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Brains learn tasks via experience-driven differential adjustment of
their myriad individual synaptic connections, but the mechanisms
that target appropriate adjustment to particular connections
remain deeply enigmatic. While Hebbian synaptic plasticity,
synaptic eligibility traces, and top-down feedback signals surely
contribute to solving this synaptic credit-assignment problem,
alone, they appear to be insufficient. Inspired by new genetic
perspectives on neuronal signaling architectures, here, we present
a normative theory for synaptic learning, where we predict that
neurons communicate their contribution to the learning outcome
to nearby neurons via cell-type–specific local neuromodulation.
Computational tests suggest that neuron-type diversity and
neuron-type–specific local neuromodulation may be critical pieces
of the biological credit-assignment puzzle. They also suggest algo-
rithms for improved artificial neural network learning efficiency.

credit assignment | cell types | neuromodulation | neuropeptides | spiking
neural network

Mathematical “gradient backpropagation” algorithms (1, 2)
now solve the problem of credit assignment for artificial

neural networks effectively enough to have ushered in an era
of shockingly powerful artificial intelligence. Nevertheless, their
exact implementation on advanced tasks can be extremely costly
in terms of computation, storage, and circuit interconnects (3),
driving a search for more efficient credit-assignment algorithms,
such as approximate gradient methods (4–7), which, e.g., limit
temporal contributions to learning (8) or exploit neuromorphic
methods to improve energy efficiency (9, 10). Neuroscientists
meanwhile recognize that exact gradient backpropagation de-
mands precise, but nonlocal, communication that is implausible
in the biological brain and instead propose approximate learning
rules that sidestep the demands. These have shown impressive
performance, largely in feedforward networks (11–20), with re-
cent extensions to the more enigmatic case of recurrently con-
nected networks (21, 22). This said, biological neural networks
feature a spectacular array of dynamical and signaling mecha-
nisms, whose potential contributions to credit assignment have
not yet been considered. Taken together, this creates a remark-
able need and opportunity for bio-inspired network-learning
algorithms to advance both neuroscience and computer science
research. Here, we follow this path and present evidence for a
previously unrecognized temporal credit-assignment mechanism
inspired by recent advances in brain genetics.

Prior efforts to address the biology of synaptic credit assign-
ment have focused on Hebbian spike-timing-dependent synap-
tic plasticity and “top-down” (TD) signaling by dopamine (13,
23–25), a monoamine neuromodulator released from axons that
ramify extensively throughout the brain from small midbrain
nuclei. All cellular actions of dopamine are exerted by activation
of G protein-coupled receptors (GPCRs), which can strongly
modulate the timing dependence of Hebbian synaptic plastic-
ity (25–27). While such actions clearly contribute to synaptic
credit assignment, and recent evidence suggests spatiotemporal
sculpting of the dopaminergic signal (28, 29), biologically plausi-
ble models based on these principles significantly underperform

gradient backpropagation algorithms, let alone the brain, and
many gaps in our understanding remain (12, 13).

Transcriptomic studies have now revealed that genes encoding
hundreds of other modulatory GPCRs, including those selective
for serotonin, norepinephrine, acetylcholine, amino acids, and
the many neuropeptides (NPs), are expressed throughout the
brain. Downstream actions of these other GPCRs on nerve mem-
branes and synapses are similar to those of dopamine receptors,
suggesting that they, too, could participate in credit assignment.
Single-cell RNA-sequencing studies now show also, however,
that expression of this diverse array of GPCR genes is highly
neuron-type–specific (30). Furthermore, virtually every neuron
expresses one or more GPCR-targeting NP ligands, again, in
highly neuron-type–specific patterns. These new single-cell tran-
scriptomic data thus suggest the prospect of an interplay between
synaptic and local peptidergic modulatory networks that could
help to guide credit assignment.

The new genetic results have led us to formulate a theory of
network learning that casts neuronal networks in terms of inter-
acting synaptic and modulatory connections, with discrete neu-
ron types as common nodes. To explore this normative theory, we
have instantiated the simplified computational model schema-
tized by Figs. 1 and 2. The model comprises both dopamine-
like TD and NP-like local modulatory signaling, shown with a
network of arrow-spray glyphs connecting populations of cells, in
addition to synaptic transmission via discrete spikes, shown with a
network of lines connecting individual cells (Fig. 1A). Our model
has multiple neuron types distinguished by both their synaptic
connectivity and differential expression of modulatory ligand–
receptor pairs that regulate Hebbian synaptic plasticity (Fig. 1 B
and C). Our proof-of-concept implementation shows significant
improvements over previous literature. The key development is
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Fig. 1. MDGL network schema. (A) Six diametrically paired circles (labeled A–F) represent six types of spiking neurons, each defining a population of units
on the basis of differential synaptic and modulatory connection and affinity statistics. Inhibitory and excitatory synaptic connections are cartooned here by
faint curving lines, while both TD and local modulatory connections are indicated by arrow-spray glyphs representing secretion of TD and local modulatory
ligands and activation of modulatory GPCRs, all differentially color coded as captioned. Learning tasks are defined by temporal patterns of the indicated spike
inputs and outputs, as described in Fig. 3. (B) Six cell types based on excitatory vs. inhibitory synaptic actions, regular vs. adaptive spiking, and internal-only
vs. output connectivity. Excitatory and inhibitory cells are further distinguished by which NP-like modulators they secrete, while only output cells are directly
responsive to the dopamine-like TD modulator. (C) Cell-type–specific channels of local modulatory signaling established by activity-dependent secretion of
two different modulatory ligands and two differentially selective receptors. (D) An error/reward-encoding TD signal impacts target neurons and synapses
both 1) directly via activity-dependent secretion of TD ligand and 2) indirectly via activity-dependent secretion of local modulatory ligands.

