognitive science, neuroscience, and AI, offering a powerful tool for uncovering the
computational principles underlying adaptive behavior.
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The monkey dataset on the reversal learning task can be found in11,45. The rat dataset on the two-stage task
can be found in13. The three mice datasets on the reversal learning task, two-stage task, and transition-reversal
two-stage task can be found in12. The human dataset on the three-armed reversal learning task can be found in46.
The human dataset on the four-armed drifting bandit task can be found in47. The human dataset on the original
two-stage task can be found in48.
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Methods

Tasks and datasets

Reversal learning task
The reversal learning task is a paradigm designed to assess subjects’ ability to adapt their behavior in response
to changing reward contingencies. In each trial, subjects are presented with two actions, A1 and A2, yielding
a unit reward with probability preward1 and preward2 , respectively. These reward probabilities remain constant for
several trials before switching unpredictably and abruptly, without explicit cues. When this occurs, the action
associated with the higher reward probability becomes linked to the lower reward probability, and vice versa.
The task necessitates continuous exploration of which action currently has a higher reward probability in order
to maximize total rewards. For consistency with the other animal tasks, we assume that actions (A1 and A2) are
made at the choice state, and Ai deterministically leads to state Si, where the reward is delivered.

In the Bartolo dataset11, two monkeys completed a total of 15,500 trials of the reversal learning task with two
state-reward types: (1) preward1 = 0.7 and preward2 = 0.3; (2) preward1 = 0.3 and preward2 = 0.7. Blocks were 80 trials
long, and the switch happened at a “reversal trial” between 30 and 50. We predicted the behavior from trials 10 to
70, similar to the original preprocessing procedure11 because the monkeys were inferring the current block type
(“what” block: choosing from two objects; “where” block: choosing from two locations) in the first few trials.

In the Akam dataset12, ten mice completed a total of 67,009 trials of the reversal learning task with three state-
reward types: (1) preward1 = 0.75 and preward2 = 0.25; (2) preward1 = 0.25 and preward2 = 0.75; (3) preward1 = 0.5
and preward2 = 0.5 (neutral trials). Block transitions from non-neutral blocks were triggered 10 trials after an
exponential moving average (tau = 8 trials) crossed a 75% correct threshold. Block transitions from neutral blocks
occurred with a probability of 10% on each trial after the 15th of the block to give an average neutral block length
of 25 trials.

Two-stage task
The two-stage task is a paradigm commonly used to distinguish between the influences of model-free and
model-based reinforcement learning on animal behavior49 and later reduced in36. In each trial, subjects are
presented with two actions, A1 and A2, while at the choice state. Action A1 leads with a high probability to
state S1 and a low probability to state S2, while action A2 leads with a high probability to state S2 and a low
probability to state S1. From second-stage states S1 and S2, the animal can execute an action for a chance of
receiving a unit reward. Second-stage states are distinguishable by visual cues and have different probabilities of
yielding a unit reward: preward1 for S1 and preward2 for S2. These reward probabilities remain constant for several
trials before switching unpredictably and abruptly. When this occurs, the second-stage state associated with the
higher reward probability becomes linked to the lower reward probability, and vice versa.

In the Miller dataset13, four rats completed a total of 33,957 trials of the two-stage task with two state-reward
types: (1) preward1 = 0.8 and preward2 = 0.2; (2) preward1 = 0.2 and preward2 = 0.8. Block switches occurred with a 2%
probability on each trial after a minimum block length of 10 trials.

In the Akam dataset12, ten mice completed a total of 133,974 trials of the two-stage task with three state-reward
types: (1) preward1 = 0.8 and preward2 = 0.2; (2) preward1 = 0.2 and preward2 = 0.8; (3) preward1 = 0.4 and preward2 = 0.4
(neutral trials). Block transitions occur 20 trials after an exponential moving average (tau = 8 trials) of the subject’s
choices crossed a 75% correct threshold. In neutral blocks, block transitions occurred with 10% probability on
each trial after the 40th. Transitions from non-neutral blocks occurred with equal probability either to another
non-neutral block or to the neutral block. Transitions from neutral blocks occurred with equal probability to one
of the non-neutral blocks.

Transition-reversal two-stage task
The transition-reversal two-stage task is a modified version of the original two-stage task, with the introduction
of occasional reversals in action-state transition probabilities12. This modification was proposed to facilitate the
dissociation of state prediction and reward prediction in neural activity and to prevent habit-like strategies that
may produce model-based control-like behavior without forward planning. In each trial, subjects are presented
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with two actions, A1 and A2, at the choice state. One action commonly leads to state S1 and rarely to state
S2, while the other action commonly leads to state S2 and rarely to state S1. These action-state transition
probabilities remain constant for several trials before switching unpredictably and abruptly, without explicit
cues. In the second-stage states S1 and S2, subjects execute an action for a chance of receiving a unit reward.
The second-stage states are visually distinguishable and have different reward probabilities that also switch
unpredictably and abruptly, without explicit cues, similar to the other two tasks.

In the Akam dataset12, seventeen mice completed a total of 230,237 trials of the transition-reversal two-stage
task with two action-state types: (1) Pr(S1|A1) = Pr(S2|A2) = 0.8 and Pr(S2|A1) = Pr(S1|A2) = 0.2;
(2)Pr(S1|A1) = Pr(S2|A2) = 0.2 and Pr(S2|A1) = Pr(S1|A2) = 0.8. There were also three state-reward types:
(1) preward1 = 0.8 and preward2 = 0.2; (2) preward1 = 0.2 and preward2 = 0.8; (3) preward1 = 0.4 and preward2 = 0.4 (neutral
trials). Block transitions occur 20 trials after an exponential moving average (tau = 8 trials) of the subject’s
choices crossed a 75% correct threshold. In neutral blocks, block transitions occurred with 10% probability on
each trial after the 40th. Transitions from non-neutral blocks occurred with equal probability (25%) either to
another non-neutral block via reversal in the reward or transition probabilities, or to one of the two neutral blocks.
Transitions from neutral blocks occurred via a change in the reward probabilities only to one of the non-neutral
blocks with the same transition probabilities.

Three-armed reversal learning task

In the Suthaharan dataset46, 1010 participants (605 participants from the pandemic group and 405 participants
from the replication group) completed a three-armed probabilistic reversal learning task. This task was framed as
either a non-social (card deck) or social (partner) domain, each lasting 160 trials divided evenly into 4 blocks.
Participants were presented with 3 actions (A1, A2, A3; 3 decks of cards in the non-social domain frame or 3
avatar partners in the social domain frame), each containing different amounts of winning (+100) and losing (-50)
points. The objective was to find the best option and earn as many points as possible, knowing that the best
option could change.

The task contingencies started with 90%, 50%, and 10% reward probabilities, with the best deck/partner switching
after 9 out of 10 consecutive rewards. Unbeknownst to the participants, the underlying contingencies transitioned
to 80%, 40%, and 20% reward probabilities at the end of the second block, making it more challenging to distinguish
between probabilistic noise and genuine changes in the best option.

Four-armed drifting bandit task

The Bahrami dataset47 includes 975 participants who completed the 4-arm bandit task50. Participants were asked
to choose between four options on 150 trials. On each trial, they chose an option and were given a reward. The
rewards for each option drifted over time in a manner known as a restless bandit, forcing the participants to
constantly explore the different options to obtain the maximum reward. The rewards followed one of three
predefined drift schedules47.

During preprocessing, we removed 57 participants (5.9%) who missed more than 10% of trials. For model fitting,
missing trials from other subjects are excluded from the loss calculation.

