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N E U R O S C I E N C E

Inferring context-dependent computations through 
linear approximations of prefrontal cortex dynamics
Joana Soldado-Magraner1*†, Valerio Mante2‡, Maneesh Sahani1‡

The complex neural activity of prefrontal cortex (PFC) is a hallmark of cognitive processes. How these rich dynamics 
emerge and support neural computations is largely unknown. Here, we infer mechanisms underlying the context-
dependent integration of sensory inputs by fitting dynamical models to PFC population responses of behaving mon-
keys. A class of models implementing linear dynamics driven by external inputs accurately captured PFC responses 
within contexts and revealed equally performing mechanisms. One model implemented context-dependent recurrent 
dynamics and relied on transient input amplification; the other relied on subtle contextual modulations of the inputs, 
providing constraints on the attentional effects in sensory areas required to explain flexible PFC responses and behav-
ior. Both models revealed properties of inputs and recurrent dynamics that were not apparent from qualitative descrip-
tions of PFC responses. By revealing mechanisms that are quantitatively consistent with complex cortical dynamics, our 
modeling approach provides a principled and general framework to link neural population activity and computation.

INTRODUCTION
A fascinating aspect of our daily existence is that, in a blink of an 
eye, we can effortlessly change our course of action, switch between 
tasks, or wander in between lines of thought. To achieve this flexibil-
ity, brain circuits must be endowed with mechanisms to perform 
context-dependent computations so that behavior is quickly adapt-
ed to each situation and the correct decisions can be taken. The 
mechanisms underlying this flexibility are still poorly understood.

A brain structure known to mediate flexible computations is the 
prefrontal cortex (PFC) (1). PFC is part of an extensive and highly 
distributed network of cortical and subcortical areas comprising the 
decision-making circuitry of the brain (2). It is involved in complex 
cognitive functions such as planning, selective attention, and execu-
tive control (3, 4). PFC is thought to hold the representation of goals, 
contexts, and task rules (5, 6) and in primates is required to switch 
behaviors according to different task instructions (7). Last, PFC’s crucial 
role in ignoring task distractors suggests that it actively filters out 
irrelevant information (8, 9). This makes PFC of special importance 
for studying contextual decision-making.

Previous work suggested that flexible prefrontal computations 
emerge from the concerted interaction of large, interacting neural 
populations (1). Unexpectedly, during contextual decisions requir-
ing monkeys to integrate noisy sensory information toward a choice, 
irrelevant information did not appear to be gated at the level of in-
puts into PFC. Instead, irrelevant inputs may be dynamically dis-
carded through recurrent computations occurring within PFC. A 
possible mechanism for such dynamical gating was revealed by 
reverse-engineering recurrent neural networks (RNNs) trained to 
solve the same contextual decision-making task as the monkeys. The 
trained RNNs reproduced key features of the PFC population activ-
ity, although the networks were not explicitly designed to match the 

dynamics of the data. The match with the recorded data, however, 
was only qualitative, as these networks do not reproduce all aspects 
of the rich and heterogeneous responses of individual PFC neurons. 
It is not known whether a model explicitly designed to capture the 
complex PFC dynamics in its entirety would rely on the same con-
textual decision-making mechanism as the RNNs.

In this study, we took the approach of fitting discrete-time linear 
dynamical system (LDS) models directly to the PFC data, allowing us 
to infer interpretable low-dimensional (low-d) linear systems that ap-
proximate the neural population activity in each context. We character-
ized the nature of computations implemented in each context by 
analyzing the properties of the fitted models, whose dynamics closely 
matched those of the PFC population. To validate our assumption of 
linear dynamics, we compared the LDS to a novel low-rank factor-
ization of the data, tensor factor regression (TFR), which can capture 
nonlinear dynamics. Both models performed comparably, implying 
that a linear model is sufficient to explain PFC activity in a given context.

We fitted different LDS model classes corresponding to different 
hypotheses about the nature of context-dependent computations in 
PFC. One class could implement context-dependent recurrent dy-
namics but received fixed inputs, mimicking the design of RNNs de-
veloped in past work (1). Another class had fixed recurrent dynamics 
but could implement context-dependent inputs. In both models, we 
inferred external input signals directly from the data. Unexpectedly, 
these two model classes explained the PFC responses similarly well, 
meaning that both contextual decision-making mechanisms are con-
sistent with the data. Both mechanisms shared some features with the 
RNN solution but also differed from it in important ways, revealing 
previously unknown properties of PFC inputs and recurrent dynam-
ics underlying contextual decision-making computations.

Our study emphasizes the need for quantitative modeling 
approaches to infer computational mechanisms from neural activi-
ty. Quantitative approaches may reveal mechanisms that appear un-
likely when considering qualitative features of the neural activity 
alone. Quantitative models may also lead to potentially nonintuitive 
predictions that can be tested experimentally, as we uncover here. 
Our data-driven approach to analyzing neural dynamics, based on 
fitting LDS models to neural population responses, can be applied 
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across different brain areas, neural datasets, and computational 
mechanisms, providing a general tool to test specific hypotheses 
about the nature of computations implemented by neural circuits.

RESULTS
We analyzed PFC recordings from two monkeys performing a con-
textual version of the classic random dots motion task (1, 10). The 
monkeys had to report the overall color or motion of the dots, de-
pending on context (Fig. 1A). Since both types of sensory evidence 
were simultaneously presented, the monkeys had to actively ignore 
the irrelevant sensory input to form a decision based only on the 
relevant input. We analyzed only correct trials and focused on the 
random dots presentation period (750 ms), during which the mo-
tion and color evidence needed for a correct decision were present-
ed (1). In the next sections, we present an in-depth analysis of the 
PFC data from one of the monkeys (monkey A). Findings from 
monkey F are presented in the Supplementary Materials and con-
firm the key insights gained from monkey A.

Two classes of models implement 
context-dependent computation
To infer possible mechanisms underlying PFC population dynam-
ics, we fitted several LDS models to the measured responses (Fig. 
1B). Each LDS had three components: a dynamics matrix A, which 
determined the recurrent contribution to the evolution of a low-d 
“latent” activity state x(t); external motion and color inputs um(t) 
and uc(t); and motion and color input subspaces B

m
 and Bc, specify-

ing dimensions along which the external inputs modulated the la-
tent state. The dynamics matrix and the input subspaces were fixed 
over time, whereas the external inputs could be time varying. The 
condition-specific z-scored peristimulus time histograms (PSTHs) 
of individual units in PFC were then reconstructed as a linear com-
bination of the low-d latent dynamics (via an orthonormal mapping, 
matrix C in Fig. 1B). Note that the population PSTHs were com-
puted from PFC units that were not recorded simultaneously, so the 
inferred dynamics are based on pseudo-population data (1).

Critically, we fitted any given LDS model jointly to the PFC data 
from the two contexts, whereby only some of the model parameters 
varied across contexts. We considered primarily two model classes. 
In what we refer to as the {Acx,B} models, the dynamics matrix Acx 
could differ across contexts (Fig. 1B, cx = mot/col. context), whereas 
the input parameters were fixed. In the {A,Bcx} models, on the 
other hand, the dynamics matrix was fixed, but the motion and col-
or subspaces Bcx

m,c
 were allowed to vary across contexts (in both di-

rection and norm). These two classes effectively amount to two 
distinct mechanisms for processing inputs flexibly across contexts.

The {Acx,B} models retain key properties of previously proposed 
RNNs (1). As in the RNNs, the motion and color inputs are fixed 
across contexts, meaning that context-dependent computations 
must be achieved by the recurrent dynamics (Fig. 1C). The {A,Bcx} 
models instead rely on contextually modulated inputs, a mechanism 
that appeared unlikely on the basis of past analyses of the PFC re-
sponses (1). Both model classes differ from the RNNs in several 
ways. First, whereas the RNNs were trained on the task, with 
handcrafted external inputs that were constant over time, all LDS 
parameters were fitted to the data (Fig. 1B, gray boxes), includ-
ing the time-varying inputs um(t) and uc(t). Second, whereas the 
RNNs received one-dimensional (1D) inputs, the LDS could learn 

multidimensional input subspaces Bm,c and could thus produce rich 
activity patterns directly through the inputs (11, 12). To avoid solu-
tions that relied entirely on input driven activity, we fitted the LDS 
with a regularization favoring weak inputs (Materials and Methods). 
Activity patterns that do not directly represent the motion and color 
coherence, such as the integrated relevant evidence or activity re-
lated to the passage of time, would then be encouraged to emerge 
through the transformation of the inputs by the recurrent dynamics 
in all LDS models.