that neurons utilize modulatory networks to actively broadcast
their own contribution to the network performance to nearby
neurons via cell-type–specific local neuromodulation (Figs. 1D
and 2C)—specifically, each cell broadcasts its own direct contri-
bution to the overall task “error” signal. This is a major departure
from more global roles for modulators previously proposed,
such as carrying error or reward signals. From a neuroscience

perspective, our study proposes a model of cortical learning
shaped by the interplay of local modulatory signaling carrying
credit-assignment information and synaptic transmission and po-
tentially brings us closer to understanding biological intelligence.
From a computer science perspective, our method offers a sig-
nificantly smaller number of interconnects for on-chip neuro-
inspired artificial intelligence.
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Fig. 2. Modulator-based neo-Hebbian local learning rules. (A) A conventional three-factor local learning rule models action of a “third,” TD GPCR-
activating ligand (e.g., dopamine) that governs synapse reweighting (Δw) in proportion to temporal coincidence of the two Hebbian factors (presynaptic
and postsynaptic activity). Such models generally require a lingering ET to sustain information about Hebbian coincidence until arrival of the TD signal.
(B) Embracing new genetic evidence for local GPCR-based modulatory machinery, the MDGL theory introduces additional factors that allow spike-dependent
secretion of NP-like local modulators (LMe from excitatory neurons and LMi from inhibitory neurons) to participate in governing synapse reweighting (Δw)
(35). As indicated here and in Fig. 1, the present MDGL model comprises both directly TD-recipient cells (types D–F; B, Left) and non–TD-recipient cells
(types A–C; B, Right). Synapse reweighting requires combined GPCR activation with a persistent ET for all cell types, but GPCRs are activated on non–TD-
recipient cells only by the local modulatory ligands. (C) Propagation of TD error/reward signal via spike-dependent secretion of local modulators from both
excitatory and inhibitory cell types to cells lacking direct access to TD modulatory signal. For simplicity, this schema represents only the four subscripted
synapses/weights, while the full model represents many more synaptic inputs per cell.

Results
Overview of Multidigraph Learning in Recurrent Spiking Neural
Networks. Gradient descent on the task error (or negative
reward) E can iteratively adjust synaptic weights to learn the
task. However, computing the error gradient in a recurrent
network requires unwrapping the dynamics over time because
weights influence future activity in synaptically far-away neurons.
The Backpropagation Through Time (BPTT) and Real-Time
Recurrent Learning (RTRL) algorithms calculate this error
gradient by allowing cell-specific, nonlocal communication
among synapses in adjusting their weights; for example, in
Fig. 1A, the synapse between the uppermost cells labeled C and
E would receive information about the many synaptic weights
and cell activities downstream of that cell E. They also require
either noncausal dependencies (BPTT) or infeasible memory
scalability (RTRL) (detailed in Methods, Eqs. 2–17 and see
Fig. 6). Faced with this, a key step in state-of-the-art rate-based
(21) and spike-based (ref. 22; “e-prop”) biologically plausible
learning algorithms is to drop the nonlocal terms so that the
activities of only the presynaptic and postsynaptic neurons would
be needed to update the weight of the synapse between them.

As illustrated in Fig. 2A, the resulting three-factor local learning
rules represent this presynaptic and postsynaptic information
as a time-dependent eligibility trace (ET) and combine it with
TD signals to update the weight Δw of each synapse (31–34)
(detailed further in Methods; see Figs. 5B and 6 D, ii; see also
ref. 7).

We propose a role for cell-type-based modulatory signals in
recovering a key part of the error-gradient information that
is lost by dropping nonlocal terms in such conventional three-
factor rules. We describe this in terms of the update Δw to
a synapse p|q from neuron q to neuron p with strength w. To
begin, we consider the contributions to the error gradient of
those neurons that are one synapse away from the postsynaptic
site (i.e., neurons j such that synapse j |p exists) (illustrated in
Methods; see Fig. 5C). We find that this set of contributions can
be realized by activity-dependent signals emitted by neurons j and
the ET for the synapse p|q (Eq. 19). Intriguingly, this signal is
precisely neuron j’s contribution to the task error, thereby taking
into account the indirect contribution of the synapse p|q to the
network performance via neurons j for more accurate synaptic
credit assignment.
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This initial form, however, still requires the knowledge of cell-
specific signals from cells j not participating in the synapse of
interest. We further make the key observation that when just the
contributions from cells up to two synapses away are considered,
those terms only appear under a sum: The mechanism updating
the synapse p|q does not need to know the contributions from
individual “indirect” neurons j, as their sum suffices. This obser-
vation is critical in elucidating a role for diffusive neuromodula-
tory signaling in carrying this summed, indirect signal and thus
serving as an additional factor in synaptic plasticity.

To fully remove cell-specific dependencies in the indirect sig-
nal, we further approximate the cell-specific weights wjp that
it contains with the cell-type–specific terms wαβ = 〈wjp〉j∈α,p∈β

when postsynaptic cell j belongs to type α and presynaptic cell p
belongs to type β. We postulate thatwαβ represents the affinity of
GPCRs expressed by cells of type β to peptides secreted by cells
of type α (Fig. 1C and Methods, Eq. 20; see Fig. 5D), and this
cell-type–specific variable is genetically determined. The local
diffusion assumption (35) suggests a further idealization, where
this type of signaling is registered only by local synaptic partners
and therefore preserves the connectivity structure ofwjp (Eq. 23).
It is also worth noting that the rich set of ligand and receptor types
with different downstream actions (30) can support that wαβ is a
signed term.

Bringing these together, we have the learning rule illustrated
in Fig. 2B. The weight update is given as

Δwpq ∝
(

TDp +
∑
α∈C

LMαβ

)
× ETpq

LMαβ = (affinity wαβ) ×
∑

j∈α,p→j

TDj × (activity j )︸ ︷︷ ︸
modulatory signal j

, [1]

where neuron j is of type α and neuron p is of type β, p → j
denotes that synapse j |p exists, C denotes the set of neuronal cell
types, TDp denotes the TD signal received by p, ETpq denotes the
ET for p|q , affinity wαβ denotes the effect of ligands secreted
by class α neurons on class β receptors, and LMαβ denotes
the contribution of local modulation to synaptic plasticity that
has been ignored so far. Thus, our update rule suggests a set
of modulatory terms that combine with the ET in order to
more accurately assign credit across a network when updating its
synapses. Neurons that receive TD feedback regarding their role
on the circuit goals propagate this information to nearby synaptic
partners via cell-type–specific local modulatory signals (Fig. 2C;
see also Eq. 24 for details). Specifically, the modulatory signal j
in Eq. 1 is precisely the contribution of cell j to the task error, as
measured by the (partial) derivative of the error with respect to
cell j’s membrane potential. Moreover, this framework proposes
that cell-type–specific GPCR affinities allow these local signals
to be informative without the need to know precise synaptic
weights. The ability to assess the indirect impact of neurons on
the overall loss via such communication is critical to accurate
synaptic reweighting and improved performance over existing
biologically plausible rules, as we demonstrate next (Fig. 3 and
SI Appendix, Fig. S2).

