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ScienceDirect
Across neuroscience, large-scale data recording and

population-level analysis methods have experienced explosive

growth. While the underlying hardware and computational

techniques have been well reviewed, we focus here on the

novel science that these technologies have enabled. We detail

four areas of the field where the joint analysis of neural

populations has significantly furthered our understanding of

computation in the brain: correlated variability, decoding,

neural dynamics, and artificial neural networks. Together, these

findings suggest an exciting trend towards a new era where

neural populations are understood to be the essential unit of

computation in many brain regions, a classic idea that has been

given new life.
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Introduction
The neuron has been heralded as the structural and

functional unit of neural computation for more than a

hundred years [1–3], and this doctrine has driven a vast

array of our field’s most important discoveries [4]. Increas-

ingly prevalent, however, is the idea that populations of

neurons may in fact be the essential unit of computation

in many brain regions [4–6]. Certainly the idea of infor-

mation being encoded in an ensemble of neurons is not a

new one. In fact, the conflict between single neurons and

populations of neurons as the perceptual, behavioral, and

cognitive unit of computation dates back to the beginning

of the 20th century [4,6], with the first concrete theories of

networks of neurons introduced in the 1940s [7,8]. The

ideas, while being novel, were not testable due to the

technological shortcomings of both recording techniques

and computational resources. However, we currently find
www.sciencedirect.com 
ourselves in the ideal era for scientific discovery, given the

astounding progresses in both these enabling

technologies.

Electrophysiology recordings have been the hallmark of

neuronal recordings over the last 80 years — extracellular

recordings of one or multiple electrodes, each capturing

up to a few neurons. More recently, multi-electrode arrays

and imaging techniques (optical, and more recently volt-

age) have been used to efficiently capture the simulta-

neous activity of hundreds and thousands of neurons, with

this number steadily growing using tools such as the

Neuropixel [9]. In tandem, the increase in computational

resources has led to the development of efficient and

scalable statistical and machine learning methods; see the

methodological reviews [10,11].

As our ability to simultaneously record from large popula-

tions of neurons is growing exponentially [9,12], the

analysis of the covariation of populations of neurons

has provided us with scientific insights in many domains.

Here, we highlight several recent findings in four domains

of neuroscience where the joint analysis of a population of

neurons has been central to scientific discovery that

would not be possible using single neurons alone. Firstly,

trial-to-trial ‘noise’ correlations have been shown to influ-

ence the information carrying capacity of a neural circuit.

Secondly, decoding of behavior using correlated popula-

tions of neurons can yield levels of accuracy beyond what

would be anticipated from single neurons alone. Thirdly,

the dynamic analysis of stimulus-driven population

recordings over time can be projected into a lower dimen-

sional subspace to reveal computational strategies

employed by different brain regions. Lastly, artificial

neural networks (ANNs) can aid in simulations that

reproduce population structure, as well as directly model-

ing neuronal activity. We focus on the analysis of a

population of N neurons in ‘state space’, where each

neuron’s activity at any time point is represented as a

dot in either the N dimensional observation space or in a

lower dimensional subspace.

We pinpoint one or two recent studies in each domain

that stand out (indicated using * and **). Unlike previous

reviews on population-level neuroscience [10,11], we

focus here not on the data analysis methodologies, but

rather the notable scientific findings that have resulted.

These scientific findings are, first, reshaping the way the

field thinks about computation, and, second, fundamen-

tally population-based. Taken together, these two fea-

tures point to a future where the central scientific theme

is not the neuron doctrine, but the neural population
Current Opinion in Neurobiology 2019, 55:103–111
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doctrine. We conclude with topics that we think future

studies may need to address.

Correlated trial-to-trial variability in
populations of neurons is a key indicator for
behavioral states
As we gain the ability to simultaneously record the

activity of more and more neurons, we must ask how

much information we can hope to achieve by doing so,

that is what is the information gained per added neuron?

Generally speaking, ‘signal’ correlations, or tuning curves,

are useful in terms of decoding as well as understanding

the dynamics of neural population over time. However, in

the pursuit of this specific question, the systematic study

of covariation in the activity of pairs of neurons during

repeated presentations of the same stimulus (‘noise’

correlation) has also been a well-studied and particularly

tractable analysis tool (Figure 1a).