We found that the two LDS model classes could explain the PFC 
responses similarly well (Fig. 2A, {Acx,B} and {A,Bcx}; cold col-
or lines), implying that two very different mechanisms of context-
dependent computation are consistent with the observed activity. A 
third model class that had contextual flexibility in both the recurrent 
dynamics and the inputs (referred to as {Acx,Bcx}) did not improve 
the fits, but given its equal performance, it could imply a mixture 
of the {Acx,B} and {A,Bcx} mechanisms (see Discussion). A model 
that could change only the initial conditions across contexts (Mate-
rials and Methods) but not the recurrent dynamics or the inputs 
(referred to as {A,B}) instead performed substantially worse. We 
estimated the dimensionality of the latent dynamics and inputs 
based on generalization performance using leave-one-condition-out 
cross-validation (LOOCV) (Fig. 2B) (13). We could test for general-
ization of the model across conditions given that the inputs were 
shared across several conditions, so we could generate data for the 
left-out conditions based on the inputs inferred from the rest of the 
conditions (Materials and Methods). All models performed sub-
stantially better for input dimensionalities higher than 1D (Fig. 2A), 
meaning that they required multidimensional input signals. The 
best performing LDS models required three dimensions for both the 
color and motion inputs. The LDS models needed between 13 and 
18 latent dimensions to best fit the data (table S1), many more than 
the four dimensions required to describe the task (motion, color, 
context, and decision).

PFC dynamics in each context are well approximated by a 
linear system
In the previous section, we showed that several LDS model classes 
capture the data equally well relative to each other. However, this 
finding alone does not address whether these models explain the 
data well in absolute terms. In this section, we demonstrate that 
these linear models indeed provide very accurate descriptions of the 
PFC responses.

First, both models closely approximated the highly heterogeneous 
responses of individual PFC neurons (fig. S1). The fits captured a 
substantial fraction of the variance in the data [27%, corresponding 
to mean squared error (MSE) = 0.73 on z-scored responses; Fig. 2B], 
which included poorly fit neurons with weak or sparse responses (fig. 
S1, firing rates <1 Hz), and were not smoothed or “denoised” (1).

Second, the best LDS models performed comparably to a more 
powerful model class that we refer to as TFR (Fig. 2, A and B, warm 
color lines). TFR is based on a novel low-rank model for the data that 
factors the data tensor into several low-d tensors, including a core 
tensor and an input tensor (Fig. 2C). LDS models share this factoriza-
tion but impose additional constraints (Fig. 2C). The coefficients of 
the TFR core tensor determine how inputs at any one time affect la-
tent state (and thus neural firing) at all other times. In an LDS, these 
effects are mediated by the dynamics matrix: They are causal, and 
influences that span multiple time steps can only do so through the 
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B

A

Fig. 1. LDS model-fitting approach. (A) Task. Monkeys chose a target indicated by either the motion or the color coherence of a random dots display depending on 
context. Three coherence levels (black and blue color shades) determine the sensory evidence strength, which can point to two different choice targets (filled circles/
positive values, choice 1; hollow circles/negative values, choice 2). Here, strong color coherence (green) and motion coherence (leftward motion; left arrow) point at op-
posite targets. In the color context, the monkey must choose the green target (on the right). In the motion context, the target on the left (red target). (B) LDS model fit to 
PFC data from both contexts with either fixed or context-dependent linear dynamics Acx and input subspaces Bcx

m,c
. External inputs um,c(t) are also learned [one for each 

coherence condition in (A)], are fixed across contexts, and can be time varying. These parameters determine the evolution of a low-d latent process x(t) that approximates 
the dynamics of the high-d PFC neural responses ŷPFC(t) (via the orthonormal mapping C). (C) Nonlinear RNNs were trained by Mante et al. on the same task as the mon-
keys. External inputs were handcrafted noisy signals with mean um,c constant over time and proportional to the coherence level. Input dimensions were 1D and fixed 
across contexts bm,c. A context-dependent input vector bcx switched the dynamics of the fixed nonlinear recurrent network between two approximately linear regimes 
Acx
app

. A linear readout pooled network responses to generate a decision signal for training. Network population responses yRNN(t) were only qualitatively compared to the 
PFC responses. Gray shadings, learned parameters from data fitting or training.
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linear latent dynamics. By contrast, the TFR core tensor allows each 
input value to have an arbitrary impact on measurements at all times. 
The learned pattern of input influences could be consistent with a 
time-varying linearization of a nonlinear dynamical system or could 
be inconsistent with any form of Markovian structure in the latent 
processes. However, the effects of different inputs in the TFR model 
superpose linearly, thus allowing generalization to held-out conditions 
in cross validation (as in the LDS model). The LDS models are nested 
within the TFR class (Materials and Methods), simplifying model 
comparisons (14). TFR incorporated input parameters and contex-
tual constraints equivalent to those of the LDS (Fig. 2C and Materials 
and Methods). The fitted latent dimensionality was similar in the 
TFR and LDS fits (13D to 18D; tables S1 and S2), but the optimal in-
put dimensionality was lower for TFR compared to the LDS fits (2D 
versus 3D; Fig. 2A). The extra input dimension in the LDS fits could 
imply limitations of the linear dynamical constraints. Beyond this 
difference, however, the greater flexibility in TFR provided little or no 
advantage to the fits (Fig. 2, A and B), confirming that linear dynam-
ics provide an accurate description of the data.

Third, the best LDS models qualitatively captured salient features 
of the population dynamics equally well. In particular, both the 
{A,Bcx} and the {Acx,B} models reproduced PFC population tra-
jectories in the activity subspace capturing most variance due to 
motion, color, and choice across contexts (Fig. 3) (1). TFR fits were 
comparable, both at the population (fig. S2A) and single-neuron 
level (fig. S1). One key implication of this finding is that the 
qualitative properties of population trajectories in the considered 
low-d activity subspace are not sufficient to distinguish between 

mechanisms that rely on inputs that are fixed or variable across con-
texts. Our quantitative model-fitting approach demonstrates that a 
model with flexible inputs and fixed dynamics ({A,Bcx}) can capture 
the prominent context-dependence of choice-related features of the 
responses but at the same time generates trajectories whose input-
related features appear largely stable across contexts.

To understand the mechanisms of context-dependent integra-
tion in the two model classes, below, we first separately characterize 
the inputs and recurrent dynamics in the {A,Bcx} and the {Acx,B} 
models and then ask how their combined effects can account for 
contextual integration in PFC. We assessed the robustness of the in-
ferred mechanisms by fitting 100 models for each class (random ini-
tialization) with the dimensionality of inputs and latent state set by 
the above cross-validation results (inputs: 3D; latent: 18D and 16D 
for {A,Bcx} and {Acx,B}; Fig. 2A and table S1).

Input signals span curved manifolds and are largely stable 
across contexts
In the models, the strength of contextual modulation can be summa-
rized by the norm of the latent activity, which we term the model “out-
put” (‖xcx

m
(t)‖ and ‖xcx

c
(t)‖; Fig. 4A). We computed the output in each 

context by setting either the color or motion input to zero. The model 
output is essentially identical across model classes: It increases through-
out the trial and is much larger for the relevant compared to the irrele-
vant input, reflecting context-dependent integration (Fig. 4, B and C, 
bottom, thick versus thin curves; green bars: P < 0.001, Wilcoxon 
rank sum test, N = 100 models). In the {Acx,B} model, this con-
text dependence is due to differences in the recurrent dynamics across 

CA B

D
D

Fig. 2. Several LDS model classes capture the PFC data equally well and comparably to a more flexible TFR model. (A) LOOCV (13) for LDS and TFR models with 
different input dimensionalies and contextual constraints. Shown are minimum cross-validation MSE across all latent dimensionalities, relative to the best performing 
model (TFR {ABcx} model with 2D inputs and 14 latents). Error bars, SEM across LOOCV folds (36 task conditions, Materials and Methods). {Acx , Bcx} line is below {Acx , B}’s. 
(B) Training and LOOCV performance for the best LDS and TFR models across different latent dimensionalities (TFR 2D {ABcx} and LDS 3D {A, Bcx}; min LOOCV latent 
dim = 14 and 18). Monkey A data. (C) TFR model (top). The data tensor Y is factorized into three low-rank tensors, all learned. The loadings C (an orthonormal matrix) sets 
the rank of the factorization and maps the low-d core tensor AB into the high-d neural space. The low-d latents x(t) are generated by multiplying the core tensor and the 
input tensor U, which captures motion, color, and CI signals. For clarity, two indicator tensors are omitted, one recreating an LDS-like temporal convolution of the core 
tensor and inputs and another one that repeats the inputs across the 36 task conditions (Materials and Methods). To generate context-dependent activity Ycx, the core 
tensor can change across contexts ABcx. In the LDS model (bottom), the TFR core tensor AB is replaced by a smaller set of parameters, A and B. Inputs are also repeated 
across task conditions. Asterisk symbol, convolution operation; x0, initial conditions.
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contexts, whereas in the {A,Bcx} model, it reflects contextual modula-
tion of the strength and/or the direction of the inputs.