In summary, we have proposed a rule for updating a synapse
wpq , which we refer to as the multidigraph learning rule, or
MDGL, where the Hebbian ET is compounded not only with
TD learning signals—as in modern biologically plausible learning
rules (31, 32)—but also with cell-type–specific, diffuse modula-
tory signals.

Simulation Framework for Testing Multidigraph Learning in Recur-
rent Spiking Neural Networks. To test the MDGL formulation,
we study its performance in recurrent spiking neural networks
(RSNNs) learning well-known tasks involving temporal process-
ing: pattern generation, delayed match to sample, and evidence

accumulation. We use two main cell classes, inhibitory (I) and ex-
citatory (E) cells, and obey experimentally observed constraints
(e.g., refractoriness, synaptic delay, and connection sparsity). We
further endow a fraction of the E cells with threshold adapta-
tion (37). This mimics the hierarchical structure of cell types
(38) through the simple example of two main cell types, one
of which has two subtypes (E cells with and without threshold
adaptation). The existence/lack of synaptic connections to output
neurons further divides each population into two, thus bringing
the cell type tally to six in our conceptual model (Fig. 1). Our
implementation does not involve rapid and random formation of
new synapses after each experience (39), further increasing its
biological plausibility.

We compare the learning performance of MDGL (Fig. 2B)
with the state-of-the-art biologically plausible learning rule
[e-prop (22)] (Fig. 2A and SI Appendix, Fig. S1). As a three-factor
rule, e-prop does not involve local cell-type–specific signaling
and restricts the update to depend only on presynaptic and
postsynaptic activity, as well as a TD instructive signal. To provide
a lower bound on task error, we also compare performance with
BPTT (see Fig. 5A), which uses exact error gradients to update
weights. These learning rules are further illustrated in Methods;
see Fig. 5 A, B, and D.

Multidigraph Learning Guides Temporal Credit Assignment in Bench-
mark Tasks. We first study pattern generation with RSNNs, where
the aim is to produce a one-dimensional target output, gen-
erated from the sum of five sinusoids, given a fixed Poisson
input realization (40). We change the target output and the
Poisson input along with the initial weights for different training
runs (SI Appendix, Fig. S3A) and illustrate the learning curve
in Fig. 3A and SI Appendix, Fig. S4A across five such runs. We
observe that MDGL performs significantly better than e-prop.

Next, to study how RSNNs can learn to process discrete cues
that impact delayed rewards, we consider a delayed match to
sample task (41). Here, two cue alternatives are encoded by
the presence/absence of input spikes. The RSNN is trained to
remember the first cue and learn to compare it with the second
cue delivered at a later time (SI Appendix, Fig. S3B). Fig. 3B
and SI Appendix, Figs. S4B and S5 display the learning curve for
novel inputs. We observe that the same general conclusions as for
the pattern-generation task hold; introducing cell-type–specific
neuromodulation significantly improves learning outcomes.

Finally, we study an evidence-accumulation task (29), which in-
volves integration of several cues to produce the desired output at
a later time: A simulated agent moves along a path while encoun-
tering a series of sensory cues presented either on the right or
left side of a track (Fig. 3C and SI Appendix, Figs. S3C and S4C).
When it reaches a T-junction, it decides if more cues were
received on the left or right. We test our learning rule to see
if the addition of diffuse modulatory signals can indeed bring
the learning curve closer to BPTT, without relying on rapid and
random rewiring (39). Fig. 3C demonstrates that the perfor-
mance trends of the previous two experiments continue to hold.
SI Appendix, Fig. S6 illustrates that without threshold adaptation
and recurrent connectivity, the network cannot significantly de-
crease loss and thus is unable to learn this task. In line with
these experiments, gradients approximated by MDGL are more
similar to the exact gradients (SI Appendix, Fig. S2), shedding
light on its superior performance. We also observe that MDGL’s
performance depends only weakly on the hypothesized link (Eq.
23) between abstract cell-type-based connectivities and modu-
latory receptor affinities (SI Appendix, Fig. S7), enabling flexible
implementations in vivo and in silico.

We conducted further studies to better quantify how a model’s
network architectures impact the performance of MDGL relative
to other learning rules. First, as depicted in Figs. 1 and 2, recall
that only output-projecting neurons receive TD signals, which is a
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Fig. 3. Cell-type–specific neuromodulation guides learning across multiple tasks. (A) Learning to produce a time-resolved target output pattern.
(B) A delayed match to sample task, where two cue alternatives are represented by the presence/absence of input spikes. (C) An evidence-accumulation task
(29, 36). (Lower) Addition of cell-type–specific modulatory signals improves learning outcomes across tasks. In line with these results, SI Appendix, Fig. S2
shows that gradients approximated by MDGL are more similar to the exact gradients than those approximated by e-prop. Solid lines/shaded regions: mean/SD
of loss curves across runs (Methods).

consequence of gradient-based learning (22), and only these neu-
rons secrete local neuromodulators (i.e., nonzero LM in Eq. 1).
Consistent with this, we found that MDGL is most advantageous
relative to e-prop in cases where relatively small fractions of
recurrently connected neurons are output projecting, as we may
expect in many biological networks (SI Appendix, Fig. S8). In
these “sparse-output” cases, while many neurons do not receive
learning signals in the e-prop formulation, MDGL still allows
these neurons to receive such signals via local modulation. The
result is more accurate approximation of gradients and more
efficient learning. Next, SI Appendix, Fig. S9 demonstrates the
effectiveness of using the cell-type–specific, rather than more
precise cell-specific, weights of the modulatory signals within the
MGDL framework. We find that the cell-type-based approxima-
tion does degrade performance, but that this effect is relatively
minor.

Finally, we note that while our proof-of-concept implemen-
tation assumes symmetric feedback weights for the output con-
nections (i.e., the same output projection weight is used during
the computation of TD feedback signal), the random feedback-
alignment approach (14) or approximating the feedback weights
using the same cell-type-based calculations in Eq. 23 both offer
improved biological plausibility for this single-layer feedforward
problem.