In fact, a tremendous amount of research has led to the

fundamental belief that correlations are linked to the

information carrying capacity of the brain, which itself

has widely been postulated to be directly related to the

level of performance of an individual on a given task

[13,14]. One metric for the information carrying capacity

is the linear Fisher information, which is a measure of the

smallest change in the stimulus that can be distinguished

with an optimal linear decoder of the neuronal population

response. It has been shown that under certain assump-

tions on the distribution of the neuronal populations, and

assuming homogenous tuning curves, the presence of

correlations causes the linear Fisher information of the

neurons to saturate as N! 1 (i.e. a growing number of

neurons N) [13,15,16]. In fact, pairwise correlations in
Figure 1

(a) Schematic showing the decrease in correlated variability of neurons as r

and the firing rate of neuron 2 on the y-axis, during presentation of the sam

correlation coefficient robustly decreases with an increase in performance d
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various brain areas are affected by attention, learning,

arousal, and adaptation (see [17] for a review).

Recently, in an important study [18��], Ni et al. showed

that the correlated variability in V4 neurons during atten-

tion and learning — processes that have inherently dif-

ferent timescales — robustly decreases (Figure 1b). They

also found that the correlated variability is strongly cor-

related with performance, across learning and attention

conditions. In this study, in addition to mean pairwise

correlation, the authors demonstrated the use of a truly

population-based metric, that is percentage of variance

explained in the first principal component (PC) of simul-

taneously recorded neurons, to further quantify the

decrease in correlated variability. Moreover, they showed

that a ‘choice’ decoder built on neural activity in the first

PC performs as well as one built on the full dataset,

suggesting that the relationship of neural variability to

behavior lies in a relatively small subspace of the state

space. These findings reinforce the viewpoint that the

relevant unit of computation may be a subspace of the

neural activity. As a next step, it would be interesting to

examine whether the decrease in correlated variability

between learning and attention happens in the same

dimensions, that is do the neurons decrease their vari-

ability in the same way during both processes. However,

this requires the simultaneous recording of a population

of neurons over long time periods.

Experimental findings in this field highlight the impor-

tance of advancing the theory on correlated variability,

especially in the small N regime, in order to better

understand the mechanisms that lead to a decrease in

correlations and its link to behavior. Going forward, we

highlight the need for theoretical contributions based on
epresented in ‘state space’: the firing rate of neuron 1 on the x-axis,

e stimulus S1. Each circle represents a trial. (b) The average Pearson’s

uring attention as well as learning. Figure adapted from [18��].

www.sciencedirect.com



Towards the neural population doctrine Saxena and Cunningham 105
less restrictive assumptions, as well as bringing together

theoretical insights and experimental findings to fully

address these questions. One important step in this

direction was performed by Moreno-Bote et al. [14],

who showed that in the regime of inhomogeneous tuning

curves, if the ‘noise’ correlations are in the direction of

the ‘signal’ correlations, that is tuning curves, this leads

to a saturation in the linear Fisher information. These

noise correlations in the direction of signal correlations

are called ‘differential’ correlations. See [17] for an

excellent review.

We also highlight the need to utilize analyses that truly

benefit from the recordings of a population of neurons.

Examining population metrics of correlated variability in

neural subspaces of simultaneously recorded neurons

(such as the principal component space, as above) is an

important next step that will move towards bridging

theory and experimental predictions.

Decoding accuracy is more than the sum of its
parts
Here we focus on the case where population analysis is

virtually essential: when neurons have so-called ‘mixed

selectivity’ [5,19��,20]. As an increasing number of experi-

ments involving multiple categories of stimuli are being

performed, neurons in several brain areas have been

found to have mixed selectivity: neurons significantly

modulate their activity in response to more than one

stimulus category/type [21,5,19��]. For example, in

Figure 2a, we see two neurons encoding for two different

stimuli; decoding stimulus identity from either of the two

neurons alone would be suboptimal. However, if both
Figure 2

(a) Schematic showing that it is possible to linearly decode when recording

possible to decode the activity well using either of the two neurons. Here, t

of two different stimuli S1 and S2. (b) The number of dimensions in prefront

although the decoding accuracy is the same for both (right). Thus, the dime

from [19��].
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neurons are recorded, the two stimuli are linearly

separable.