Original two-stage task

In the Gillan dataset48, the original version of the two-stage task49 was used to assess goal-directed (model-based)
and habitual (model-free) learning in individuals with diverse psychiatric symptoms. 1961 subjects (548 from the
first experiment and 1413 from the second experiment) completed the task. In each trial, subjects were presented
with a choice between two options (A1 or A2). Each option commonly (70%) led to a particular second-stage
state (A1 → S1 or A2 → S2). However, on 30% of "rare" trials, choices led to the alternative second-stage state
(A1 → S2 or A2 → S1). In the second-stage states, subjects chose between two options (B1/B2 in S1 or C1/C2
in S2), each associated with a distinct probability of being rewarded. The reward probabilities associated with
each second-stage option drifted slowly and independently over time, remaining within the range of 0.25 to 0.75.
To maximize rewards, subjects had to track which second-stage options were currently best as they changed over
time.
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For model fitting, missing stages/trials from some subjects are excluded from the loss calculation.

Recurrent neural networks

Network architectures

We investigated several architectures, as described below. Our primary goal is to capture the maximum possible
behavioral variance with d dynamical variables. While we generally prefer more flexible models due to their
reduced bias, such models typically require more data for training, and insufficient data can result in underfitting
and poorer performance in comparison to less flexible (simpler) models. Therefore, we aimed to balance data
efficiency and model capacity through cross-validation.

After finding the best-performing model class, we performed an investigation of the network properties that
contributed the most to the successfully explained variance. Analogous to ablation studies, our approach
consisted of gradually removing components or adding constraints to the architectures, such as eliminating
nonlinearity or introducing symmetric weight constraints. The unaffected predictive performance suggests that
the examined components are not essential for the successfully explained variance. If affected, this indicates that
these components can contribute to explaining additional behavioral patterns. Following this approach, we can
establish connections between architectural components and their corresponding underlying behavioral patterns.
The primary objective of this approach is to capture maximum variance with minimal components in the models,
resulting in highly interpretable models.

Recurrent layer The neural network models in this paper used the vanilla gated recurrent units (GRU) in their
hidden layers32. The hidden state ht at the beginning of trial t consists of d elements (dynamical variables). The
initial hidden state h1 is set to 0 and ht (t > 1) is updated as follows:

rt = σ(Wirxt−1 + bir + Whrht−1 + bhr)
zt = σ(Wizxt−1 + biz + Whzht−1 + bhz)
nt = tanh(Winxt−1 + bin + rt ⊙ (Whnht−1 + bhn))
ht = (1− zt)⊙ nt + zt ⊙ ht−1

(1)

where σ is the sigmoid function, ⊙ is the Hadamard (element-wise) product, xt−1 and ht−1 are the input and
hidden state from the last trial t− 1, and rt, zt, nt are the reset, update, new gates (intermediate variables) at trial
t, respectively. The weight matrices W·· and biases b·· are trainable parameters. The d-dimensional hidden state
of the network, ht, represents a summary of past inputs and is the only information used to generate outputs.

Importantly, the use of GRUs means that the set of d unit activations fully specifies the network’s internal state,
rendering the system Markovian (i.e., ht is fully determined by ht−1 and xt−1). This is in contrast to alternative
RNN architectures such as the long short-term memory51, where the use of a cell state renders the system
non-Markovian (i.e., the output state ht cannot be fully determined by ht−1 and xt−1).

To accommodate discrete inputs, we also introduce a modified architecture called switching GRU, where recurrent
weights and biases are input-dependent, similar to discrete-latent-variable-dependent switching linear dynamical
systems52. In this architecture, the hidden state ht (t > 1) is updated as follows:

rt = σ(b(xt−1)
ir + W

(xt−1)
hr ht−1 + b

(xt−1)
hr )

zt = σ(b(xt−1)
iz + W

(xt−1)
hz ht−1 + b

(xt−1)
hz )

nt = tanh(b(xt−1)
in + rt ⊙ (W (xt−1)

hn ht−1 + b
(xt−1)
hn ))

ht = (1− zt)⊙ nt + zt ⊙ ht−1

(2)

where W
(xt−1)
h· and b

(xt−1)
·· are the weight matrices and biases selected by the input xt−1 (i.e., each input xt−1

induces an independent set of weights Wh· and biases b··).
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For discrete inputs, switching GRUs are a generalization of vanilla GRUs (i.e., a vanilla GRU can be viewed as a
switching GRU whose recurrent weights do not vary with the input). Generalizations of switching GRUs from
discrete to continuous inputs are closely related to multiplicative integration GRUs53.

For animal datasets, we found that the switching GRU models performed similarly to the vanilla GRU models
for d ≥ 2, but consistently outperformed the vanilla GRU models for d = 1. Therefore, for the results of
animal datasets in the main text, we reported the performance of the switching GRU models for d = 1 and the
performance of the vanilla GRU models for d ≥ 2. Mathematically, these vanilla GRU models can be directly
transformed into corresponding switching GRU models:

b
(xt−1)
i. ←−Wi.xt−1 + bi.

b
(xt−1)
h. ←− bh.

W
(xt−1)
h. ←−Wh.

(3)

We also proposed the switching linear neural networks (SLIN), where the hidden state ht (t > 1) is updated as
follows:

ht = W (xt−1)ht−1 + b(xt−1) (4)

where W (xt−1) and b(xt−1) are the weight matrices and biases selected by the input xt−1. In some variants, we
constrained W (xt−1) to be symmetric.

Input layer The network’s input xt consists of the previous action at−1, the previous second-stage state st−1,
and the previous reward rt−1 (but at = st in the reversal learning task). In the vanilla GRU networks, the input
xt is three-dimensional and projects with linear weights to the recurrent layer. In the switching GRU networks,
the input xt is used as a selector variable where the network’s recurrent weights and biases depend on the
network’s inputs. Thus, switching GRUs trained on the reversal learning task have four sets of recurrent weights
and biases corresponding to all combinations of at−1 and rt−1, and switching GRUs trained on the two-stage
and transition-reversal two-stage tasks have eight sets of recurrent weights and biases corresponding to all
combinations of at−1, st−1, and rt−1.

Output layer The network’s output consists of two units whose activities are linear functions of the hidden
state ht. A softmax function (a generalization of the logistic function) is used to convert these activities into
a probability distribution (a policy). In the first trial, the network’s output is read out from the initial hidden
state h1, which has not yet been updated on the basis of any input. For d-unit networks, the network’s output
scores were computed either from a fully-connected readout layer (i.e., s

(i)
t =

∑d
j=1 βi,j · h

(j)
t , i = 1, ..., d) or

from a diagonal readout layer (i.e., s(i)
t = βi · h

(i)
t , i = 1, ..., d). The output scores are sent to the softmax layer to

produce action probabilities.

Network training

Networks were trained using the Adam optimizer (learning rate of 0.005) on batched training data with cross-
entropy loss, recurrent weight L1-regularization loss (coefficient drawn between 1e-5 and 1e-1, depending on
experiments), and early-stop (if the validation loss does not improve for 200 iteration steps). All networks were
implemented with PyTorch.