Spatiotemporal Extent of Multidigraph Learning. Owing both to ex-
tracellular ligand-diffusion biophysics and the complex metabolic
nature of GPCR-based signal transduction, neuromodulation
time scales are generally much longer than those of conventional
synaptic transmission (42). Since our model does not explicitly
limit the communication bandwidths of either channel, compar-
ing the frequency content offers an important check for biological
plausibility. It also provides a test of our approximation that the
summation over cells in Eq. 19 acts as a smoothing operation.
Fig. 4 A–C and SI Appendix, Fig. S10 demonstrate that the modu-
latory input indeed has significantly lower frequency content than
the synaptic input for all three tasks.

The distance ranges of diffusive modulatory signals remain
uncertain (43). For most of the simulations described here (those
according to Eq. 23), modulatory signaling was limited to synap-
tically coupled pairs (a token of anatomic proximity), represent-
ing an idealization of the short-range signaling case. We also

examined the opposite extreme case, where modulatory signals
extend to all cells (independent of any anatomic proximity),
referring to this nonlocal form of MDGL as NL-MDGL. This
would make wαβ a worse approximation to wjp , presumably
degrading the quality of the gradient estimate. Indeed, removing
the locality of modulatory signals degrades performance while
remaining superior to that in the absence of modulatory signaling
(Fig. 4 D–F)—suggesting that the biophysics of diffusive modu-
latory signaling may condition the efficiency of synaptic learning.

Discussion
Here, we have presented a multidigraph theory and instantiated
simple models based on this theory that explicitly represent di-
verse neuron types classified by their synaptic and neuromodula-
tory connections. Simulations based on these simple models show
that diverse signaling modes can facilitate credit assignment and
enhance learning. A wealth of new genetic data provide strong
support for the biological plausibility of this array of signaling
modes and furthermore argue strongly that most or all modern
eumetazoans (all multicellular animals except sponges) comprise
numbers of cell types and modulatory signals far in excess of
those represented in our simulations (43). We believe therefore
that conceiving of neuronal networks as multidigraphs, involving
multiple modulatory and synaptic signals, integrated by discrete
cell-type nodes, may offer fruitful paths toward the understand-
ing of synaptic credit assignment in biological neuronal networks.
This multidigraph theory may also lead to more computationally
efficient local learning rules for neural-network-based artificial
intelligence.

In addition to established elements of Hebbian plasticity, ETs,
and reward feedback signals, our normative theory posits im-
portant roles for neuronal cell-type diversity and local neuro-
modulatory communication in enabling efficient synaptic credit
assignment. In particular, our findings predict that neurons se-
crete information about TD feedback signals they receive to
nearby neurons in an activity-dependent and cell-type–specific
manner using local modulation. As a consequence, levels of
local modulatory signals may reflect the learning process. In-
deed, our computational experiments imply that the level of
modulatory input decreases over training and sharply rises in
response to changes in task condition (SI Appendix, Fig. S11). It
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A B C

D E F

Fig. 4. Spatiotemporal characteristics of local neuromodulation. (A–C) Power spectra of modulatory (Mod.input; total cell-type–specific modulatory signal
detected by each cell—Eq. 21) and synaptic inputs (Syn.input; total input received through synaptic connections by each cell—Eq. 22) are compared after
learning for all tasks. Solid lines denote the average, and shaded regions show the SD of power spectrum across recurrent cells. Raw input traces are included
in SI Appendix, Fig. S10. (D–F) Performance degrades when neighborhood specificity of modulatory signaling (NL-MDGL) is removed so that cell-type–specific
modulatory signals diffuse to all cells in the network without attenuation. Learning with spatially nonspecific modulation still outperforms that without
modulatory signaling (e-prop).

is also interesting to note that phylogenomic studies now suggest
that peptidergic neuromodulation may evolutionarily predate
dopamine signaling (43) and thus may have actually provided the
foundation upon which dopaminergic TD signaling evolved.

The nature of “intermediate” cells (38), whose phenotypes
appear to be a mixture of “pure” cell types, is a key problem
in cell-types research. Our findings may explain the existence of
such phenotypes from a connectivity perspective: While average
connectivities between types remain relatively constant during
training, connectivities of individual cells can deviate significantly
from those averages (SI Appendix, Fig. S12). We hypothesize a
link between abstract cell-type-based connectivities and modu-
latory receptor affinities, where the average synaptic connection
weights between types are taken to be the cell-type–specific mod-
ulatory receptor affinities (Eq. 23). How tightly the individual
synaptic weights and cell-type–specific receptor affinities should
be coupled may be explored in future work. SI Appendix, Fig. S2
indicates that even with imprecise GPCR affinities, MDGL can
still improve gradient approximation, while SI Appendix, Fig. S7
suggests that the effect of imprecise GPCR affinities on the
performance is task-dependent.

Learning rules often explicitly minimize a loss function, and
the error gradient, if available, tells exactly how much each net-
work parameter should be adjusted to reduce this loss function.
Rules that follow this gradient, RTRL and BPTT, are well estab-
lished, but are not biologically plausible and have unmanageably
vast memory storage demands. However, a growing body of
studies have demonstrated that learning rules that only partially
follow the gradient, while alleviating some of these problems
of the exact rules, can still lead to desirable outcomes (44, 45).
An example is the seminal concept of feedback alignment (14),
which rivals backpropagation on a variety of tasks, even using
random feedback weights for credit assignment. In addition, ap-
proximations to RTRL have been proposed (4–9, 21) for efficient
online learning in recurrent neural networks. Our learning rule

has O(N 2) complexity, where N is the number of neurons, which
is less expensive than SnAp-2 that has a storage cost of O(N 3)
(8) (for simplicity, connection sparsity factor is neglected here). It
also outperforms biological learning rules with similar complexity
scale (21, 22). Thus, our model further advances approximated
gradient-based learning methods and continues the line of re-
search in energy-efficient, on-chip learning through spike-based
communications (10, 46). Such efficient approximations of the
gradient computation can be especially important as artificial
networks become ever larger and are used to tackle ever more
complex tasks under both time and energy-efficiency constraints.