It is well known that higher dimensional data can be more

easily linearly separated for classification purposes (the

‘kernel trick’ in machine learning). In [19��], Rigotti et al.
argue that increasing the dimensionality of data (by, for

example, recording more neurons) only helps decoding if

neurons display ‘nonlinear’ mixed selectivity, that is an

additional neuron’s response cannot be explained by a

linear superposition of the existing responses to the

individual parameters. The authors show that individual

neurons in the prefrontal cortex do in fact encode for

multiple stimuli and that the collection of neurons display

nonlinear mixed selectivity. Moreover, they show that the

recorded neural representations have high dimensional-

ity, and that this dimensionality can predict behavioral

performance, as shown in Figure 2b. A review of this

phenomenon is also provided in [5]. The authors detail

the observation that the relevant unit of computation may

in fact be individual neurons in lower-order sensory

regions, where we may not need to consider population

analysis in order to decode activity. However, as we move

towards higher-order regions and increasingly complex

tasks, we need population analyses if in the presence of

mixed selectivity [5,22,6].

Neurons in multiple brain regions have been shown to

have mixed selectivity. In [23], the authors show that

neurons in the amygdala have representations pertaining

to both stimulus and context in a flexible decision-making

task, which may be the mechanism for the parietal

prefrontal cortex neurons to access the same information.
 from two neurons displaying mixed selectivity, although it would not

he firing rate activity is represented in state space during presentation

al cortex activity are higher for correct trials than error trials (left),

nsionality of neural data can directly predict behavior. Figure adapted
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In the inferior temporal cortex, prefrontal cortex, and the

cortical-hippocampus loop, several studies have found

that the neurons act with mixed selectivity [24,6,25].

In [21], the authors conclude that neurons in the posterior

parietal cortex in rats have misaligned subspaces for

movement and decision-making, elucidating that neurons

are essentially multitaskers. Accurately decoding this

activity necessitates a population-level analysis.

Analysis of neural activity over time reveals
computational strategies
Considering neural population activity over time as states

in a dynamical system has a long history, for example as in

[26], where authors examine the potential mechanisms of

memory and error correction using neuron-like compo-

nents. This dynamical systems perspective is now preva-

lent in neuroscience, with the motor regions being the

most natural testing ground, since we have access to the

time-varying behavior as a direct output, and in fact,

significant work has shown the value of this perspective

[27–30], and new work continues to appear [31]. The

analysis of neural activity over time, particularly during

time-dependent behavior such as movement generation,

can be studied using techniques developed to study

dynamic (time-varying) activity. It is now common prac-

tice while analyzing motor regions to visualize the activity

of the population of neurons corresponding to a trajectory

in state space [32,27], as shown in Figure 3a. Here, the

firing rate activity over time is shown in a lower dimen-

sional space using principal components analysis (PCA).

The covariation of neurons allows us to locate subspaces

occupied by the neural activity during specific tasks. An
Figure 3

(a) Schematic showing 3 neurons’ activity over time during two different co

period. The PC space for S2 is also shown. (b) Tangling is lowered in the pr

activity (left). Figure adapted from [38�]. (c) The trajectories decompose smo

dimensions. Figure adapted from [39�].
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interesting question under examination is whether the

neural activity occupies orthogonal or overlapping sub-

spaces during different tasks. Studies show computations

of both kind. Specifically, the primate oculomotor system

has pre-saccadic and saccadic activity in overlapping

subspaces [33,34]. On the other hand, [35] finds that

preparatory activity in the primate dorsal premotor cortex

and primary motor cortex lives in the null space of the

subspace in which movement activity resides. However,

this finding in itself can be explained by either indepen-

dence or orthogonality of the underlying subspaces, and

in [36], it was revealed that the preparatory and move-

ment subspaces are in fact orthogonal to each other. The

orthogonality of the subspaces during different tasks was

also explored in [37], where it was found that in a ‘pull’

task, the activity was almost orthogonal to a ‘walk’ task in

mice. What determines whether neural activity lies in

overlapping or orthogonal subspaces, or does the neural

activity in fact lie in a continuum of more or less over-

lapping subspaces, depending on how similar the result-

ing tasks are? Moreover, does the union of the dimensions

of the neural manifolds grow with the number of tasks

considered, or does it reach a plateau at a fraction of the

total number of neurons? Answering these questions is

essential to making any fundamental claims about the

role of subspaces in population activity.