Classical cognitive models

Models for the reversal learning task

In this task, we implemented one model from the Bayesian inference family and eight models from the model-free
family (adopted from36 and13, or constructed from GRU phase portraits).
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Bayesian inference strategy (d=1). This model (also known as latent-state) assumes the existence of the
latent-state h, with h = i representing a higher reward probability following action Ai (state Si). The probability
Prt(h = 1), as the dynamical variable, is first updated via Bayesian inference:

P̂rt(h = 1) = Pr(rt−1|h = 1, st−1) Prt−1(h = 1)
Pr(rt−1|h = 1, st−1) Prt−1(h = 1) + Pr(rt−1|h = 2, st−1) Prt−1(h = 2) , (5)

where the left-hand side is the posterior probability (we omit the conditions for simplicity). The agent also
incorporates the knowledge that, in each trial, the latent-state h can switch (e.g., from h = 1 to h = 2) with a
small probability pr . Thus the probability Prt(h) reads,

Prt(h = 1) = (1− pr)P̂rt(h = 1) + pr(1− P̂rt(h = 1)). (6)

The action probability is then derived from softmax(βPrt(h = 1), βPrt(h = 2)) with inverse temperature β
(β ≥ 0).

Model-free strategy (d=1). This model hypothesizes that the two action values Qt(Ai) are fully anti-correlated
(Qt(A1) = −Qt(A2)) as follows:

Qt(at−1) = Qt−1(at−1) + α(rt−1 −Qt−1(at−1))
Qt(āt−1) = Qt−1(āt−1)− α(rt−1 + Qt−1(āt−1)),

(7)

where āt−1 is the unchosen action, and α is the learning rate (0 ≤ α ≤ 1). We specify the Qt(A1) as the
dynamical variable.

Model-free strategy (d=2). This model hypothesizes that the two action values Qt(Ai), as two dynamical
variables, are updated independently:

Qt(at−1) = Qt−1(at−1) + α(rt−1 −Qt−1(at−1)). (8)

The unchosen action value Qt(āt−1) is unaffected.

Model-free strategy with value forgetting (d=2). The chosen action value is updated as in the previous
model. The unchosen action value Qt(āt−1), instead, is gradually forgotten:

Qt(āt−1) = DQt−1(āt−1), (9)

where D is the value forgetting rate (0 ≤ D ≤ 1).

Model-free strategy with value forgetting to mean (d=2). This model is the “forgetful model-free strategy”
proposed in54. The chosen action value is updated as in the previous model. The unchosen action value Qt(āt−1),
instead, is gradually forgotten to a initial value (Ṽ = 1/2):

Qt(āt−1) = DQt−1(āt−1) + (1−D)Ṽ , (10)

where D is the value forgetting rate (0 ≤ D ≤ 1).

Model-free strategy with the drift-to-the-other rule (d=2). This strategy is constructed from the phase
diagram of the two-unit GRU. When there is a reward, the chosen action value is updated as follows,

Qt(at−1) = D1Qt−1(at−1) + 1, (11)
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where D1 is the value drifting rate (0 ≤ D1 ≤ 1). The unchosen action value is slightly decreased:

Qt(āt−1) = Qt−1(āt−1)− b, (12)

where b is the decaying bias (0 ≤ b ≤ 1, usually small). When there is no reward, the unchosen action value is
unchanged, and the chosen action value drifts to the other:

Qt(at−1) = Qt−1(at−1) + α0(Qt−1(āt−1)−Qt−1(at−1)), (13)

where α0 is the drifting rate (0 ≤ α0 ≤ 1).

For all model-free RL models with d = 2, the action probability is determined by softmax(βQt(A1), βQt(A2)).

Model-free strategy with inertia (d=2). The action values are updated as the model-free strategy (d=1). The
action perseveration (inertia) is updated by:

Xt(at−1) = Xt−1(at−1) + αpers(kpers −Xt−1(at−1))
Xt(āt−1) = Xt−1(āt−1)− αpers(kpers + Xt−1(āt−1))

(14)

where αpers is the perseveration learning rate (0 ≤ αpers ≤ 1), and kpers is the single-trial perseveration term,
affecting the balance between action values and action perseverations.

Model-free strategy with inertia (d=3). The action values are updated as the model-free strategy (d=2). The
action perseveration (inertia) is updated by the same rule in the model-free strategy with inertia (d=2).

The action probabilities in all model-free models with inertia are generated via softmax({β(Qt(Ai) + Xt(Ai))}i).
Both the action values and action perseverations are dynamical variables.

Model-free reward-as-cue strategy (d=8). This model assumes that the animal considers the combination of
the second-stage state st−1 and the reward rt−1 from the trial t− 1 as the augmented state St for trial t. The
eight dynamical variables are the values for the two actions at the four augmented states. The action values are
updated as follows:

Qt(St−1, at−1) = Qt−1(St−1, at−1) + α(rt−1 −Qt−1(St−1, at−1)). (15)

The action probability at trial t is determined by softmax(βQt(St, A1), βQt(St, A2)).

Models for the two-stage task

We implemented one model from the Bayesian inference family, four models from the model-free family, and
four from the model-based family (adopted from36 and13).

Bayesian inference strategy (d=1). Same as Bayesian inference strategy (d=1) in the reversal learning task,
except that h = i represents a higher reward probability following state Si (not action Ai).

Model-free strategy (d=1). Same as the model-free strategy (d=1) in the reversal learning task by ignoring the
second-stage states st−1.

Model-free Q(1) strategy (d=2). Same as the model-free strategy (d=2) in the reversal learning task by ignoring
the second-stage states st−1.
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Model-free Q(0) strategy (d=4). This model first updates the first-stage action values Qt(at−1) with the
second-stage state values Vt−1(st−1):

Qt(at−1) = Qt−1(at−1) + α(Vt−1(st−1)−Qt−1(at−1)), (16)

while the unchosen action value Qt(āt−1) is unaffected. Then the second-stage state value Vt(st−1) is updated
by the observed reward:

Vt(st−1) = Vt−1(st−1) + α(rt−1 − Vt−1(st−1)). (17)

The four dynamical variables are the two action values and two state values.

Model-free reward-as-cue strategy (d=8). Same as model-free reward-as-cue strategy (d=8) in the reversal
learning task.

Model-based strategy (d=1). In this model, the two state values Vt(Si) are fully anti-correlated (Vt(S1) =
−Vt(S2)):

Vt(st−1) = Vt−1(st−1) + α(rt−1 − Vt−1(st−1))
Vt(s̄t−1) = Vt−1(s̄t−1)− α(rt−1 + Vt−1(s̄t−1)),

(18)

where s̄t−1 is the unvisited state. The dynamical variable is the state value Vt(S1).

Model-based strategy (d=2). The visited state value is updated:

Vt(st−1) = Vt−1(st−1) + α(rt−1 − Vt−1(st−1)). (19)

The unvisited state value is unchanged. The two dynamical variables are the two state values.

Model-based strategy with value forgetting (d=2). The visited state value is updated as in the previous
model. The unvisited state value is gradually forgotten:

Vt(s̄t−1) = DVt−1(s̄t−1), (20)

where D is the value forgetting rate (0 ≤ D ≤ 1).

For all model-based RL models, the action values at the first stage are directly computed using the state transition
model:

QMB
t (Ai) =

∑
j

Pr(Sj |Ai)Vt(Sj), (21)

where Pr(Sj |Ai) is known. The action probability is determined by softmax(βQMB
t (A1), βQMB

t (A2)).