We computed the strength of the motion and color inputs by 
pooling contributions from all the corresponding input dimensions 
(‖Bcx

m
um(t)‖ and ‖Bcx

c
uc(t)‖; Fig. 4, B and C, top). Both inputs were 

somewhat more transient and weaker in the {Acx,B} compared to 
the {A,Bcx} model but were otherwise similar across the two model 
classes. By definition, input strength was fixed across contexts in the 
{Acx,B} model. In the {A,Bcx} model, the irrelevant inputs were 
weaker than the relevant ones but only modestly (Fig. 4B, top, thick 
versus thin curves, green bars: P < 0.001, Wilcoxon rank sum test; 
avg. decrease of 38 ± 14% and 22 ± 8% for mot and col. at t > 200 ms, 
means ± SD, N = 100 models).

Although our cross-validation procedure inferred 3D input sub-
spaces, most of the inferred input variance was contained in a 2D 
plane (fig. S3A). LDS models with 2D and 3D inputs performed 
similarly (Fig. 2A and fig. S2, C and D), whereas models with 1D in-
put performed worse (Fig. 2A and fig. S2, E and F). The input plane 
was spanned by dimensions that separately captured variance related 
to input coherence (mot and col) and coherence magnitude (∣mot∣ 

and ∣col∣), implying that inputs were represented along a curved 1D 
manifold within the plane (15). Such curved representations were 
found in both models (Fig. 4, D and E), both contexts of the {A,Bcx} 
model (Fig. 4D) and also in the PFC data (figs. S3B and S4).

The input planes were highly aligned between model classes (16° 
to 31°, average planes, N = 100 models per class; fig. S3C), an effect 
not expected by chance (fig. S3D). In the {A,Bcx} model, the motion 
and color planes varied across contexts but only modestly (33° ± 
10 mot, 46° ± 16 ∣mot∣, 25° ± 5 col., 27° ± 9 ∣col∣ dims, means ± SD, 
N = 100 models; Fig. 4D and fig. S3C) and less than expected by 
chance (fig. S3D). These small changes in input direction across 
contexts, together with the concurrent, modest change in input 
strength (Fig. 4B, top), fully account for changes in the output of the 
{A,Bcx} model (Fig. 4B, bottom).

In both models, the time course (Fig. 4, B and C, top, and fig. S4) 
and structure of the inputs (Fig. 4, D and E) is thus relatively simple. 
This finding alleviates a possible confound inherent in fitting LDS 
with time-dependent inputs. In principle, the fitted inputs could be 
very rich and effectively approximate on their own the dynamics of 
a very complex, nonlinear dynamical system. As we retrieved inputs 

B

C

A

DD

Fig. 3. LDS models with both fixed and context-dependent input dimensions capture PFC trajectories in a fixed task-related subspace. (A) Population trajectories 
in a hypothetical subspace, fixed across contexts, capturing most variance due to motion, color, and choice. Trajectories are sorted by choice and coherence strength (as 
in Fig. 1A). The same trajectories are sorted twice, by either motion or color. Input dimensions encode motion and color coherence information regardless of whether this 
is relevant or irrelevant in a given context (thick doted versus thin lines). In contrast, the decision-related dimension encodes only the integrated relevant input in each 
context (1) (decision axes separate filled versus hollow circles, but not filled versus dashed lines). This suggests that choice-related activity emerges from the relevant input 
signal. Input signals are assumed transient along the input dimensions. (B) PFC trajectories in the task-related subspace found by Mante et al. using targeted dimensional-
ity reduction (TDR) (1), for monkey A. The subspace captures motion, color, and choice-related variance along a set of orthonormal axes that are fixed across contexts. 
Colored thick bars, angle between TDR axes before orthogonalization. Numbers on bars, scaling factor to ease visualization (1). Trajectories are sorted by choice and mo-
tion/color coherence conditions, with color/motion conditions averaged out (1). (C) Cross-validated model trajectories (LOOCV) for the best LDS {A, Bcx} model (3D inputs, 
18D latents) in the task-related subspace found from the PFC data [dimensions in (B) to (D) are the same]. (D) Same for the {Acx , B} model (3D inputs, 16D latents). Trajec-
tories have been smoothed with a Gaussian filter for visualization (sliding window size, 5 bins).
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A

D

B C

EMotion context Color context Motion context and Color context

Fig. 4. LDS inputs are integrated selectively by both models, are largely stable across contexts, and span curved manifolds. (A) LDS inputs and outputs. Input vec-
tors Bu(t) are confined to the subspace spanned by the columns of B (here 2D, left). The latents or outputs x(t) span the full low-d LDS subspace (here 3D, right). (B) Top, 
external input strength over time (input norm, ‖Bu(t)‖) for the {A, Bcx} model in each context (relevant versus irrelevant), here shown for the strongest positive coherence. 
Bottom, the same but for the outputs, here generated from each motion and color input independently. To emphasize coherence-related contributions, the across-
condition mean input/output has been subtracted out. Means across 100 models. Shades, SEM (not visible in the outputs). Green bars, times when relevant and irrelevant 
inputs/outputs are significantly different (Wilcoxon rank sum test, P < 0.001). (C) Same but for the {Acx , B} model. Inputs across contexts are the same, by construction, so 
the relevant and irrelevant traces are overlaid. (D and E) Orthonormal 2D subspaces that demix coherence and coherence magnitude information (coh and ∣coh∣). Shown 
are mean inputs across 100 models for all coherences (with the across-condition mean subtracted) at t = 250 ms (after input norm peak strength, fourth time point in Fig. 
4, B and C) and projected onto the 2D coh-∣coh∣ planes. These form a curved representation of coherence information. Lines are drawn to ease visualization. For the 
{A, Bcx} model, input projections are shown onto the plane bisecting the two input planes found for each context, which were highly aligned (angles between dashed 
and filled lines). Color and motion planes were nearly orthogonal within each context for both models. Monkey A data.
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of much lower dimensionality than the recurrent dynamics (3D ver-
sus 16D to 18D), this scenario appears unlikely. Constraining the 
inputs to be fixed over time results in only a small drop in perfor-
mance (fig. S5, A and B, and Supplementary Text). The observed 
complexity of PFC responses thus need not be inherited from the 
external inputs but rather can be explained as resulting from ap-
proximately linear recurrent dynamics.

Input integration relies on high-dimensional 
linear dynamics
We analyzed the recurrent dynamics with an approach originally 
introduced for the nonlinear RNNs trained to solve the context-
dependent integration task (1). Context-dependent computations in 
the RNNs reflect four key features of the local linear approximations of 
the dynamics (Fig. 5A, left). First, the (discrete-time) dynamics has 
one eigenvalue with norm close to one, and all other eigenvalues 
smaller than one, implying integration along a line attractor (16). Sec-
ond, inputs are selected for integration by changing the direction of the 
leading left eigenvector of the dynamics (the “input mode” associated 
with the largest eigenvalue, i.e., slowest dynamics) such that it is or-
thogonal to the contextually irrelevant input. Third, the direction of 
the leading right eigenvector of the dynamics (the “output mode” as-
sociated with the largest eigenvalue), which determines the direction 
of the line attractor, is fixed across contexts. Fourth, the leading right 
and left eigenvectors have different directions, implying “non-normal” 
dynamics (17, 18). We refer to these four features of the dynamics as 
the “RNN mechanism” and below compare them to the dynamics of 
the fitted models.