Recently, specific properties of population dynamics that

test ideas beyond subspace analysis have furthered our

understanding of computational strategies in motor

regions of the brain. For example, in [38�], a metric known

as ‘trajectory tangling’ was used to characterize how, and

potentially why, the motor cortex population response is
nditions, S1 and S2, for example, preparatory period and movement

imary motor cortex activity (right) as compared to the electromyogram

othly into speed scaling dimensions and non-speed scaling

www.sciencedirect.com
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structured very differently from the muscle population

response, as shown in Figure 3b. The degree to which

tangling remains low reflects the degree to which popu-

lation trajectories could plausibly have been produced by

a noise-robust dynamical system that is fully observed in

the recorded population. Results indicate that this is true

of motor cortex, where activity has been proposed to

reflect such dynamics, but not in the muscle population,

where the relevant driving dynamics presumably lie

upstream. Adopting trajectories with particularly low

tangling may be a computational strategy employed by

the brain to improve noise robustness. In [39�], separate

speed-varying and speed-invariant dynamics in the sub-

space are found in the medial frontal cortex (MFC) during

a task that required the animal to internally keep track of

time. In this setting, the authors probed the ‘temporal

scaling’ of the firing rate activity, which is defined as the

self-similarity of the neural activity when artificially

stretched in time across different speeds. This idea is

represented in Figure 3c, and indeed, they found that

temporal scaling is present in the MFC. They also found

that temporal scaling is not found in the thalamus, which

projects to the MFC; through a series of maneuvers, they

posit that temporal scaling may originate either in the

MFC, or in circuits projecting to the MFC. These find-

ings identify a possible mechanism for controlling pro-

cesses at a continuum of different speeds.

These two studies have fundamental implications on the

potential mechanisms of processing through different

brain areas down to the kinematic output. In a recent

study [40], the authors find that while different motor

regions display superficially similar single-neuron

responses during visually guided reaching, their different

population dynamics indicate that they are likely per-

forming quite different computations. These studies go

beyond the relatively simplistic idea of neural activity

residing in separate subspaces in order to be uniquely

decoded by downstream neurons to produce separate

outputs, and examine specific properties that the dynam-

ical activity may possess. Moreover, the control of such

activity is an interesting and open question, with recent

studies like [41] addressing biologically plausible mecha-

nisms to produce these activity.

Dynamic activity is extremely important in non-motor

areas as well. For example, in [42], it was shown that

motion and color detection can be explained by a single

dynamical process in the prefrontal cortex. In [43], new

information is seen to dynamically change the activity in

the mouse parietal posterior cortex in order to implement

evidence accumulation.

Nodes in Artificial Neural Networks emulate
activity in certain regions of the brain
Although we have been modeling neural activity using

artificial nodes for a long time [26], modeling with
www.sciencedirect.com 
networks of neurons has been limited to carefully

designed studies and an intricate hand-tuning of param-

eters (see e.g. [44]). The massive advances in learning

deep neural networks has made using artificial neural

networks (ANNs) with a large number of nodes and

layers, with a large variety of structures, more approach-

able. However, the potential of ANNs to accurately

describe neuronal computations in the brain remains a

subject of active debate. Indeed, the biological plausibil-

ity of learning and computation in ANNs is an active field

of study [45–48]. In [48], the authors introduce a novel

method to assess whether the artificial network are pre-

dictive of primate performance: they compare the set of

errors made by the ANNs to those made by the human or

monkey doing the same task. They find that although the

ANNs are predictive of primate patterns of object-level

confusion, they are not predictive of the performance on

an object discrimination task in individual images. This

finding sets a quantitative benchmark for comparisons

between primates and neural networks.