Model-based mixture strategy (d=2). This model is a mixture of the model-free strategy (d=1) and the
model-based strategy (d=1). The net action values are determined by:

Qnet
t (Ai) = (1− w)QMF

t (Ai) + wQMB
t (Ai), (22)

where w controls the strength of the model-based component. The action probabilities are generated via
softmax(βQnet

t (A1), βQnet
t (A2)). QMF

t (A1) and Vt(S1) are the dynamical variables.
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Models for the transition-reversal two-stage task

For this task, we further include cognitive models proposed in12. We first describe different model components
(ingredients) and corresponding numbers of dynamical variables, and then specify the components employed in
each model.

Second-stage state value component. The visited state value is updated:

Vt(st−1) = Vt−1(st−1) + αQ(rt−1 − Vt−1(st−1)). (23)

The unvisited state value Vt(s̄t−1) is either unchanged or gradually forgotten with fQ as the value forgetting
rate. This component requires two dynamical variables.

Model-free action value component. The first-stage action values Qmf
t (at−1) are updated by the second-

stage state values Vt−1(st−1) and the observed reward:

Qmf
t (at−1) = Qmf

t−1(at−1) + α(λrt−1 + (1− λ)Vt−1(st−1)−Qmf
t−1(at−1)), (24)

where λ is the eligibility trace. The unchosen action value Qmf
t (āt−1) is unaffected or gradually forgotten with

fQ as the value forgetting rate. This component requires two dynamical variables.

Model-based component. The action-state transition probabilities are updated as:

Pt(st−1|at−1) = Pt−1(st−1|at−1) + αT (1− Pt−1(st−1|at−1))
Pt(s̄t−1|at−1) = Pt−1(s̄t−1|at−1) + αT (0− Pt−1(s̄t−1|at−1)),

(25)

where αT is the transition probability learning rate. For the unchosen action, the action-state transition probabili-
ties are either unchanged or forgotten:

Pt(st−1|āt−1) = Pt−1(st−1|āt−1) + fT (0.5− Pt−1(st−1|āt−1))
Pt(s̄t−1|āt−1) = Pt−1(s̄t−1|āt−1) + fT (0.5− Pt−1(s̄t−1|āt−1)),

(26)

where fT is the transition probability forgetting rate.

The model-based action values at the first stage are directly computed using the learned state transition model:

Qmb
t (Ai) =

∑
j

Pt(Sj |Ai)Vt(Sj). (27)

This component requires two dynamical variables (Pt(S1|A1) andPt(S1|A2)), since other variables can be directly
inferred.

Motor-level model-free action component. Due to the apparatus design in this task12, it is proposed that
the mice consider the motor-level actions amo

t−1, defined as the combination of the last-trial action at−1 and the
second-stage state st−2 before it. The motor-level action values Qmo

t (amo
t−1) are updated as:

Qmo
t (amo

t−1) = Qmo
t−1(amo

t−1) + α(λrt−1 + (1− λ)Vt−1(st−2)−Qmo
t−1(amo

t−1)), (28)

where λ is the eligibility trace. The unchosen motor-level action value Qmo
t is unaffected or gradually forgotten

with fQ as the value forgetting rate. This component requires four dynamical variables (four motor-level actions).
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Choice perseveration component. The single-trial perseveration X̃cp
t−1 is set to -0.5 for at−1 = A1 and 0.5

for at−1 = A2. The multi-trial perseveration Qcp
t−1 (exponential moving average of choices) is updated as:

Xcp
t = Xcp

t−1 + αc(X̃
cp
t−1 −Xcp

t−1), (29)

where αc is the choice perseveration learning rate. In some models, the αc is less than 1, so one dynamical
variable is required; while in some other models, the αc is fixed to 1, suggesting that it is reduced to the single-trial
perseveration and no dynamical variable is required.

Motor-level choice perseveration component. The multi-trial motor-level perseveration Xmocp
t−1 (st−2) is

updated as:
Xmocp

t (st−2) = Xmocp
t−1 (st−2) + αm(X̃cp

t−1 −Xmocp
t−1 (st−2)), (30)

where αm is the motor-level choice perseveration learning rate. This component requires two dynamical variables.

Action selection component. The net action values are computed as follows:

Qnet
t (Ai) = Gmf Qmf

t (Ai) + GmoQmo
t (Ai, st−1) + GmbQmb

t (Ai) + Xt(Ai), (31)

where Gmf , Gmo, Gmb are model-free, motor-level model-free, model-based inverse temperatures, and Xt(Ai) is:

Xt(A1) = 0
Xt(A2) = Bc + BrX̃s

t−1 + PcX
cp
t + PmXmocp

t (st−1),
(32)

where Bc (bias), Br (rotation bias), Pc, Pm are weights controlling each component, and X̃s
t−1 is -0.5 for st−1 = S1

and 0.5 for st−1 = S2.

The action probabilities are generated via softmax(Qnet
t (A1), Qnet

t (A2)).

Model-free strategies. We include five model-free RL models:

• the model-free strategy (d=1) same as the two-stage task;

• the model-free Q(1) strategy (d=2) same as the two-stage task;

• state value [2] + model-free action value [2] + bias [0] + rotation bias [0] + single-trial choice perseveration
[0];

• state value [2] + model-free action value with forgetting [2] + bias [0] + rotation bias [0] + single-trial
choice perseveration [0];

• state value [2] + model-free action value with forgetting [2] + motor-level model-free action value with
forgetting [4] + bias [0] + rotation bias [0] + multi-trial choice perseveration [1] + multi-trial motor-level
choice perseveration [2].

Here, we use the format of “model component [required number of dynamical variables]” (more details in12).

Model-based strategies. We include twelve model-based RL models:

• state value [2] + model-based [2] + bias [0] + rotation bias [0] + single-trial choice perseveration [0];

• state value [2] + model-free action value [2] + model-based [2] + bias [0] + rotation bias [0] + single-trial
choice perseveration [0];
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• state value [2] + model-based with forgetting [2] + bias [0] + rotation bias [0] + single-trial choice persever-
ation [0];

• state value [2] + model-free action value with forgetting [2] + model-based with forgetting [2] + bias [0] +
rotation bias [0] + single-trial choice perseveration [0];

• state value [2] + model-free action value with forgetting [2] + model-based [2] + bias [0] + rotation bias [0]
+ single-trial choice perseveration [0];

• state value [2] + model-free action value [2] + model-based [2] + bias [0] + rotation bias [0] + multi-trial
choice perseveration [1];

• state value [2] + model-free action value with forgetting [2] + model-based with forgetting [2] + bias [0] +
rotation bias [0] + multi-trial choice perseveration [1];

• state value [2] + model-free action value with forgetting [2] + model-based [2] + bias [0] + rotation bias [0]
+ multi-trial choice perseveration [1];

• state value [2] + model-free action value with forgetting [2] + model-based with forgetting [2] + bias [0] +
rotation bias [0] + multi-trial motor-level choice perseveration [2];

• state value [2] + model-based with forgetting [2] + bias [0] + rotation bias [0] + multi-trial choice persever-
ation [1] + multi-trial motor-level choice perseveration [2];

• state value [2] + model-free action value with forgetting [2] + model-based with forgetting [2] + bias [0] +
rotation bias [0] + multi-trial choice perseveration [1] + multi-trial motor-level choice perseveration [2];

• state value [2] + model-free action value with forgetting [2] + model-based with forgetting [2] + motor-level
model-free action value with forgetting [4] + bias [0] + rotation bias [0] + multi-trial choice perseveration
[1] + multi-trial motor-level choice perseveration [2].

Here, we use the format of model component [required number of dynamical variables] (more details in12).

Models for the three-armed reversal learning task

We implemented four models (n = 3 actions) from the model-free family, one of which is constructed from the
strategies discovered by the GRU.