Examination of the learning capability of MDGL under a
broader range of tasks and conditions represents a valuable
future avenue. For instance, our preliminary simulations on
modulating the delay period in the match to sample task
(SI Appendix, Fig. S13) suggests that such studies can help reveal
the reasons underpinning the observed animal behavior (47),
as well as limitations of MDGL. In addition, brain cells are
extremely diverse (38, 48) with a matching diversity in the
expression of peptidergic genes (30). Further studies can also
investigate the interplay of task complexity and cell diversity. A
starting point for that could be further dividing inhibitory cells
into subtypes with and without threshold adaptation.

Our work suggests that multiple cell-type–specific, diffuse, and
relatively slow modulatory signals should be considered as pos-
sible bases for credit-assignment computations. Though inspira-
tion for the present work came primarily from new transcriptomic
data on local NP signaling in neocortex (30, 42), it is quite possi-
ble that other cell-type–specific neuromodulators could likewise
contribute to credit assignment. Many of these alternative agents
act, as do NPs, via GPCRs (e.g., the monoamines, amino acids,
acetylcholine, and endocannabinoids), but our multidigraph
template might even apply to other neuronally secreted
neuromodulators, such as the neurotrophins and cytokines, that
act via different classes of receptors (49, 50). While experimental
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tests of such hypotheses have not seemed feasible up until now,
emerging methods for genetically addressed measurement of
various neuromodulatory signals in specific cell types (30, 51)
are now bringing the necessary critical tests within reach (e.g.,
ref. 52).

Methods
Visual Summary of Learning Rules. An overview of our network model and
the mathematical basis of the learning rules used in this work is given in the
beginning of Results. Here, we first present an additional, more detailed
visual illustration of these learning rules in Fig. 5, beginning with the
exact gradient update (Fig. 5A), as for BPTT, and leading from its dramatic
truncation in the e-prop rule (Fig. 5B), to MGDL (Fig. 5 C–E), which partially
recovers gradient information lost in this truncation.
Spiking neuron model. We consider a discrete-time implementation of
RSNNs. The model, as shown in Fig. 6A, denotes the observable states,
i.e., spikes, as zt at time t, and the corresponding hidden states as st . For
leaky integrate-and-fire (LIF) cells, the state st corresponds to membrane
potential, and the dynamics of those states are governed by

zj,t = H(sj,t − vth)

sj,t+1 = η sj,t + (1 − η)

⎛
⎝∑

l �=j

wjl zl,t +
∑

m

wIN
jm xm,t+1

⎞
⎠ − zj,t vth, [2]

where sj,t denotes the membrane potential for neuron j at time t, vth denotes
the spiking threshold potential, η = e−dt/τm denotes the leak factor for
simulation time step dt and membrane time constant τm, wlj denotes the
weight of the synaptic connection from neuron j to l, wIN

jm denotes the
strength of the connection between the input neuron m and neuron j, xt

denotes the external input spike at time t, and H denotes the Heaviside step
function.

Following ref. 22, which implemented adaptive threshold LIF (ALIF) units
(37) and observed that this neuron model improves computing capabilities
of RSNNs relative to networks with LIF neurons only, we also include ALIF
cells in our model. In addition to the membrane potential, ALIF cells have a
second hidden variable, bt , governing the adaptive threshold. The spiking

dynamics of both LIF and ALIF cells can be characterized by the following set
of equations:

sj,t+1 = η sj,t + (1 − η)(
∑
l �=j

wjl zl,t +
∑

p

wIN
jm xm,t+1) − zj,t vth, [3]

zj,t = H(sj,t − Aj,t), [4]

Aj,t = vth + βbj,t , [5]

bj,t = ρbj,t−1 + (1 − ρ)zj,t−1, [6]

where the voltage dynamics in Eq. 3 is the same as Eq. 2. A spike is generated
when the voltage sj,t exceeds the dynamic threshold Aj,t . Parameter β

controls how much adaptation affects the threshold, and state bj,t denotes
the variable component of the dynamic threshold. The decay factor ρ is given
by e−dt/τb for simulation time step dt and adaptation time constant τb,
which is typically chosen on the behavioral task time scale. For regular LIF
neurons without adaptive threshold, one can simply set β = 0.
Network output and loss function. Dynamics of leaky, graded readout
neurons is implemented as

yk,t = κ yk,t−1 + (1 − κ)
∑

j

wOUT
kj zj,t + bOUT

k , [7]

where wOUT
kj denotes the strength of the connection from neuron j to output

neuron k, bOUT
k denotes the bias of the k-th output neuron, κ ∈ (0, 1) defines

the leak, and κ = e−dt/τOUT for output membrane time constant τOUT .
We quantify how well the network output matches the desired target

using error function E:

E =

{
1
2

∑
k,t(y

∗
k,t − yk,t)

2, for regression tasks

−
∑

k,t π
∗
k,t logπk,t , for classification tasks

, [8]

where y∗
k,t is the time-dependent target, π∗

k,t is the one-hot encoded tar-
get, and πk,t = softmaxk(y1,t , . . . , yNOUT ,t) = exp(yk,t)/

∑
k′ exp(yk′ ,t) is the

predicted category probability. We provide all simulation and training pa-
rameters in SI Appendix, Note 3.

While the tasks involving time-delayed rewards studied in this manuscript
can be labeled as regression and classification tasks due to the nature of the
objective function, we note that the theoretical development is general and

A B

C D E

Fig. 5. Cartoon summary of learning rules explored in this work. (A) The exact gradient: Updating weight wpq, the synaptic connection strength from
presynaptic neuron q to postsynaptic neuron p, involves nonlocal information inaccessible to neural circuits, i.e., the knowledge of activity (e.g., voltage s)
for all distant neurons j and l in the network. This is because wpq affects the activities of many other cells through indirect connections, which will then
affect the network output at subsequent time steps (Eq. 17 in Methods). (B) E-prop, a state-of-the-art biologically plausible learning rule, restricts the weight
update to depend only on presynaptic and postsynaptic activity and TD learning signal, as in a three-factor learning rule (Fig. 2A). (C) We allow the weight
update to capture dependencies within one connection step, which are omitted in e-prop. The activity of neuron j could be delivered to p through local
modulatory signaling. (D) For the signaling in C to be cell-type–specific, as consistent with experimental observation in ref. 42 and biologically plausible
mechanisms, we approximate the cell-specific gain with cell-type–specific gain (Eq. 23), which leads to our MDGL. Effect of this cell-type approximation is
explored in SI Appendix, Fig. S9. (E) NL-MDGL, where modulatory signal diffuses to all cells in the network without attenuation (Fig. 4).
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Fig. 6. Computational graph and gradient propagation. (A) Schematic illustration of the recurrent neural network used in this study. (B) The mathematical
dependencies of input x, state s, neuron spikes z, and loss function E unwrapped across time. (C) The dependencies of state s and neuron spikes z unwrapped
across time and cells. (D) The computational flow of ds/dwpq is illustrated for exact gradients computed using exact calculation (Eq. 17) (i), e-prop (ii), and
our truncation in Eq. 18, where dependency within one connection step has been captured (iii). Black arrows denote the computational flow of network
states, output, and the loss; for instance, the forward arrows from zt and st going to st+1 are due to the neuronal dynamics equation in Eq. 2. Green arrows
denote the computational flow of ds/dwpq for various learning rules.