In agreement with the RNN mechanisms, both model classes in-
ferred a largest eigenvalue with norm close to 1 (0.98 ± 0.02, {A,Bcx}; 
0.96 ± 0.03/0.99 ± 0.03, mot/col. context, {Acx,B}; means ± SD, 
N = 100 models), implying decay time constants longer than the trial 
duration (2.5 and 1.2/5 s). However, both models inferred an unex-
pectedly large number of additional eigenvalues associated with rela-
tively slow decay (Fig. 5B; ∣λ∣ > 0.8, i.e., τ > 224 ms, for a 750-ms 
trial). Such “slow modes” were most prominent in the {A,Bcx} com-
pared to the {Acx,B} models (55 ± 7% versus 35 ± 8% mot cx / 
41 ± 8% col. cx; means ± SD, N = 100 models). The large number of 
slow modes in both models suggest that PFC dynamics may be high-
er dimensional than predicted by the RNN mechanism.

We assessed context-dependent relations between the recurrent dy-
namics and the inputs by focusing on the input dimension representing 
coherence while ignoring the representation of coherence magni-
tude (Fig. 4, D and E). In the considered linear models, only the co-
herence component of an input can contribute to choice-dependent 
responses. To assess the alignment of inputs and recurrent dynamics, 
we first computed the “load” (the non-normalized projection; 
Materials and Methods) of the coherence component onto each left ei-
genvector at each time and then averaged over times (Fig. 5C). Consis-
tent with the RNN mechanism, these input loads were overall larger for 
the relevant versus the irrelevant input in both models (Fig. 5C, green 
bars: P < 0.05, Wilcoxon rank sum test, N =  100 models). The load 
along the leading left eigenvector was close to zero for the irrelevant 
input, as in the RNN mechanism. Unexpectedly, however, the largest 
loads overall were consistently obtained for eigenvectors with interme-
diate eigenvalues (∣λ∣ = 0.7 − 0.8, τ = 140 − 224ms) and thus rela-
tively fast decay time constants (Fig. 5, B and C). Notably, the prominent 
differences in input loads across contexts reflect very different mecha-
nisms in the two models: changes in the input strength and direction in 

the {A,Bcx} model and changes in the recurrent dynamics in the 
{Acx,B} model (Fig. 5A, right).

Non-normal dynamics makes model-specific contributions 
to selective integration
The qualitative similarity in the eigenvalues (Fig. 5B and fig. S6A) 
and input loads (Fig. 5C) for the {A,Bcx} and {Acx,B} models masks 
a key difference in the recurrent dynamics they implement. Specifi-
cally, the two models implement dynamics with very different degrees 
of non-normality. We assess the strength of non-normality through 
one of its possible consequences, namely, the transient amplification of 
perturbations of the activity (Supplementary Text) (17, 18). We simu-
lated dynamics resulting from a short perturbation or pulse of 
activity at trial onset, along random state-space directions. For the 
{A,Bcx} model, the perturbations gradually decay over the course of 
the trial (Fig. 6A, top, dashed lines, average across pulses in random 
directions). For the {Acx,B} model, instead, activity following a per-
turbation is transiently amplified, i.e., the gradual decay is preceded 
by a transient increase in activity (Fig. 6A, bottom, dashed lines). 
For perturbations along the left eigenvectors, transient amplification 
is even more pronounced in the {Acx,B} model but still largely ab-
sent in the {A,Bcx} model (Fig. 6A, dotted lines). Dynamics is thus 
strongly non-normal in the {Acx,B} model, as in the RNN mecha-
nism, but less so in the {A,Bcx} model (Fig. 6C and fig. S6D).

These differences in recurrent dynamics between models are also 
apparent in their responses to input perturbations (along the coher-
ence dimension; Fig. 6B). In the {A,Bcx} model, input pulses are not 
transiently amplified, but rather immediately decay, whether they 
are relevant or not (Fig. 6B, top, thick and thin curves). In the 
{Acx,B} model, the relevant input is transiently “persistent,” because 
of non-normal dynamics (Supplementary Text), whereas the irrele-
vant input quickly decays (bottom). Also at longer timescales, the 
decay of a relevant input pulse is faster in the {A,Bcx} compared to 
the {Acx,B} model, indicating less accurate input integration. Over-
all, the recurrent dynamics in the {A,Bcx} model thus cannot sus-
tain relevant input pulses as well as in the {Acx,B} model (Fig. 6B, 
top versus bottom thick curves). This difference explains why the 
{A,Bcx} model infers inputs that are stronger and less transient than 
in the {Acx,B} model (Fig. 4, B and C, top).

The features of the dynamics considered so far imply that the two 
LDS models implemented mechanisms of selection and integration 
that share key properties of the RNN mechanism. Like the RNNs, all 
LDS models ultimately relied on a context-dependent realignment 
between the inputs and a subset of the modes of the recurrent dy-
namics, either through a change of the inputs ({A,Bcx}) or of the 
recurrent dynamics ({Acx,B}). In addition, like the RNNs (1), the 
{Acx,B} model (but not the {A,Bcx} model) implemented strongly 
non-normal recurrent dynamics. However, while the RNNs im-
plement only a few slow modes [and approximate a “line attractor” 
(1)], both LDS models inferred overall higher-dimensional dynam-
ics, with a comparatively large number of slow modes. As we show 
below, the functional consequences of these slow modes become ap-
parent when considering how the neural trajectories emerge from 
the recurrent dynamics.

Input integration occurs in two distinct phases
Any explanation of how the neural trajectories predicted by the models 
emerge from the interaction of inputs and recurrent dynamics must 
include the properties of the right eigenvectors of the dynamics 
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Fig. 5. Selective integration requires multiple linear dynamics modes. (A) The RNN (left) had fixed input directions across contexts bm,c. The dynamics in each context 
switched between two approximately linear regimes, defined by the linearized dynamics matrices Am and Ac. The leading left eigenvector of Am,c was realigned toward the 
relevant inputs in each context, loading them onto the slowest output mode of the dynamics (the leading right eigenvector, with associated eigenvalue close to 1), which 
defined a 1D integrator or line attractor (1). The two LDS models (right) realign either the inputs ({A, Bcx}) or the left eigenvectors ({Acx , B}) across contexts, loading the 
inputs onto multiple modes. The {A, Bcx} model also increases the relevant input norm (bigger input arrows, see Fig. 4B). (B) Average eigenvalues norm across 100 models 
(shades, SD). These set the rate of decay of each mode (time constant τ) and determine the stability of the dynamics (∣λ∣ > 1 expanding mode, ∣λ∣ < 1 decaying mode, 
∣λ∣ = 1 integration mode). Slow modes have norms close to one (0.8 < ∣λ∣ ≤ 1, τ > 224 ms, green lines; Materials and Methods). (C) Average coherence input loads (Mate-
rials and Methods) onto the eigenmodes of the dynamics across 100 models (shades, SEM), here shown for the strongest positive coherence inputs. The relevant input 
loads are significantly higher than the irrelevant loads across multiple eigenmodes (green bars, Wilcoxon rank sum test, P < 0.05), and the loading is large onto many 
modes, not just the slowest one. This is true for both models but is achieved through either a change in inputs ({A, Bcx}) or dynamics ({Acx , B}) across contexts [(A), right]. 
Monkey A data.
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matrix. Whereas the left eigenvectors determine how inputs are cou-
pled to the recurrent dynamics (Fig. 5C), the right eigenvectors de-
termine “where” in activity space the inputs are mapped onto.

We separately consider condition-dependent (CD) and condition-
independent (CI) components of the neural trajectories. CD compo-
nents were the primary focus of past accounts of these data (1) and 
late in the trial primarily capture choice-related activity. CI compo-
nents, on the other hand, capture prominent structure in the tra-
jectories that is common to all conditions and choices and appears 
related to the passage of time in a trial. To identify the modes of the 
dynamics contributing to CD or CI components, we computed 
the alignment between the right eigenvectors of the dynamics and the 
dimensions capturing most CD or CI variance at a given time in the 
trial (Fig. 7, {Acx,B} model, motion context; and fig. S7, all models 
and contexts). Only right eigenvectors that are well aligned with a 
given CD or CI dimension can contribute to response variance along 
that dimension.