Model-free strategy (d=n). This model hypothesizes that each action value Qt(Ai), as a dynamical variable,
is updated independently. The chosen action value is updated by:

Qt(at−1) = Qt−1(at−1) + α(rt−1 −Qt−1(at−1)). (33)

The unchosen action values Qt(Aj) (Aj ̸= at−1) are unaffected.

Model-free strategy with value forgetting (d=n). The chosen action value is updated as in the previous
model. The unchosen action value Qt(Aj) (Aj ̸= at−1), instead, is gradually forgotten:

Qt(Aj) = DQt−1(Aj), (34)

where D is the value forgetting rate (0 ≤ D ≤ 1).
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Model-free strategy with value forgetting and action perseveration (d=2n). The action values are updated
as the model-free strategy with value forgetting. The chosen action perseveration is updated by:

Xt(at−1) = DpersXt−1(at−1) + kpers, (35)

and the unchosen action perseverations are updated by:

Xt(Aj) = DpersXt−1(Aj), (36)

where Dpers is the perseveration forgetting rate (0 ≤ Dpers ≤ 1), and kpers is the single-trial perseveration term,
affecting the balance between action values and action perseverations.

Model-free strategy with unchosen value updating and reward utility (d=n). This model is constructed
from the strategy discovered by the GRU (see Supplementary Results 1.4). It assumes that the reward utility
U(r) (equivalent to the preference setpoint) is different in four cases (corresponding to four free parameters): no
reward for chosen action (Uc(0)), one reward for chosen action (Uc(1)), no reward for unchosen action (Uu(0)),
and one reward for chosen action (Uu(1)).

The chosen action value is updated by:

Qt(at−1) = Qt−1(at−1) + αc(Uc(rt−1)−Qt−1(at−1)). (37)

The unchosen action value Qt(Aj) (Aj ̸= at−1) is updated by:

Qt(Aj) = Qt−1(Aj) + αu(Uu(rt−1)−Qt−1(Aj)). (38)

The action probabilities for these models are generated via softmax({β(Qt(Ai) + Xt(Ai))}i) (Xt = 0 for models
without action perseverations). Both the action values and action perseverations are dynamical variables.

Models for the four-armed drifting bandit task

We implemented five models (n = 4 actions) from the model-free family, two of which are constructed from the
strategies discovered by the GRU.

Model-free strategy (d=n). This model is the same as the model-free strategy in the three-armed reversal
learning task.

Model-free strategy with value forgetting (d=n). This model is the same as the model-free strategy with
value forgetting in the three-armed reversal learning task.

Model-free strategy with value forgetting and action perseveration (d=2n). This model is the same as
the model-free strategy with value forgetting and action perseveration in the three-armed reversal learning task.

Model-free strategy with unchosen value updating and reward reference point (d=n). This model is
constructed from the strategy discovered by the GRU (see Supplementary Results 1.5). It assumes that the reward
utility U(r) is different for chosen action (Uc(r) = βc(r −Rc)) and for unchosen action (Uu(r) = βu(r −Ru)),
where βc and βu are reward sensitivities, and Rc and Ru are reward reference points.

The chosen action value is updated by:

Qt(at−1) = (1− αc)Qt−1(at−1) + Uc(rt−1), (39)
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where 1− αc is the decay rate for chosen actions. The unchosen action value Qt(Aj) (Aj ̸= at−1) is updated by:

Qt(Aj) = (1− αu)Qt−1(Aj) + Uu(rt−1), (40)

where 1− αu is the decay rate for unchosen actions. We additionally fit a reduced model of this strategy where
βc = αc and βu = αu (similarly inspired by the GRU’s solution).

The action probabilities for these models are generated via softmax({β(Qt(Ai) + Xt(Ai))}i) (Xt = 0 for models
without action perseverations). Both the action values and action perseverations are dynamical variables.

Models for the original two-stage task
Model-free strategy (d=3). This model hypothesizes that the action values for each task state (first-stage
state S0, second-stage states S1 and S2) are fully anti-correlated (Q

S0
t (A1) = −Q

S0
t (A2), QS1

t (B1) = −Q
S1
t (B2),

Q
S2
t (B3) = −Q

S2
t (B3)).

The action values at the chosen second-stage state (e.g., assuming B1 or B2 at S1 is chosen) are updated by:

Q
S1
t (aS1

t−1) = Q
S1
t−1(aS1

t−1) + α2(rt−1 −Q
S1
t−1(aS1

t−1))

Q
S1
t (āS1

t−1) = Q
S1
t−1(āS1

t−1)− α2(rt−1 + Q
S1
t−1(āS1

t−1)),
(41)

where ā
S1
t−1 is the unchosen second-stage action at the chosen second-stage state, and α2 is the learning

rate for the second-stage states (0 ≤ α2 ≤ 1). The second-stage action probabilities are generated via
softmax(β2Q

S1
t (B1), β2Q

S1
t (B2)).

The action values at the first-stage state (A1 or A2 at S0) are updated by:

Q
S0,MF
t (aS0

t−1) = Q
S0,MF
t−1 (aS0

t−1) + α1(λrt−1 + (1− λ)QS1
t (aS1

t−1)−Q
S0,MF
t−1 (aS0

t−1))

Q
S0,MF
t (āS0

t−1) = Q
S0,MF
t−1 (āS0

t−1)− α1(λrt−1 + (1− λ)QS1
t (aS1

t−1) + Q
S0,MF
t−1 (āS0

t−1)),
(42)

where ā
S0
t−1 is the unchosen first-stage action, α1 is the learning rate for the first-stage state (0 ≤ α1 ≤ 1), and λ

specifies the TD(λ) learning rule. The first-stage action probabilities are generated via softmax(β1Q
S0,MF
t (A1),

β1Q
S0,MF
t (A2)).

Here Q
S0,MF
t (A1), QS1

t (B1), and Q
S2
t (C1) are the dynamical variables.

Model-based strategy (d=2). The update of action values at the chosen second-stage state is the same as the
model-free strategy. The action values at the first-stage state (A1 or A2 at S0) are determined by:

Q
S0,MB
t (Ai) = Pr[S1|Ai] max

Bj

Q
S1
t (Bj) + Pr[S2|Ai] max

Cj

Q
S2
t (Cj). (43)

The first-stage action probabilities are generated via softmax(β1Q
S0,MB
t (A1), β1Q

S0,MB
t (A2)).

Only Q
S1
t (B1) and Q

S2
t (C1) are the dynamical variables.

Model-based mixture strategy (d=3). This model considers the mixture of model-free and model-based
strategies for the first-stage states. The net action values are determined by:

Q
S0,net
t (Ai) = (1− w)QS0,MF

t (Ai) + wQ
S0,MB
t (Ai), (44)

where w controls the strength of the model-based component. The first-stage action probabilities are generated
via softmax(β1Q

S0,net
t (A1), β1Q

S0,net
t (A2)).

Q
S0,MF
t (A1), QS1

t (B1), and Q
S2
t (C1) are the dynamical variables.
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Model-free strategy (d=6). Compared to the model-free strategy (d=3), only the chosen action values at S0,
S1, and S2 are updated. The unchosen values are unchanged. Q

S0,MF
t (A1), Q

S0,MF
t (A2), Q

S1
t (B1), Q

S1
t (B2),

Q
S2
t (C1), and Q

S2
t (C2) are the dynamical variables.