applies to all loss functions whose partial derivative with respect to spiking
activity can be expressed as

∂E

∂zj,t
=

∑
t′≥t

κ
t′−t

φj,t′ . [9]

As an important example, our derivation is immediately applicable to the
actor–critic reinforcement learning framework (22). For the regression task,

φj,t′ = (1 − κ)
∑

k

(yk,t′ − y∗
k,t′ )w

OUT
kj , [10]

and for the classification task,

φj,t′ = (1 − κ)
∑

k

π
∗
k,t′πk,t′

∑
k′

(wOUT
k′ j − wOUT

kj ) exp(yk′ ,t′ − yk,t′ ). [11]

One can see that when the leakκ is not zero, the error derivative will depend
on future errors, which seemingly poses an obstacle to online learning.
We provide the online implementation for this readout convention in
SI Appendix, Note 1. In addition to accuracy optimization described above,
we added a firing-rate regularization term Ereg = 1

2 creg
∑

j(f
av
j − f target

j )2 to

the loss function to ensure sparse firing (22). Here, f target
j and fav

j = 1
T

∑
t zj,t

are the desired and actual average firing rate for cell j, respectively, and creg

is a positive coefficient that controls the strength of the regularization.
Notation for derivatives. There are two types of computational depen-
dencies in RSNNs: direct and indirect dependencies. For example, variable
wpq can impact state sp,t directly through Eq. 2, as well as indirectly via
its influence through other cells in the network. We distinguish direct
dependencies vs. all dependencies (including indirect ones) using partial
derivatives (∂) vs. total derivatives (d).

Gradient descent learning in RSNNs. We study iterative adjustment of
all synaptic weights (input weights wIN, recurrent weights w, and output
weights wOUT ) using gradient descent on loss E:

wpq,new = wpq,old − λΔwpq,

Δwpq =
dE

dwpq,old
, [12]

where λ denotes the learning rate, and the gradient of the error with
respect to the synaptic weights must be calculated. This error gradient can
be calculated with classical machine-learning algorithms, BPTT and RTRL,
by unwrapping the RSNN dynamics over time (Fig. 6B). While these two
algorithms yield equivalent results, their bookkeeping for chain rule differs.
Gradient calculations in BPTT depend on future activity, which poses an
obstacle for online learning and biological plausibility. Our learning-rule
derivation follows the RTRL factorization because it is causal. Therefore, we
focus our analysis on RTRL and factor the error gradient across time and
space as

dE

dwpq
=

∑
j,t

∂E

∂zj,t

dzj,t

dwpq
, [13]

dzj,t

dwpq
=

∂zj,t

∂sj,t

dsj,t

dwpq
, [14]

following the derivative notation explained above. The factor ∂E
∂zj,t

in

Eq. 13 is related to the TD learning signal Lj,t :=
∑

k wOUT
kj (yk,t − y∗

k,t) (22).
SI Appendix, Notes 1 and 2 show that the leak term of the output neurons
makes these two terms different and derives an online implementation
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that uses Lj,t . We thus take TD learning signals to be cell-specific rather
than global, which is justified in part by recent reports that dopamine
signals (28, 29) and error-related neural firing (53) can be specific to a
population of neurons (22). Moreover, approximating the sum in Lj,t as in
our main derivation below, following the argument on cognate receptors,
or using the random feedback alignment theory (14) (on only the outgoing
connections between spiking neurons and output units) suggest further
biologically plausible implementations.

We now discuss the second factor in Eq. 13, i.e.,
dzj,t

dwpq
. This is expanded

into two factors in Eq. 14. The first factor, hj,t :=
∂zj,t
∂sj,t

is problematic to

compute for spiking neurons due to the discontinuous step function H in
Eq. 3, whose derivative is not defined at zero and is zero everywhere else.
We overcome this issue by approximating the decay of the derivative using
a piece-wise linear function (10, 22, 46, 54). Here, the pseudoderivative hj,t

is defined as follows:

hj,t =
dzj,t

dsj,t
, [15]

≈ γ max
(

0, 1 −
∣∣∣∣ sj,t − Aj,t

vth

∣∣∣∣
)

. [16]

The dampening factor γ (typically set to 0.3) dampens the increase of
backpropagated errors in order to improve the stability of training very
deep (unrolled) RSNNs (22). Throughout this study, neuronal firing displays
refractoriness, where hj,t and zj,t are fixed at zero after each spike of neuron
j (SI Appendix, Note 3).

Key problems that RTRL poses to biological plausibility and computational

cost reside in the factor
dsj,t

dwpq
that arises during the factorization of the gra-

dient (Eqs. 13 and 14). The factor
dsj,t

dwpq
keeps track of all direct and indirect

dependencies of neuron state j on weight wpq. In other words, this factor
accounts for both the spatial and temporal dependencies in RSNNs: State
dependencies across time t, as explained above, result from unwrapping
the temporal dependencies illustrated in Fig. 6B; state dependencies across
space, however, are due to the indirect dependencies (of all zt on w and
all zt′ [t′ < t]) arising from recurrent connections (Fig. 6C). These recurrent

dependencies are all accounted for in the
dsj,t

dwpq
factor, which can be obtained

recursively as follows:

dsj,t

dwpq
=

∂sj,t

∂wpq
+

∑
l

∂sj,t

∂sl,t−1

dsl,t−1

dwpq

=
∂sj,t

∂wpq
+

∂sj,t

∂sj,t−1

dsj,t−1

dwpq
+

∑
l �=j wjl

∂zl,t−1
∂sl,t−1

dsl,t−1
dwpq︸ ︷︷ ︸

depends on all weights wjl

. [17]

Thus, the factor
dsj,t

dwpq
is a memory trace of all intercellular dependencies

(Fig. 6 D, i) and requires O(N3) memory and O(N4) computations. This makes
RTRL expensive to implement for large networks. Moreover, this last factor
poses a serious problem for biological plausibility: It involves nonlocal terms,
so that knowledge of all other weights in the network is required in order
to update the weight wpq.