There are currently two main approaches to utilizing

artificial neural networks in modeling networks of neu-

rons: (a) utilizing a goal-driven neural network, and

using the learned network’s layers to compare and

predict the population activity in different brain

regions, and (b) modeling the activity of individual

neurons as emanating from a feedforward or recurrent

neural network architecture. These two approaches are

characterized in Figure 4a.

(i) Goal-driven networks. Modeling a goal-driven ANN to

describe neural activity attempts to combine the big-

picture view of the different regions or layers of the brain,

and the representation of the activity of individual nodes.

Artificial models with a feedforward and recurrent archi-

tecture have been used to successfully capture dynamical

activity [49,50]. In the context of motor dynamics, Sussillo

et al. trained a recurrent neural network to produce

recorded muscle activity, and showed that the activity

of the artificial nodes had the same structure as the

recorded dorsal premotor cortex and primary motor cortex

activity [51]. In [41], the authors showed that it is possible

to optimally tune a network of excitatory and inhibitory

neurons to qualitatively model neural activity in the

preparatory phase of a movement, that will lead to a

stable and reliable movement trajectory, providing a

potential computational basis to the observed results in

[32]. Other motor studies in varied tasks have also suc-

ceeded in relating the motor cortex activity to artificial

nodes in an ANN [38�,36]. ANNs have also been used to

investigate different tasks including working memory

[52,53] and perceptual decision-making [42].

In the visual cortex, Yamins et al. used hierarchical con-

volutional neural networks (CNNs) for modeling the

processing of information in the brain, with each layer
Current Opinion in Neurobiology 2019, 55:103–111
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Figure 4

(a) Artificial Neural Network (ANN) with (i) goal-driven training, and (ii) data-driven modeling. (b) Left Panel: The model (red bar) outperforms other

known models (light grey) in population similarity to IT neurons. In black is data from V4 and other IT neurons; Right Panel: The representation

dissimilarity matrix of the top layer in a 4 layer CNN (CNN) as learned using goal-driven training (right) is very similar to that of electrophysiology

recordings in the IT (left). Figure adapted from [54�]. (c) Data-driven modeling of retinal cells quantifies the performance of different models, in

particular highlighting the performance gains using recurrent neural networks (RNNs). Figure adapted from [57�].
of the neural network being analogous to a brain region

[54�]. They showed that directly modeling an experimen-

tal task using a 4 layer CNN can lead to a neural network

in which the layers have a similar structure to the neuronal

responses in V4 and IT (see Figure 4b). They found

correlation (�50%) between the top and penultimate

layers of the model for the IT and V4 populations in

terms of explained variance. Recently, the authors have

extended their results to train a 6 layer CNN to success-

fully predict category-orthogonal object properties along

the ventral stream [55].

(ii) Data-driven modeling. Directly modeling the activity

of individual neurons using ANNs is a growing line of

research, with some recent successes in prediction of

single neuron activity. Typically, a (partially) shared

model is learned for all neuronal activity. It is then

possible to compute a receptive field per neuron, or latent

activity per population of neurons, which may be of

scientific interest, as well as use these models for pre-

dicting and decoding activity.

Retinal ganglion cells have been a particularly attractive

target for population modeling, beginning (at least) a

decade ago [56] and continuing with more recent ANN-

based approaches [57�,58]. In [57�], the activity of retinal

ganglion cells is modeled as arising from a recurrent archi-

tecture. As shown in Figure 4c, a 2 layer recurrent neural

network consistently captures around 80% of the explained

variance across experiments and cell types, which outper-

forms other known models for retinal activity. In [58], the
Current Opinion in Neurobiology 2019, 55:103–111 
authors model retinal ganglion cells in an ANN with a

convolutional architecture. In [59], the authors build on

previous methods by introducing a more efficient model

while performing end-to-end training, and applying this to

neuronal recordings from the primary visual cortex.

It is as yet unclear which of the two approaches, (i) or (ii),

are better suited to model the activity of neurons as well

as provide insight about the computations in separate

regions of the brain. In [60], the authors address this

question in the context of V1 neurons, and find that both

these modeling approaches perform similarly, while out-

performing other known models. Moreover, they find that

(ii) provides a simpler learned architecture.