Model-based strategy (d=4). Compared to the model-based strategy (d=2), only the chosen action values at
S1, and S2 are updated. The unchosen values are unchanged. Q

S1
t (B1), Q

S1
t (B2), Q

S2
t (C1), and Q

S2
t (C2) are

the dynamical variables.

Model-based mixture strategy (d=6). Compared to the model-based mixture strategy (d=3), only the chosen
action values at S0, S1, and S2 are updated. The unchosen values are unchanged. Q

S0,MF
t (A1), Q

S0,MF
t (A2),

Q
S1
t (B1), QS1

t (B2), QS2
t (C1), and Q

S2
t (C2) are the dynamical variables.

Model-free strategy with reward utility (d=3). This model is constructed from the GRU’s strategy. Similar
to the model-free strategy (d=3), it hypothesizes that the action values for each task state (first-stage state
S0, second-stage states S1 and S2) are fully anti-correlated (QS0

t (A1) = −Q
S0
t (A2), Q

S1
t (B1) = −Q

S1
t (B2),

Q
S2
t (B3) = −Q

S2
t (B3)).

It assumes that when receiving one reward, the reward utility (i.e., equivalently, the preference setpoint) for the
chosen action at the first-stage state S0 is US0(1) = 1, for the chosen action at the chosen second-stage state
S1 (or S2) is US1(1) = 1, and for the (motor-level) chosen action at the unchosen second-stage state S2 (or S1)
is US2(1) = Uother (e.g., B1 at the chosen S1 and C1 at unchosen S2 are the same motor-level action). When
receiving no reward, the reward utility for the chosen action at the first-stage state S0 is US0(0) = U1st,zero, for
the chosen action at the chosen second-stage state (assuming S1) is US1(0) = U2nd,zero, and for the (motor-level)
chosen action at the unchosen second-stage state (assuming S2) is US2(0) = −Uother. The chosen action values
at the chosen second-stage state (e.g., assuming B1 or B2 at S1) are updated by:

Q
S1
t (aS1

t−1) = Q
S1
t−1(aS1

t−1) + α2(US1(rt−1)−Q
S1
t−1(aS1

t−1)), (45)

where α2 is the learning rate for the second-stage states (0 ≤ α2 ≤ 1). The (motor-level) chosen action values
(i.e., ãS2

t−1 = C1 if a
S1
t−1 = B1, and, ã

S2
t−1 = C2 if a

S1
t−1 = B2) at the unchosen second-stage state (e.g., assuming

C1 or C2 at S2) are updated by:

Q
S2
t (ãS2

t−1) = Q
S2
t−1(ãS2

t−1) + α2(US2(rt−1)−Q
S2
t−1(ãS2

t−1)). (46)

The second-stage action probabilities are generated via softmax(β2Q
S1
t (B1), β2Q

S1
t (B2)).

The action values at the first-stage state (A1 or A2 at S0) are updated by:

Q
S0
t (aS0

t−1) = Q
S0
t−1(aS0

t−1) + α1(US0(rt−1)−Q
S0
t−1(aS0

t−1)) (47)

where α1 is the learning rate for the first-stage state (0 ≤ α1 ≤ 1). The first-stage action probabilities are
generated via softmax(β1Q

S0
t (A1), β1Q

S0
t (A2)).

Here Q
S0
t (A1), QS1

t (B1), and Q
S2
t (C1) are the dynamical variables.

Model fitting

Maximum likelihood estimation

The parameters in all models were optimized on the training dataset to maximize the log-likelihood (i.e., minimize
the negative log-likelihood, or cross-entropy) for the next-action prediction. The loss function is defined as
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follows:

L = − log Pr[action sequences from one subject given one model]

= −
Nsession∑
n=1

Tn∑
t=1

log Pr[observing at given past observations and the model],
(48)

where Nsession is the number of sessions and Tn is the number of trials in session n.

Nested cross-validation

To avoid overfitting and ensure a fair comparison between models with varying numbers of parameters, we
implemented nested cross-validation. For each animal, we first divided sessions into non-overlapping shorter
blocks (approximately 150 trials per block) and allocated these blocks into ten folds. In the outer loop, nine
folds were designated for training and validation, while the remaining fold was reserved for testing. In the
inner loop, eight of the nine folds were assigned for training (optimizing a model’s parameters for a given set of
hyperparameters), and the remaining fold of the nine was allocated for validation (selecting the best-performing
model across all hyperparameter sets). Notice that this procedure allows different hyperparameters for each test
set.

RNNs’ hyperparameters encompassed the L1-regularization coefficient on recurrent weights (drawn from 1e-5,
1e-4, 1e-3, 1e-2, 1e-1, depending on the experiments), the number of training epochs (i.e., early stopping), and
the random seed (three seeds). For cognitive models, the only hyperparameter was the random seed (used for
parameter initialization). The inner loop produced nine models, with the best-performing model, based on average
performance in the training and validation datasets, being selected and evaluated on the unseen testing fold. The
final testing performance was computed as the average across all ten testing folds, weighted by the number of
trials per block. This approach ensures that test data is exclusively used for evaluation and is never encountered
during training or selection.

During RNN training, we employed early stopping if the validation performance failed to improve after 200
training epochs. This method effectively prevents RNN overfitting on the training data. According to this criterion,
a more flexible model may demonstrate worse performance than a less flexible one, as the training for the former
could be halted early due to insufficient training data. However, it is expected that the more flexible model would
continue to improve with additional training data (e.g., see Fig. S8).

We note that, in the rich-data situation, this training-validation-test split in (nested) cross-validation is better than
the typical usage of Akaike information criteria (AIC)55, corrected AIC (AICc)56, or Bayesian information criteria
(BIC)57 in cognitive modeling, due to the following reasons58: the (nested) cross-validation provides a direct and
unbiased estimate of the expected extra-sample test error, which reflects the generalization performance on new
data points with inputs not necessarily appearing in the training dataset; in contrast, AIC, AICc, and BIC can only
provide asymptotically unbiased estimates of in-sample test error under some conditions (e.g., models are linear
in their parameters), measuring the generalization performance on new data points with inputs always appearing
in the training dataset (the labels could be different from those in the training dataset due to noise). Furthermore,
in contrast to regular statistical models, neural networks are singular statistical models with degenerate Fisher
information matrices. Consequently, estimating the model complexity (the number of effective parameters, as
used in AIC/AICc/BIC) in neural networks requires estimating the real log canonical threshold59, which falls
outside the scope of this study.

Estimating the dimensionality of behavior

For each animal, we observed that the predictive performance of RNN models initially improves and then
saturates or even declines as the number d of dynamical variables increases. To operationally estimate the
dimensionality d∗ of behavior, we implemented a statistical procedure that satisfies two criteria: (1) the RNN
model with d∗ dynamical variables significantly outperforms all RNN models with d < d∗ dynamical variables
(using a significance level of 0.05 in the t-tests of predictive performance conducted over outer folds); (2) any
RNN model with d′ (d′ > d∗) dynamical variables does not exhibit significant improvement over all RNN models
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with d < d′ dynamical variables.

Our primary objective is to estimate the intrinsic dimensionality (reflecting the latent variables in the data-
generating process), not the embedding dimensionality60. However, it is important to consider the practical
limitations associated with the estimation procedure. For instance, RNN models may fail to uncover certain
latent variables due to factors such as limited training data or variables operating over very long time scales,
leading to an underestimation of d∗. Additionally, even if all d∗ latent variables are accurately captured, the RNN
models may still require d ≥ d∗ dynamical variables to effectively and losslessly embed d∗-dimensional dynamics,
particularly if they exhibit high nonlinearity, potentially resulting in an overestimation of d∗. A comprehensive
understanding of these factors is crucial for future studies.