To address this, Murray (21) and Bellec et al. (22) (e-prop) dropped the
nonlocal terms so that the updates to weight wpq would only depend on
presynaptic and postsynaptic activity (Figs. 5B and 6 D, ii) and applied this
truncation to train rate-based and spiking neural networks, respectively.
While both works succeed in improving over previous biologically plausi-
ble learning rules, a significant performance gap with respect to the full
BPTT/RTRL algorithms remains.
Derivation of multidigraph learning in RSNNs. We continue from the pre-
vious section in giving a detailed derivation of our learning rule. To reveal
a potential role for cell-type-based modulatory signals in synaptic plasticity
as well as improve upon the aforementioned biologically plausible gradient
descent approximations, we begin by partially restoring nonlocal dependen-
cies between cells—those within one connection step. This is the “truncated”

RTRL framework (Figs. 5D and 6 D, iii), and the memory trace term
dsj,t

dwpq
becomes

dsj,t

dwpq
≈

⎧⎪⎨
⎪⎩

∂sj,t
∂zp,t−1

∂zp,t−1
∂sp,t−1

dsp,t−1
dwpq

= wjp
∂zp,t−1
∂sp,t−1

dsp,t−1
dwpq

, p �= j

∂sj,t
∂wjq

+
∂sj,t

∂sj,t−1

dsj,t−1
dwjq

, p = j
. [18]

Thus, when j = p, our truncation implements
dsp,t
dwpq

≈
∂sj,t
∂wjq

+
∂sj,t

∂sj,t−1

dsj,t−1
dwjq

,

which coincides with e-prop. Eq. 18 adds the case when p �= j, for which

dsj,t
dwpq

was simply set to zero in e-prop. We note that the truncation in

Eq. 18 resembles the n-step RTRL approximation recently proposed in ref.

8, known as SnAP-n, which stores
dsj,t

dwpq
only for j such that parameter

wpq influences the activity of unit j within n time steps. The computations
of SnAp-n converge to those of RTRL as n increases, resonating with our
improved performance when more terms of the exact gradient are included.
Our truncation in Eq. 18 is similar to SnAp-n with n = 2 with two differences:
1) We apply it to spiking neural networks, and 2) we drop the previous time

step’s Jacobian term
dsj,t−1
dwpq

, which would necessitate the maintenance of

a rank-three (“3-d”) tensor with costly storage demands (O(N3)) and for
which no known biological mechanisms exist. Thus, the truncation in Eq.
18 requires the maintenance of only a rank-two (“2-d”) tensor specific to
synapse p|q, which can be realized via an ET, as we explain next.

By substituting Eq. 18 into Eqs. 13 and 14, we approximate the overall
gradient as

̂dE

dwpq
=

∑
t

⎡
⎣ ∂E

∂zp,t

∂zp,t

∂sp,t

dsp,t

dwpq
+

∑
j �=p

∂E

∂zj,t

∂zj,t

∂sj,t
wjp

∂zp,t−1

∂sp,t−1

dsp,t−1

dwpq

⎤
⎦

=
∑

t

Lp,tepq,t +
∑

j aj,twjpepq,t−1︸ ︷︷ ︸
:=̂Γpq,t

, [19]

where Lp,t := ∂E
∂zp,t

is the TD learning signal to cell p, aj,t (Eq. 24) denotes

the activity-dependent modulatory signal emitted by neuron j at time t, and
epq,t (Eq. 25) is the ET maintained by postsynaptic cell p to keep a memory
of the preceding activity of presynaptic cell q and postsynaptic cell p. In Eq.
19, the first term Lp,tepq,t alone gives exactly the e-prop synaptic update

rule. The second term, which we define as ̂Γpq,t , is a synaptically nonlocal
term due to contributions from local modulatory signals. As seen in Eq. 19,
our truncation requires maintaining a {p, q}-dependent double tensor (for
epq,t) instead of a triple one, thereby reducing the memory cost of RTRL from
O(N3) to O(N2).

Importantly, we observe that, for the update to synapse wpq in Eq. 19,
the terms that depend on cells j only appear under a sum. Therefore, the
mechanism updating the synapse p|q does not need to know the individual
terms indexed by j. Rather, only their sum suffices.

While it is tempting to consider the first factors in ̂Γpq,t , aj,twjp, as the
modulatory signal emitted by neuron j, the involvement of the synapse from
neuron p via wjp and a lack of known mechanisms in calculating this neuron-
specific composite signal suggest that this is unlikely to be a biological
solution. Instead, inspired by the cell-type–specific (rather than neuron-
specific) affinities for peptidergic neuromodulation (30, 42), we propose to
approximate the signaling gain wjp in Eq. 19 by the average value wαβ

across its presynaptic and postsynaptic cell types. More specifically, when
postsynaptic cell j belongs to type α and presynaptic cell p belongs to type
β, we approximate neuron-specific weight wjp with cell-type–specific gain
wαβ =< wjp >j∈α,p∈β . We hypothesize that wαβ represents the affinity of
the GPCRs expressed by cells of type β to the modulators secreted by cells of
type α (Cell-type–specific receptor affinities).

Thus, the gradient estimate at time t due to our learning rule involves
compounding ET with both TD and local modulatory signals, thereby recov-
ering the general form introduced in Eq. 1:

dE

dwpq

∣∣∣∣
t,MDGL

≈ Lp,tepq,t + Γpq,t ,

Γpq,t =

⎛
⎝∑

α∈C

wαβ

∑
j∈α,p→j

aj,t

⎞
⎠ epq,t−1, [20]

where neuron p is of type β, C denotes the set of neuronal cell types,
p → j denotes that there is a synaptic connection from neuron p to j, and
Γpq,t approximates the second term in Eq. 19 with cell-type–specific weight
averages.