The alignment between CD dimensions and right eigenvectors 
suggests that input integration occurs in two phases characterized 
by distinct dynamics. Early in the trial, CD responses occur primar-
ily along right eigenvectors corresponding to modes implementing 
relatively fast decay and fast rotations (∣λ∣ = 0.7 − 0.8, decay time 
constant τ = 140 − 224 ms, rotation frequency f > 1 Hz; Fig. 7, A 
and B, yellow lines). Late in the trial, CD responses instead occur 
along right eigenvectors with very slow decay and weak or no rota-
tions (∣λ∣ > 0.9, τ > 475 ms, f < 0.25 Hz, red lines). This transi-
tion occurs consistently across model classes, contexts, and model 

initializations (fig. S7). The differences in decay constants and rota-
tional frequencies of the best aligned modes early versus late in the 
trial are highly significant (Fig. 7B and fig. S7B, P < 0.001, Wilcoxon 
rank sum test). These observations imply that the relevant input is 
initially integrated along multiple decaying and rotational modes. 
In line with these findings, the relevant inputs are loaded most 
strongly onto left eigenvectors with intermediate eigenvalues (Fig. 
5C). Later in the trial, the relevant input is further integrated and 
maintained along at set of different, more persistent and nonrota-
tional modes.

The CI components in the responses are mediated by modes that 
differ from those mediating the CD components and that appear 
largely fixed throughout the trial (Fig. 7, C and D, and fig. S7, C and 
D). At all considered times, the CI components are best aligned with 
a fixed set of modes that decay more slowly than the early CD-
aligned modes but more quickly than the late CD-aligned modes 
(∣λ∣ = 0.8 − 0.9, τ = 224 − 475 ms) and are associated with rota-
tional frequencies that are smaller than those in early CD-aligned 
modes but faster than late CD-aligned modes ( f = 0.25 − 1 Hz).

The inferred modes of the dynamics can thus be grouped into 
three nonoverlapping sets, accounting for different components in 
the trajectories. The first and second sets account for early and late choice-
related activity, while the third set accounts for choice-independent 
activity. The existence of these three different components in the 
PFC responses likely explains why the LDS models infer dynamics 
that is relatively high-dimensional and involves many modes associ-
ated with relatively slow decay.

A

C

B

Fig. 6. Non-normal transient dynamics contributes to selective integration in the {Acx ,B} model. (A) Models {Acx , B} and {A, Bcx} mean impulse response for perturbations 
along random directions (dashed lines) and along the left eigenvectors (dotted lines), averaged across 100 models and across left eigenvectors or random perturbations (num 
pert. = num left eigv. = 16/18). This measure shows how the dynamics matrix transforms a perturbation (or input) of unit norm by tracking the state norm of the system ‖x(t)‖ 
over time. Note that the {Acx , B} system has a different impulse response for each context since the dynamics matrix A changes in each context. Shades, SEM across 100 models. 
(B) Impulse response for unit norm perturbations along the motion and color coherence input dimensions. For the {A, Bcx} model, the dynamics matrix is the same across con-
texts, and, thus, the difference in the impulse response between perturbations along the relevant and the irrelevant input dimensions arises because these input dimensions 
subtly change across contexts. For the model {Acx , B}, the perturbations are applied along the same input directions across contexts since these are fixed, but the dynamics matrix 
changes, which causes a different transformation of the same input pulse in each context. Note that the impulse response along the input directions is substantially different from 
the average impulse response along random directions [dashed lines, the same as in (A)], which indicates processing selectivity of the dynamics along the input directions. Shades, 
SEM across 100 models. (C) Degree of non-normality of the two model classes (Henrici’s index, Materials and Methods). Error bars, SD across 100 models. Monkey A data.
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To further validate the existence of multiple phases of the dy-
namics, we examined activity trajectories along dimensions aligned 
with the CD and CI components. We defined context-independent 
early and late CD dimensions (averaged across contexts), which are 
primarily aligned with the first and second set of dynamics modes 
(yellow and red lines in Fig. 7A), and a single CI dimension, which is 
primarily aligned with the third set of modes (green line in Fig. 7A).

Projections along the early CD dimension and the CI dimension 
reveal prominent features in the trajectories that are not apparent in 
other subspaces (Fig. 8, A and B), confirming their potential impor-
tance in explaining the observed dynamics. The late CD dimension 
approximately matched the choice axis identified by Mante et  al. 
(average angular difference: 18° across contexts, much less than 
chance; fig. S6, B and C). Consistent with its alignment to slowly 
decaying modes, it captured a steady build-up of decision signals in 
both contexts over time (Fig. 8B, top; red dimension, dec) (1). The 
early CD dimension, which aligns to more rapidly decaying modes, 
instead captures transient choice-related activity that emerges early 
in the trial but later decays (Fig. 8B, top, yellow dimension, dec 2). 
Unlike activity along the input dimensions, which reflects the sign 
of a given input regardless of context (Fig. 8, A and B, middle; black, 
motion coh; blue, color coh), activity along the early CD dimension 
only reflects the sign of the contextually relevant input and is not 
modulated by the irrelevant input (Fig. 8, A and B, middle versus 
top). Last, projections onto the CI dimension reveal components of 
the responses that are common to both choices (Fig. 8, A and B, bot-
tom). As shown above, additional dimensions capture variance due 
to coherence magnitude (∣ col ∣ and ∣mot ∣ in Fig. 4, D and E, and fig. 
S8, A and B). All the inferred dimensions explained substantial frac-
tions of the data variance (1 to 9%; fig. S8C) that are comparable to 
those captured by previously defined task-related dimensions (fig. 

S8D) (1). Overall, these projections support the existence of two 
phases of integration and illustrate how dimensions based on LDS 
fits can isolate meaningful components of the computations imple-
mented by the neural dynamics.

Task-optimized RNNs do not capture all features of 
the PFC data
The properties of inputs and dynamics in the LDS models appear to 
differ in several ways from those expected from a line attractor of 
the kind implemented by RNNs trained to solve the contextual 
integration task. Specifically, both LDS models infer multidimen-
sional inputs, rely on a large number of slow dynamics modes, and 
process inputs in two phases (early versus late choice dimensions). 
However, it is not immediately clear that these features reflect 
meaningful differences between the linear LDS models and the 
nonlinear RNNs. Rather, some LDS features may reflect somewhat 
trivial consequences of approximating nonlinear dynamics with a 
linear system.

We repeated all the above analyses on simulated responses of a 
trained RNN and found that the highlighted features of PFC dy-
namics are not captured by the trained RNN (figs. S14 to S18). The 
LDS fits of the RNN responses infer inputs that are largely 1D (fig. 
S15, C to E) and do not provide any evidence of multiple phases of 
input integration (fig. S17). In the RNN, as in PFC, the inferred slow 
dynamics is not limited to a single mode, unlike in a perfect line at-
tractor (fig. S16A and Fig. 5B). The RNN tends to implement inte-
gration along a 1D manifold that is curved (1), rather than perfectly 
straight, and thus cannot be approximated by a single linear mode. 
Nonetheless, the number of inferred slow modes in the RNN is sub-
stantially smaller than in PFC (20 to 22% of modes are slow on aver-
age, N = 100 models, fig. S16A; versus 35 to 55% in the PFC data).

BA

C D

Fig. 7. Integration of the relevant inputs occurs in two separate phases of the dynamics. (A) Largest variance dimension of the CD data (i.e., the leading singular vec-
tor of the data with the across-condition mean subtracted) in the motion context and, at each time step, projected onto the right eigenvectors of the dynamics from the 
{Acx , B} model (dot products for real eigenvectors, cosines of minimum subspace angles for complex conjugate pairs of eigenvectors; Materials and Methods). Left/right 
panel shows dot products sorted by increasing eigenvalue norm/rotation frequency of the right eigenvectors (averaged across 100 models). Yellow lines mark the early 
phase of the integration process, [t = 350 ms, the time at which the integrated motion signal in Fig. 4, (B and C), peaks and saturates]. Red lines indicate the late phase of 
the integration process (the last time step of the trial, where decision signals are the strongest (1)). (B) Mean distribution of alignments across 100 random models at the 
early and late phases [at times marked in (A)]. Shades, SD. Green bars indicate the eigenvalues along which the early and late alignment distributions significantly differ 
(Wilcoxon rank sum test, P < 0.001). (C and D) The same as (A) and (B) but for the CI data vectors (condition-averaged data vectors). Green/purple lines mark the same 
periods as yellow/red lines. Monkey A data.
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The analyses of RNN responses also reiterate the challenges in 
establishing which of the two mechanisms implemented by the LDS 
models is more likely to be implemented by PFC. By design, the in-
puts to the RNN are not modulated by context, which matches the 
{Acx,B} models, but not the {A,Bcx} models. Yet, as for the PFC 
data, both model classes fit the RNN data equally well (fig. S14). The 
{A,Bcx} fits of the RNN responses display some idiosyncratic prop-
erties suggestive of parameter fine-tuning, like a very large number 
of latent dimensions (table S5) and extreme levels of non-normal 
amplification (fig. S16, C to E). Such fine-tuning may reflect the mis-
match between the underlying mechanisms of integration. The 
fits of PFC responses did not display evidence of such fine-tuning, 
meaning that, also in this respect, both model classes are equally 
valid descriptions of the PFC data.