Knowledge distillation

We employ the knowledge distillation framework35 to fit models to individual subjects, while simultaneously
leveraging group data: first fitting a teacher network to data from multiple subjects, and then fitting a student
network to the outputs of the teacher network corresponding to an individual subject.

Teacher network
In the teacher network (TN), each subject is represented by a one-hot vector. This vector projects through a fully
connected linear layer into a subject-embedding vector esub, which is provided as an additional input to the RNN.
The TN uses 20 units in its hidden layer and uses the same output layer and loss (cross-entropy between the
next-trial action and the predicted next-trial action probability) as in previous GRU models.

Student network
The student network (SN) has the same architecture as previous tiny GRUs. The only difference is that, during
training and validation, the loss is defined as cross-entropy between the next-trial action probability provided by
the teacher and the next-trial action probability predicted by the student:

L = −
Nsession∑
n=1

Tn∑
t=1

Na∑
a=1

PrT N [at = a|past observations] log PrSN [at = a|past observations], (49)

where Nsession is the number of sessions, Tn is the number of trials in session n, and Na is the number of actions
(Na = 2 in our tasks).

Training, validation, and test data in knowledge distillation for the mouse in the Akam dataset
To study the influence of the number of training trials from one representative mouse on the performance of
knowledge distillation, we employed a procedure different from nested cross-validation. This procedure splits the
data from animal M into two sets. The first set consisted of 25% of the trials and was used as a hold-out M-test
dataset. The second set consisted of the remaining 75% trials, from which smaller datasets of different sizes were
sampled. From each sampled dataset, 90% of the trials were used for training (M-training dataset) and 10% for
validation (M-validation dataset). Next, we split the data from all other animals, with 90% of the data used for
training (O-training dataset) and 10% for validation (O-validation dataset).

After dividing the datasets as described above, we trained the models. The solo GRUs were trained to predict
choices on the M-training dataset and selected on the M-validation dataset. The teacher GRUs were trained to
predict choices on the M- and O-training datasets and selected on the M- and O-validation datasets. The number
of embedding units in the teacher GRUs was selected based on the M-validation dataset. The student GRUs were
trained on the M-training dataset and selected on the M-validation dataset, but with the training target of action
probabilities provided by the teacher GRUs. Here the student GRUs and the corresponding teacher GRUs were
trained on the same M-training dataset. Finally, all models were evaluated on the unseen M-test data.

When training the student GRUs, due to symmetry in the task, we augment the M-training datasets by flipping
the action and second-stage states, resulting in an augmented dataset that is four times the size of the original one,
similar to30. One key difference between our augmentation procedure and that of30 is that the authors augmented
the data for training the group RNNs, where the potential action bias presented in the original dataset (and other
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related biases) becomes invisible to the RNNs. In contrast, our teacher RNNs are trained only on the original
dataset, where any potential action biases can be learned. Even if we augment the training data later for the
student networks, the biases learned by the teacher network can still be transferred into the student networks. In
addition to direct augmentation, simulating the teacher network can be another method to generate pseudo-data.
The benefit of these pseudo-data was discussed in model compression61.

Protocols for training, validating, and testing models in human datasets

Interspersed split protocol

In the three human datasets, each subject only performs one block of 100-200 trials. In the standard practice of
cognitive modeling, the cognitive models are trained and tested on the same block, leading to potential overfitting
and exaggerated performance. While it is possible to directly segment one block into three sequences for training,
validation, and testing, this might introduce undesired distributional shifts in the sequences due to the learning
effect.

To ensure a fair comparison between RNNs and cognitive models, here we propose a new interspersed split
protocol to define the training, validation, and testing trials, similar to the usage of goldfish loss to prevent the
memorization of training data in language models62. Specifically, we randomly sample without replacement
∼ 75% trial indexes for training, ∼ 12.5% trial indexes for validation, and ∼ 12.5% trial indexes for testing
(three-armed reversal learning task: 120/20/20; four-armed drifting bandit task: 110/20/20; original two-stage
task: 150/25/25). We then feed in the whole block of trials as the model’s inputs, obtain the output probabilities
for each trial, and calculate the training, validation, and testing losses for each set of trial indexes, separately.
This protocol guarantees the identical distribution between three sets of trials.

One possible concern is whether the test data is leaked into the training data in this protocol. For instance, the
models are trained on the input sequence ((a1, r1), (a2, r2), (a3, r3)) to predict a4 and later tested on the
input sequence ((a1, r1), (a2, r2)) to predict a3. In this scenario, while the models see a3 in the input during
training, they never see a3 in the output. Thus, models are not trained to learn the input-output mapping from
((a1, r1), (a2, r2)) to a3, which is evaluated during testing. We confirmed that this procedure prevents data
leakage on artificially generated choices (Fig. S38).

Cross-subject split protocol

In addition to the interspersed split protocol, it is possible to train the RNNs on a proportion of subjects and
evaluate them on held-out subjects (i.e., zero-shot generalization), a cross-subject split protocol. To illustrate
this protocol, we first divided all subjects into 6 folds of cross-validation. The teacher network was trained and
validated using 5 folds and tested on the remaining 1 fold. For each subject in the test fold, because each subject
only completed one task block, student networks are trained on the action-augmented blocks (to predict the
teacher’s choice probabilities for the subject), validated on the original block (to predict the teacher’s choice
probabilities for the subject), and tested on the original block (to predict actual choices of the subject). By design,
both teacher networks and student networks will not overfit the subjects’ choices in the test data. The cognitive
models were trained and validated using 5 folds and tested on the remaining 1 fold. We presented the results in
Fig. S39).

Phase portraits

Models with d = 1
Logit. In each trial t, a model predicts the action probabilitiesPr(at = A1) andPr(at = A2). We define the logit
L(t) (log-odds) at trial t as L(t) = log (Pr(at = A1)/ Pr(at = A2)). When applied to probabilities computed via
softmax, the logit yields L(t) = log

(
eβo

(1)
t /eβo

(2)
t

)
= β(o(1)

t − o
(2)
t ), where o

(i)
t is the model’s output for action

at = Ai before softmax. Thus, the logit can be viewed as reflecting the preference for action A1 over A2: in RNNs,
the logit corresponds to the score difference o

(1)
t − o

(2)
t ; in model-free and model-based RL models, the logit is

proportional to the difference in first-stage action values Qt(A1)−Qt(A2); in Bayesian inference models, the
logit is proportional to the difference in latent-state probabilities Prt(h = 1)− Prt(h = 2) = 2 Prt(h = 1)− 1.
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Logit change. We define the logit change, ∆L(t), in trial t as the difference between L(t + 1) and L(t). In
one-dimensional models, ∆L(t) is a function of the input and L(t), forming a vector field.

Stability of fixed points. Here we derive the stability of a fixed point in one-dimensional discrete dynamical
systems. The system’s dynamics update according to:

Lnext = fI(L), (50)

where L is the current-trial logit, Lnext is the next-trial logit, and fI is a function determined by input I (omitted
for simplicity). At a fixed point, denoted by L = L∗, we have

L∗ = f(L∗). (51)

Next, we consider a small perturbation δL around the fixed point:

Lnext = f(L∗ + δL)
≈ f(L∗) + f ′(L∗)δL

= L∗ + f ′(L∗)δL.

(52)

The fixed point is stable only when −1 < f ′(L∗) < 1. Because the logit change ∆L is defined as ∆L = g(L) =
f(L)− L, we have the stability condition −2 < g′(L∗) < 0.