In summary, cell p receives local modulatory input Mod.inputp that gets
combined with the ET (as per Eq. 20) in addition to synaptic input Syn.inputp

(as per Eq. 2):

Mod.inputp : =
∑
α∈C

wαβ

∑
j∈α,p→j

aj,t , [21]

Syn.inputp : =
∑
l �=p

wpl zl,t +
∑

p

wIN
pm xm,t+1. [22]
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It may be instructive to note the dichotomy in the functions of these two
different inputs: The cell uses Mod.inputp to regulate its synaptic plasticity,
but not to change its internal state, and it uses Syn.inputp to change its
internal state, but not to regulate synaptic plasticity.

Hence, our update rule suggests an additive term to compute the plas-
ticity update at synapse p|q at time t, Γpq,t , which calculates multiplicative
contributions of the modulatory signal aj,t secreted by neuron j, the affinity
of receptors of cell type β to ligands of type α, wαβ , and the ET at
the synapse p|q, epq,t . The following two sections explain how two main
components of Γ, cell-type–specific signals and ET, can be implemented.
Cell-type–specific receptor affinities. We explain cell-type–specific signal-
ing implementation, notably, how type–specific receptor affinity wαβ is
defined. As introduced in our learning rule derivation, wαβ is an approx-
imation of gain wjp (Eqs. 19 and 20), and we proposed to define wαβ as the
weight average across its presynaptic and postsynaptic cell types:

wjp ≈
{

wαβ , p → j

0, otherwise
, [23]

where p → j denotes that there is a synaptic connection from neuron p
to j, motivated by the local diffusion assumption discussed in ref. 35, in
which this type of signaling is registered only by local synaptic partners and
therefore preserves the connectivity structure of wjp. One obvious variant
of this receptor-affinity definition is one with a different spatial extent, for
which we examine the opposite extreme in Fig. 4 D–F, where modulatory
signals diffuse to all cells in the network. More specifically, the signaling
gain wαβ is replaced by wNL

αβ =< wjp >j∈α,p∈β , even for wjp = 0 so that
modulatory signals diffuse to all cells with the same strength in the network.

For a proof of concept, we implemented MDGL with modulatory types
mapped to the two main cell classes; i.e., cell-type–specific signaling gain,
wαβ =< wjp >j∈α,p∈β with α, β ∈ {E, I}. We demonstrate the effectiveness
of this cell-type discretization by comparing its learning performance to the
case without cell-type discretization (wαβ = wjp, i.e., each cell is its own
type) and observed little difference in performance (SI Appendix, Fig. S9).
On the other hand, increasing the number of modulatory types involved in
the cell-type discretization could be key to realizing the potential of MDGL
in more complicated tasks, suggesting an explanation for the observed
diversity of cell types in the brain.

We implemented receptor affinities as weight averages across types, but
how tightly coupled those modulatory gains and synaptic weights are is a
subject for future investigation. SI Appendix, Fig. S7 explores the sensitivity
of the learning performance to imprecise receptor affinities.
Activity-dependent modulatory emission implementation. As introduced
in Eq. 20, activity-dependent modulatory signal emitted by neuron j at time
t, an important component of MDGL, is defined as

aj,t =
∂E

∂zj,t

∂zj,t

∂sj,t
. [24]

As defined, aj,t is a package of two components: ∂E
∂zj,t

, which is referred to

as the TD signal (22), and hj,t = ∂zj,t/∂sj,t , which is the pseudoderivative

of spiking activity as a function of cell j’s membrane potential explained
above. While Eq. 20 suggests an “online” implementation with the update
at t, the factor aj,t cannot be calculated causally unless the output is not
leaky. SI Appendix, Note 1 derives an online update for the more general
case, which has the same form as Eq. 20.
ET implementation. As introduced in Eq. 20, ET, another important compo-
nent of MDGL, is defined as

epq,t :=
∂zp,t

∂sp,t

dsp,t

dwpq
, [25]

dsp,t

dwpq
=

∂sp,t

∂wpq
+

∂sp,t

∂sp,t−1

dsp,t−1

dwpq
, [26]

where Eq. 26 follows directly from Eq. 18.
dsp,t
dwpq

can be obtained recursively

and is referred to as the eligibility vector (22). epq,t keeps a fading memory of
activity pertaining to presynaptic cell q and postsynaptic cell p. A discussion
on interpreting ETs as derivatives can be found in ref. 22. Here, we briefly
explain its implementation by expanding the factors in Eqs. 25 and 26 for
both LIF and ALIF cells.

For LIF cells, there is no adaptive threshold, so the hidden state consists

only of the membrane potential. Thus, we have factors
∂zp,t
∂sp,t

= hp,t with

pseudoderivative hp,t defined in Eq. 15,
∂sp,t
∂wpq

= zq,t−1 and
∂sp,t+1
∂sp,t

= η −
vthhp,t following Eq. 2.

For ALIF cells, there are two hidden variables, so the eligibility vector

is now a two-dimensional vector
dsp,t
dwpq

= [
dsvp,t
dwpq

,
dsbp,t
dwpq

] ∈ R2x1 pertaining to

membrane potential vp,t and adaptive threshold state bp,t . Following Eq. 3,

one can obtain factors
∂zp,t
∂sp,t

= [
∂zp,t
∂vp,t

,
∂zp,t
∂bp,t

] = [hp,t , −βhp,t] ∈ R1x2,
∂sp,t
∂wpq

=

[zq,t−1, 0] ∈ R2x1, and
∂sp,t

∂sp,t−1
is now a 2-by-2 matrix:

∂sp,t

∂sp,t−1
=

⎡
⎣ ∂vp,t

∂vp,t−1

∂vp,t
∂bp,t−1

∂bp,t
∂vp,t−1

∂bp,t
∂bp,t−1

⎤
⎦

=

[
η − vthhp,t vthβhp,t

(1 − ρ)hp,t ρ − (1 − ρ)βhp,t

]
∈ R2x2. [27]

Thus, the ET epq,t is scalar valued, regardless of the dimension of the
eligibility vector.

Data Availability. Code for data generation and analysis is available in
GitHub at https://github.com/Helena-Yuhan-Liu/MDGL-main.
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