Neural perturbations disambiguate among contextual 
integration mechanisms
The {A,Bcx} and {Acx,B} model classes capture the PFC data equal-
ly well, but differences in their dynamics (Fig. 6, A and C) and input 

properties (Figs. 4, B and C, and 6B) suggest that they could be told 
apart by causal perturbations of PFC circuits (Fig. 6). The effects 
of causal perturbations may reflect these differences directly in the 
measured neural population activity, without the need to fit the re-
corded activity with LDS models.

We evaluated this idea by simulating perturbations applied along 
the principal component (PC) dimensions of the recorded neural 
activity, which can be computed without any model fitting (Supple-
mentary Text). We applied a perturbation to the activity in the first 
time-step of the analyzed trial-epoch and then used the models to 
predict the effect of the perturbation on activity in the remainder of 
the trial. The predicted effects of perturbations along some PC di-
mensions are readily visible in the activity trajectories for the best 
models in each class (Fig. 9A, perturbations along PC 15; left, 
unperturbed; right, perturbed). We quantified the effect of such per-
turbations by computing, at each time in the trial, the difference 
between perturbed and unperturbed trajectories (Fig. 9, B and C; 
individual lines, perturbations along different PC dimensions). We 
then either considered the component of this difference along the 

A B

Fig. 8. The LDS models help find multiple computational dimensions in PFC. (A) Expected trajectories along a hypothetical secondary decision dimension (top) that 
reflects transient decision signals and a dimension that captures CI signals (bottom), plotted against the evolution along a persistent decision dimension (the same plot-
ting conventions as in Fig. 3A). Contrast these with known dimensions that reflect motion and color inputs (middle, as in Fig. 3A). The hypothetical dimensions capture 
additional features of the population trajectories. (B) PFC data trajectories from monkey A along the early integration (secondary decision), decision, and CI dimensions 
(defined as the top singular vector of the CD data at the early and late periods, and the CI data at the early period, Fig. 7, averaged across contexts). The same plotting 
conventions as in Fig. 3B. Middle panels show the trajectories along the LDS-identified input coherence dimensions, averaged across contexts and models. The data pro-
jections along them resembled the input projections found by TDR (Fig. 3B; TDR-LDS input alignments: {A, Bcx}, mot = 55°, col. = 42°, for mean input coherence dimen-
sions across contexts and 100 models; {Acx , B}, mot = 44°, col. = 31°, mean dimensions across 100 models; the alignments are higher than expected by chance, fig. S6B). 
The across-condition mean has been subtracted to the trajectories in the middle panels to emphasize coherence-related input variance. The dimensions have been or-
thogonalized with a QR decomposition (1) (starting with decision, and then dec 2, motion, color, and CI). Colored bars show the alignments before the orthogonalization 
step (note that the inferred LDS coherence input dimensions are almost orthogonal to the decision dimension). Trajectories have been smoothed with a Gaussian filter 
for visualization (sliding window size, 5 bins).
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A C

D E

B

Fig. 9. The LDS model classes predict different responses to activity perturbations. (A) Model-generated trajectories (left) and model-generated perturbed trajecto-
ries (right) along the decision dimension (as in Fig. 3B) for six task conditions (all motion coherence levels under the weakest positive color coherence; motion context). 
Perturbations are along PC 15 of the PFC data from the motion context, given at t = 100 ms after random dots onset (first shown time point). The perturbation vectors are 
of norm 10 but had only a small projection onto the decision dimension (see first time point). (B) Difference between the perturbed and unperturbed trajectories, which 
reveals the perturbation effect (thick lines, PC 15; thin lines, PCs 1 to 20). The effect is identical across the six conditions as model dynamics is linear. Best {A, Bcx}, {Acx , B}, 
and {Acx , Bcx} models. (C) Norm of the perturbation effect over time within the entire observations space. For the PC 15 direction (thick lines), the perturbation results in 
strong transient amplification for model {Acx , B}, but not for model {A, Bcx}, and weaker amplification for the {Acx , Bcx} model. (D) Mean perturbation effect across 100 
fitted models for the first 20 PCs from the motion and color context data [as in (B); shades, 95% confidence interval]. The averages do not reveal large differences across 
model classes along the decision dimension. (E) Norm of the perturbation effect [as in (C)] across 100 models for the first 20 PCs [plotting as in (D)]. The average norm 
reveals the strong transient amplification properties of the {Acx , B} model and their absence in the {A, Bcx} model. Model {Acx , Bcx} lies in between.
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decision axis (Fig. 9B) or computed the norm of the difference in the 
full state space (Fig. 9C).

The perturbation effects clearly distinguish between the {Acx,B} 
and {A,Bcx} model classes, in particular, when considering its norm 
in the full state space (Fig. 9C, top two rows). Perturbations along 
several PC dimensions result in strong transient amplification in the 
{Acx,B} model, whereas perturbations consistently decay in the 
{A,Bcx} model. These findings are consistent with those of pertur-
bations along random activity directions (Fig. 6A) and mainly re-
flect the highly non-normal dynamics of the {Acx,B} models (Fig. 
6C). The differences between models are also apparent when con-
sidering only perturbation effects along the decision axis (Fig. 9B), 
but these effects overall are less pronounced than those on the full 
norm of the activity (Fig. 9C).

Here, we also evaluated the perturbation effects in a third model 
class, the {Acx,Bcx} model, for which both inputs and internal dy-
namics can be modulated by context. Notably, these models are as 
good as the {Acx,B} and {A,Bcx} models in explaining the PFC data 
(Fig. 2A). The perturbation effects in the best {Acx,Bcx} model are 
intermediate between those in the {Acx,B} and {A,Bcx} models, in 
that perturbations along multiple dimensions are amplified but less 
so than for the {Acx,B} model. The {Acx,Bcx} model relies on inter-
nal dynamics (fig. S12J) and inputs (fig. S12, A to F) whose proper-
ties are intermediate between those of the {A,Bcx} and {Acx,B} 
model classes.

In addition to simulating perturbations of PFC activity, we also 
evaluated whether perturbations of the motion and color inputs 
could distinguish between models (fig. S13 and Supplementary 
Text). In simulation, we transiently switched off one of the inputs, a 
manipulation that experimentally could be implemented by briefly 
reducing the motion or color coherence to 0%. The effects of 
input perturbations were largest in the {A,Bcx} models, reflecting 
the stronger inferred inputs for this class compared to the {Acx,B} 
models (Fig. 4, B and C). However, input perturbations overall re-
sulted in only subtle differences between classes, which may be chal-
lenging to validate experimentally.

Critically, the comparably larger effects of activity perturbations 
were highly consistent across models within a class (Fig. 9, D and E, 
analogous to Fig. 9, B and C, but for 100 models in each class; shad-
ing, confidence interval over models in a class). The robustness of 
these effects suggests that perturbations along a sufficient number of 
high-variance dimensions should make it possible to experimentally 
distinguish between linear dynamics that account for the condition-
averaged trajectories equally well. The number of transiently ampli-
fied PC dimensions and the strength of this amplification may provide 
a quantitative measure to place PFC dynamics along a spectrum of 
solutions that is bookended by the {Acx,B} and {A,Bcx} models.

DISCUSSION
The complex and highly heterogeneous activity patterns observed in 
prefrontal areas are thought to be critical for the computations im-
plemented in these regions (19). In this study, we inferred candidate 
mechanisms for one such computation, contextual decision-making, 
by fitting interpretable LDS models directly to PFC activity. We 
found that two distinct mechanism of contextual-integration were 
consistent with the PFC responses: a switch in recurrent dynamics 
and a modulation of inputs. Both mechanisms required multidi-
mensional inputs and high-dimensional integration dynamics to 

reproduce the complex dynamical portrait of PFC population activ-
ity. This finding stands in contrast to mechanisms inferred with al-
ternative approaches that rely on models with limited complexity, 
which are easier to interpret but may miss potentially important 
features of the measured activity (1, 20–24).