Effective learning rate and slope. In the one-dimensional RL models with prediction error updates and
constant learning rate α, we have

g(L) = α(L∗ − L), (53)

where g(L) is the logit change at L. In general, to obtain a generalized form of g(L) = α(L)(L∗ − L) with a
non-constant learning rate, we define the effective learning rate α(L) at L relative to a stable fixed point L∗ as:

α(L) = −g(L)− g(L∗)
L− L∗ = − g(L)

L− L∗ . (54)

At L∗, α(L∗) is the negative slope −g′(L∗) of the tangent at L∗. However, for general L ̸= L∗, α(L) is the
negative slope of the secant connecting (L, g(L)) and (L∗, 0), which is different from −g′(L).

We have

α′(L)δL ≈ α(L + δL)− α(L)

= g(L)
L− L∗ −

g(L + δL)
L + δL− L∗

≈ −α(L)− g′(L)
L− L∗ δL.

(55)

Letting δL go to zero, we have:
α(L) = −g′(L)− α′(L)(L− L∗), (56)

which provides the relationship between the effective learning rate α(L) and the slope of the tangent g′(L).

Models with d > 1
In models with more dynamical variables, ∆L(t) is no longer solely a function of the input and L(t) due to added
degrees of freedom. In these models, the state space is spanned by a set of dynamical variables, collected by the
vector F (t). For example, the action value vector is the F (t) = (Qt(A1), Qt(A2))T in the two-dimensional RL
models. The vector field ∆F (t) can be defined as ∆F (t) = F (t+1)−F (t) = (Qt+1(A1)−Qt(A1), Qt+1(A2)−
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Qt(A2))T , a function of F (t) and the input in trial t.

Dynamical regression

For one-dimensional models with states characterized by the policy logit L(t), we can approximate the one-step
dynamics for a given input with a linear function, i.e., ∆L ∼ β0 + βLL. The coefficients β0 and βL can be
computed via linear regression, or “dynamical regression” given its use in modeling dynamical systems. Here, β0
is similar to the preference setpoint and βL is similar to learning rates in RL models.

For models with more than one dynamical variable, we can use a similar dynamical regression approach to extract
a first-order approximation of the model dynamics via linearizations of vector fields. To facilitate interpretation,
we consider only d-dimensional RNNs with a d-unit diagonal readout layer (denoted by Li(t) or Pi(t); a non-
degenerate case).

For tasks with a single choice state (Supplementary Results 1.4, 1.5), the diagonal readout layer means that d is
equal to the number of actions. Thus Pi(t) corresponds to the action preference for Ai at trial t (before softmax).
A special case of Pi(t) is equal to βVt(Ai) in cognitive models. We use ∆Pi(t) = Pi(t + 1)− Pi(t) to denote
preference changes between two consecutive trials. For the reversal learning task and three-armed reversal
learning task, we consider ∆Pi(t) as an (approximate) linear function of P1(t), ..., Pd(t) for different (discrete)
task inputs (i.e., ∆Pi ∼ β

(Pi)
0 +

∑d
j=1 β

(Pi)
Pj

Pj). For the four-armed drifting bandit task, we further include the

continuous reward r as an independent variable (i.e., ∆Pi ∼ β
(Pi)
0 + β

(Pi)
R r +

∑d
j=1 β

(Pi)
Pj

Pj).

For the original two-stage task, where there are 3 choice states (Supplementary Result 1.6), we focus on the
3-dimensional model with a diagonal readout layer. Here, L1, L2, and L3 represent the logits for A1/A2 at the
first-stage state, logits for B1/B2 at the second-stage state S1 and logits for C1/C2 at the second-stage state S2,
respectively. We similarly consider the regression ∆Li ∼ β

(Li)
0 +

∑3
j=1 β

(Li)
Lj

Lj).

Collecting all the β
(Li)
Lj

(similarly for β
(Pi)
Pj

) regression coefficients for a given input condition, we have the
input-dependent state-transition matrix A, akin to the Jacobian matrix of nonlinear dynamical systems:

A =


β

(L1)
L1

β
(L1)
L2

· · · β
(L1)
Ld

β
(L2)
L1

β
(L2)
L2

· · · β
(L2)
Ld...

... . . . ...
β

(Ld)
L1

β
(Ld)
L2

· · · β
(Ld)
Ld


Note that the model-free RL models in these tasks are fully characterized by the collection of all regression
coefficients in our dynamical regression.

Symbolic regression

Apart from the two-dimensional vector field analysis, symbolic regression is another method for discovering
concise equations that summarize the dynamics learned by GRUs. To accomplish this, we used PySR63 to search
for simple symbolic expressions of the updated dynamical variables as functions of the current dynamical variables
for each possible input I (for the GRU with d = 2 and a diagonal readout matrix). Ultimately, this process revealed
a model-free strategy featuring the “drift-to-the-other” rule.

Model validation via behavior-feature identifier

We proposed a general and scalable approach based on a “behavior-feature identifier”. In contrast to conventional
model recovery, this approach provides a model-agnostic form of validation to identify and verify the hallmark of
the discovered strategy in the empirical data.

For a given task, we collect the behavioral sequences generated by models that exhibit a specific feature (positive
class) and by those that do not (negative class). An RNN identifier is then trained on these sequences to discern
their classes. Subsequently, this identifier is applied to the actual behavioral sequences produced by subjects.
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We built identifiers to distinguish between the GRU models (positive class) and model-free RL models (negative
class) in the reversal learning task, and between the GRU models (positive class) and model-based RL models
(negative class) in the two-stage task. We presented the results in Fig. S27).

Meta-reinforcement learning models

We trained meta-RL agents on the two-stage task (common transition: Pr(S1|A1) = Pr(S2|A2) = 0.8, rare
transition: Pr(S2|A1) = Pr(S1|A2) = 0.2; see Fig. S25) implemented in NeuroGym64. Each second-stage
state leads to a different probability of a unit reward, with the most valuable state switching stochastically
(Pr(r = 1|S1) = 1−Pr(r = 1|S2) = 0.8 or 0.2 with a probability of 0.025 on each trial). There are three periods
(discrete time steps) on one trial: Delay 1, Go, and Delay 2. During Delay 1, the agent receives the observation
(choice state S0 and a fixation signal), and the reward (1 or 0) from second-stage states on the last trial. During
Go, the agent receives the observation of the choice state and a go signal. During Delay 2, the agent receives the
observation of state S1/S2 and a fixation signal. If the agent does not select action A1 or A2 during Go or select
action F (Fixate) during Delay periods, a small negative reward (-0.1) is given. The contributions of second-stage
states, rewards, and actions on networks are thus separated in time.

The agent architecture is a fully connected, gated recurrent neural network (long short-term memory51) with 48
units24. The input to the network consists of the current observation (state S0/S1/S2 and a scalar fixation/go
signal), a scalar reward signal of the previous time step, and a one-hot action vector of the previous time step.
The network outputs a scalar baseline (value function for the current state) serving as the critic and a real-valued
action vector (passed through a softmax layer to sample one action from A1/A2/F) serving as the actor. The
agents are trained using the Advantage Actor-Critic RL algorithm65 with the policy gradient loss, value estimate
loss, and entropy regularization. We trained and analyzed agents for five seeds. Our agents obtained 0.64 rewards
on average on each trial (0.5 rewards for chance level), close to optimal performance (0.68 rewards obtained by an
oracle agent knowing the correct action).
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