While modeling the activity of the recorded neural activity,

one can simultaneously learn a dynamical model that can

produce this neural data in order to gain insights on

computational strategies employed by neural populations,

as discussed in the previous section. Classic versions of this

have included linear dynamical systems [61,62]. Gao et al.
[30] introduced ANNs as the nonlinear map from latent

dynamics to observable neural population activity, a theme

which has been elaborated both by including ANNs in the

dynamics model, and otherwise [63–66].

Looking ahead: when can we trust the results
of population-level analyses?
Throughout this review we have highlighted exciting

findings that have resulted from the joint analysis of

neural populations, works that exemplify the broad and
www.sciencedirect.com
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rapidly growing trend in the field towards the neural
population doctrine. However, this exciting progress has

ignited a serious and increasingly contentious debate

about whether these analyses are actually producing

novel findings about the brain, or if they are simply

recapitulating ‘old knowledge dressed up in new clothes’

[67]. Indeed, this concern has led to high-profile issues in

other fields confronting similarly explosive data (and

data analysis) growth (e.g. [68]). Without question, this

controversy is legitimate, in so much as the perils of

high-dimensional data are well known. To rationalize

and quantify this debate, then, one of the most essential

data analytical tasks going forward will be quantitative

and computational results that shed light on this debate.

A first key step in this direction is in [69��], where a

nontrivial null hypothesis leads to a ‘null model’ from

which surrogate datasets can be drawn. These datasets

are then passed through a given population analysis, to

quantify a null distribution about the extent to which

some population structure is expected under the null

hypothesis; existing results in both mixed selectivity

(see Section ‘Decoding accuracy is more than the sum

of its parts’ of this review) and population dynamics (see

Section ‘Analysis of neural activity over time reveals

computational strategies’) are tested under this frame-

work. See [70–72] for other studies testing and extending

these concepts.

Conclusions
As recording techniques and computing capabilities con-

tinue to improve, experimental and computational stud-

ies continue to demonstrate that neuronal populations may

in fact be the relevant unit of computation in many brain

regions. Throughout this review, we have pointed out

various studies that support this scientific trend, in

domains spanning correlated variability, decoding,

dynamical activity, and artificial neural networks.

Going forward, there are still major concerns in these

domains that need to be addressed. Firstly, when exam-

ining the dimensionality of neural recordings, the

dimensionality of the stimulus or the resulting behavior

may need to be large in order to have a better under-

standing of the underlying neural dynamics. Secondly,

the state space approach, though very useful, may obscure

ways to develop causal interventions in order to system-

atically verify and advance scientific findings. We need to

develop new methods or experiments which bring us

closer to a mechanistic understanding of the underlying

phenomena.

(i) Pushing the envelope on the dimensionality of the
behavior. Analysis of stereotyped behavior in a laboratory

setting has long been considered the primary experi-

mental setting for reliable and reproducible results. One

of the next big challenges in neuroscience is to move

past the confines of tasks with a small number of degrees
www.sciencedirect.com 
of freedom (and the limitations perhaps imposed on the

richness of the data recorded) and examine tasks with

‘free’ behaviors. In fact, the recorded behavior may be

high-dimensional enough that one may need to use

population analysis to characterize the behavior in the

first place, then relate neural activity to this complex

behavior [73–75].

ii) Discovering causal relationships to behavior. Projecting

the neural activity in a rotated, stretched, lower dimen-

sional space, although enables visualization and allows us

to relate the activity to behavior, may preclude a clear

understanding of the circuit-level activity that lead to

these behaviors. Methods such as perturbation analyses

can be used to detangle this relationship. An example of

this method is a novel Brain Computer Interface para-

digm that perturbs the neural association of tasks ‘within’

a learned neural manifold and compares this to a pertur-

bation ‘outside’ the manifold [76]. Learning ‘outside

manifold’ perturbations is harder, which may reflect

the connections between the relevant neurons. See

[77] for a good perspective on why causal inference in

the presence of multi-scale dynamics is difficult.
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