The first LDS mechanism is broadly consistent with past accounts 
of PFC responses in this task (1, 20–22), in that the input selection 
relies on non-normal, context-dependent recurrent dynamics. Apart 
from this role in inputs selection, our analysis revealed how non-
normal dynamics might additionally result in the transient amplifi-
cation of relevant inputs in PFC. Non-normal transient amplification 
was previously proposed to be involved in the processing of external 
inputs (17, 25–28) and their maintenance in working memory (29), 
in producing transient activations during movement generation 
(30), and in mediating robustness to perturbations (31). Our obser-
vation of two distinct stages in PFC dynamics during decision for-
mation is evocative of the proposal that transient amplification may 
optimally load information onto an attractor (27). In contrast to 
such optimal loading, however, we inferred inputs that were not 
preferentially aligned with the most amplifying dimensions of the 
dynamics (fig. S6, E to G). The loading of inputs across many modes 
(Fig. 5C) might alternatively reflect optimal input discrimination 
strategies in non-normal recurrent networks (32).

The second LDS mechanism relies on a modest modulation of the 
inputs (33). Our LDS fits reveal the strength of top-down modulation 
of sensory areas that would be required to explain context-dependent 
responses in PFC. The inferred modulation strengths (38 ± 14% mot, 
22 ± 8% col.; Fig. 4B) are in the range of some attentional effects 
observed in sensory areas (34, 35), although other studies reported 
weaker or stronger modulation (36–40). Unlike recent modeling of 
sensory and prefrontal responses during contextual decisions in mice 
(40) and humans (41), we found that irrelevant inputs are not com-
pletely gated out before reaching PFC. Notably, not just the input 
strength but also its direction was modulated by context (Fig. 4D). A 
change in input direction could be achieved with top-down modula-
tion if the input originated in multiple areas or subpopulations that 
are modulated independently (Supplementary Text). Alternatively, 
input amplitude and direction could both be modulated by nonlinear 
dynamics occurring within PFC (21, 23, 42), a possibility that we did 
not explicitly model here.

Our analyses provide insights into how exactly the two proposed 
mechanisms would have to operate to explain the PFC activity in 
terms of the time course and context dependence of the inputs, the 
properties of the internal dynamics, and the interactions of both in-
puts and dynamics. These distinct features result in precise, quanti-
tative predictions that could be experimentally tested, as we discuss 
below. Such predictions could not have been made on the basis of 
a qualitative description of the data but are possible thanks to our 
data-driven modeling approach.

Both LDS models implemented input integration in two distinct 
phases, whereby choice-related signals first emerged along relatively 
fast decaying dimensions with rotational dynamics and then transi-
tioned toward orthogonal dimensions with slower, nonrotational 
dynamics. This finding is consistent with the proposal that individ-
ual task-related signals are encoded dynamically along multiple di-
mensions at different timescales (12). Our early and late choice 
dimensions were well aligned with the early and middle choice di-
mensions in Aoi et al. (12) (35° and 22°, respectively; much more 
than chance, fig. S6, B and C). Our LDS fits show how these multiple 
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choice dimensions could emerge from the interaction of inputs and 
recurrent dynamics and lead to a different interpretation of the un-
derlying mechanisms. Whereas such past accounts of the data con-
cluded that recurrent dynamics in PFC is strongly rotational late in 
the trial (12), in the LDS fits, rotational recurrent dynamics primar-
ily shapes the early choice responses (Fig. 7). While these features of 
the LDS differ in several ways from dynamics in RNNs implement-
ing approximate line attractors (1, 16), in agreement with such sim-
pler models, the late choice signals predominantly emerged along a 
single, context-independent integration dimension (fig. S9) (1).

The key features of the inferred mechanisms of context-dependent 
integration were consistently found across the motion and color in-
puts in monkey A and the motion input in monkey F (figs. S19 to 
S23). However, as previously reported (1,  12), representations of 
color inputs were instead weak or absent in monkey F (fig. S20, A to 
D). Unlike in monkey A, activity in monkey F also revealed evidence 
of strong motion integration in both contexts [fig. S20, A and B; con-
sistent with the observed choices in that monkey (1)]; a somewhat 
weaker or absent separation of integration into two phases (fig. S22); 
and overall stronger CI signals, which were highly aligned with 
choice signals (figs. S19B and S22, C and D). All these features of 
activity in monkey F were captured by models that ultimately relied 
on similar mechanisms as those in monkey A (figs. S19 to S23).

The LDS models provide several insights into the properties of 
potential inputs into PFC, beyond their contextual modulation. 
First, both mechanisms inferred multidimensional inputs carrying 
information about both signed coherence and coherence magni-
tude. The resulting curved representation of coherence, which might 
arise from nonlinear circuit interactions, agrees with findings in pa-
rietal and frontal areas (11, 12, 15). Notably, in our models, the dif-
ferent input components were inferred entirely from the data rather 
than being hand-designed (12). Second, both models inferred in-
puts that were somewhat transient, although the fits penalized large 
magnitude inputs. The inputs weakened ({A,Bcx} mechanism) or 
progressively decayed ({Acx,B} mechanism) late in the trial (Fig. 4, 
B and C). However, models with time-invariant inputs cannot be 
ruled out as they performed almost as well (figs. S5B and S2, G and 
H). This confirms that the complexity of PFC responses is well ap-
proximated by linear dynamics and not necessarily inherited from 
inputs with rich dynamics.

Our models provide an alternative to previously proposed ap-
proaches for inferring the properties of inputs into an area. One ad-
vantage over past approaches (43–45) is that we make minimal 
assumption about the properties of the inputs, like their dimension-
ality. Several studies have emphasized the importance of inferring 
inputs to understand cortical computations (11,  43,  46–50), but 
such efforts are complicated by unavoidable model degeneracies 
that arise when attempting to distinguish inputs from recurrent 
contributions without access to the upstream areas from which the 
inputs originate (43, 49, 51, 52). Our finding that two fundamentally 
different mechanisms of input selection explain PFC responses 
equally well is a reflection of such degeneracy. Ultimately, the in-
ferred inputs and choice-related signals may reflect computations 
distributed across several cortical areas (2, 51).

Our modeling approach decomposes the dynamics of a complex 
system into linear parts that are easier to interpret, similar to switch-
ing LDS models (53). These models have proven useful to uncover 
dynamical motives that strongly correlate with behavior. As an 
example, in the hypothalamus of mice, persistent and rotational 

activity modes operating at different timescales were found to pre-
cisely encode social behaviors (54). In combination with methods 
from control theory, LDS models can also be used to infer inputs 
that are optimal for a given task, like bringing brain activity into 
healthy regimes in biomedical applications (55) or optimally config-
uring cortical dynamics during movement preparation (47, 48, 56). 
We found that our fitted LDS models are fully controllable and ap-
plied methods from control theory to identify the most amplifying 
dimensions of the dynamics (fig. S6, E to G) (27), but an exhaustive 
analysis of this type is beyond the scope of our study.

The LDS models explained the data essentially as well as our novel 
TFR model, which sets an upper bound to the goodness of fit achiev-
able by an LDS. In PFC, intuitive linear descriptions may thus apply 
to all regions of state space and not only to local regions around 
fixed points (1). While we fitted activity from only a relatively short 
time window from each trial (the 750 ms of random dots presenta-
tion), nonlinear models may not outperform linear models in cap-
turing cortical dynamics even on longer timescales (57). Nonetheless, 
analyses based on nonlinear models are becoming increasingly com-
mon, given their flexibility in capturing complex neural data (43) 
and in modeling biological constraints that cannot be captured by 
linear models (46) [but see (31)].

A crucial aspect of our data-driven modeling approach is that it 
is well suited to testing multiple alternative hypotheses about the 
mechanisms underlying the observed dynamics, but caution must 
be taken in selecting among competing theories when modeling 
complex systems like the brain (14, 58). Several LDS mechanisms 
explained the data similarly well ({A,Bcx} and {Acx,B} models with 
time-varying 3D inputs, Figs. 2A and 3, C and D; 2D inputs, fig. S2, 
C and D; and time-constant 3D inputs, figs. S5B and S2, G and H), 
whereas others explained the data less well (models with time-
varying 1D inputs, Fig. 2A and fig. S2, E and F) or only poorly (a 
{A,B} model, fully constrained across contexts, with time-varying 
3D inputs, Fig. 2A and fig. S2B).

Models combining contextual modulation of both inputs and in-
ternal dynamics ({Acx,Bcx}) also explain the data (Fig. 2A). Notably, 
these models show aspects of both the {A,Bcx} and {Acx,B} models, 
implementing a mechanism that essentially “interpolates” between 
the two other solutions (fig. S12 and Supplementary Text). Given 
the flexibility and adaptability of PFC circuits, one could well imag-
ine that some PFC contextual computations might be more input 
driven, while others might be dynamics driven; the relative contri-
bution of both mechanisms might depend on different factors (e.g., 
metabolic considerations). We based our discussion on the two sim-
pler models ({A,Bcx} and {Acx,B}) since this allowed us to describe 
the range of solutions identified by all three model classes.

Our best LDS models share key features with mechanisms of 
context-dependent integration recently inferred by a study in rats (24), 
which relied on pulsatile inputs to distinguish between alternative 
mechanisms of input selection and integration. Similarly, the candidate 
mechanisms we identified ({A,Bcx}, {Acx,B}, and {Acx,Bcx}) could be 
distinguished by their dynamics following activity perturbations or in-
put perturbations. The effects of such perturbations would differ be-
tween mechanisms due to their different degree of non-normality and 
transient amplification (Fig. 6, A and C, and fig. S12J) and their differ-
ent input properties (Fig. 4, B and C, and fig. S12, A to F). The outcome 
of such a perturbation experiment could thus be used to place the dy-
namics of prefrontal circuits along the spectrum of mechanisms book-
ended by the extremes of the {A,Bcx} and {Acx,B} models.
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Alternatively, input and recurrent contributions to the dynamics 
may sometimes be distinguished on the basis of the properties of 
trial-by-trial variability in simultaneously recorded population re-
sponses (51). Given that we did not have access to simultaneously 
recorded data, we could not use trial-by-trial residual variability to 
estimate properties of the dynamics that might disambiguate between 
such contributions. Notably, unlike modeling based on trial-by-trial 
variability alone (51), our approach based on condition-averaged re-
sponses allowed us to estimate not just the properties of the internal 
dynamics but also those of the external inputs. Future work may com-
bine both approaches to account for both condition-averaged trajec-
tories and trial-by-trial variability.

Methods for inferring neural population dynamics of the kind 
proposed here will likely play a key role in uncovering the neural 
computations underlying behavior. While abstract mental processes 
were originally hypothesized to reflect structural changes at the lev-
el of single neurons [Santiago Ramón y Cajal, see (59)], more recent 
evidence suggest that cognitive functions arise at the neural popula-
tion level and depend critically on the ability of neural circuits to 
flexibly switch between dynamical regimes (60–63). Ultimately, 
a complete description of neural computations will also explain 
how neural dynamics emerges from the rich and dynamic structural 
components of biological circuits (64–66). The lawful characteriza-
tion of population level dynamics amounts to a theoretical abstrac-
tion of the neural computations emerging from such a rich neural 
circuit and provides a key bridge in linking lower-level biological 
structure to behavior.

MATERIALS AND METHODS
Experimental procedures and data
Subjects and task
Two adult male rhesus monkeys were trained in a contextual two-
alternative forced-choice visual discrimination task. The monkeys 
had to discriminate either the color or the motion of a random dots 
display based on context, which was indicated by the fixation cue 
(color context, blue cross; motion context, yellow square; Fig. 1A). 
The presentation of the random dots lasted for 750 ms, after which 
the monkeys had to wait for a variable delay and report their deci-
sion. This was done by saccading to one of two diametrically op-
posite targets, as indicated by the color or motion evidence. The 
strength of the evidence was modified by varying the motion and 
color coherence of the random dots. This was determined by the 
percentage of dots moving coherently or that were colored the same. 
Six different coherence settings were used: three strength levels and 
two directions. The later indicated whether the evidence was point-
ing toward (choice 1) or away from (choice 2) one of two choice 
targets—placed at the receptive field (RF) location of the recorded 
neurons (Fig. 1A, white circles). When the evidence pointed toward 
the RF of the neurons, their firing rates typically increased above 
baseline. Therefore, positive values were used to define the in-RF 
evidence. On the contrary, when the evidence pointed away from 
the RF of neurons, their firing rates typically decreased, and, hence, 
negative values were used to define the out-RF evidence. Consider-
ing all possible motion and color coherence value pairings (6 × 6), 
36 different random dots configurations were presented, which de-
fined the 36 task conditions. The motion and color evidence in a 
given trial could be congruent or incongruent. When incongruent, 
it was necessary for the monkey to ignore the irrelevant signals to 

perform the correct decision. All surgical and behavioral proce-
dures conformed to the guidelines established by the National Insti-
tutes of Health and were approved by the Institutional Animal Care 
and Use Committee of Stanford University. For further details on 
the animal procedures and task, we refer to the original study (1).
Neural data
Electrophysiological recordings were performed during the task in 
PFC regions, likely comprising the frontal eye fields and surround-
ings. Both single-unit and multi-unit activity was isolated from the 
recordings. We referred to them as units or neurons, for simplicity. 
Only a few neurons were recorded simultaneously in each trial, but 
their activity was collected for multiple trials under the 36 differ-
ent task conditions. Population responses were then constructed by 
pooling the condition-averaged activity of all neurons. For that, the 
firing rate of the neurons was computed in each trial using a 50-ms 
sliding square window from spike trains sampled at 1 ms. Activity 
was then averaged across trials under the same condition and z-scored, 
as in (1). However, we did not apply any smoothing to the data be-
fore fitting the models (only in the analysis, for visualization pur-
poses). Thus, the data consisted of a pseudo-population of raw 
per-condition averaged PSTHs. The population size was N = 727 for 
monkey A and N = 574 for monkey F. We included only neurons 
that had recorded activity under all conditions and for all times. As 
in the original study, we focused our analysis on the period of ran-
dom dots presentation (750 ms, from 100 ms after dots onset to 
100 ms after dots offset) and we analyzed only correct trials.

Models
LDS model
The LDS model considered was a non-probabilistic version of a 
standard LDS or state space model, with equations

where the vector xk(t) represents the latent state at time step t and 
task condition k, yk(t) are the observations (a vector containing the 
PFC condition-averaged PSTHs), and uk(t) the external input vec-
tor. The dynamics matrix A determines the transition between sub-
sequent latent states. The initial conditions x0 specify the latent state 
at t = 0. The matrix B defines the input dimensions. The external 
inputs drive the dynamical system at each time step and define input 
vectors Bu(t) that live in the latent subspace spanned by the columns 
of B. Therefore, the external inputs are assumed linearly mixed in 
the population at each time step. Note that the input vectors Bu(t) 
can point in different directions over time, but these changes are al-
ways confined within the input subspaces. Note as well that in our 
analysis of the inputs, we always consider the pair Bu(t) since there 
might be multiplicative degeneracies: A given scaling of B can al-
ways be compensated by the inverse scaling of u(t). The input term 
in Eq. 1 can be decomposed to make explicit its color and motion 
components Bmum(t) + Bcuc(t). The loading matrix C maps the 
low-d latent state onto the high-dimensional neural space. This ma-
trix is constrained to be orthonormal, which simplifies the interpre-
tation of the inferred dynamics given that orthonormal mappings 
preserve the geometrical and dynamics properties of the low-d tra-
jectories. The constant vector d acts as a bias. This LDS model can 
be seen as a low-d RNN that reads out onto a high-dimensional 
output space.

xk(t) =Axk(t−1)+Buk(t)

yk(t) =Cxk(t)+d
(1)
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We orthogonalized C post hoc through a similarity transformation 
based on the singular value decomposition (svd) of C (67, 68). We first 
computed the svd of C = USV ⊺. We then transformed all LDS param-
eters Θ =

(
A,B, x0,C, d,u

)
 using the matrix T = SV ⊺ to form 

Θ̃ =
(
TAT

−1
,TB,Tx0,CT

−1
, d,u

)
. The loading matrix of the trans-

formed parameters Θ̃ is C̃ = U, which has orthonormal columns.
To capture changes in activity across contexts ycx

k
(t), we fitted an 

LDS model jointly to the PFC data from each context. The model 
could learn independent parameters for each context (based on the 
data from each context) or a single parameter across contexts (using 
the joint data from both contexts). Both the dynamics matrix Acx 
and the motion and color subspaces Bcx

m,c
 could be context-dependent 

(cx = mot or col. context). The Bcx
m,c

 matrices could have different 
norms, and, hence, contextual modulation of inputs could be imple-
mented through changes in both input subspace orientation and 
norm. The external input signals um,c(t) and the mapping C were 
assumed fixed across contexts.

For each motion and color input dimension, six external input 
time courses were learned, corresponding to the six different 
coherence values in the task (three strength levels and two direc-
tions). These were inferred by pooling data from all task conditions 
were a particular coherence level and direction was presented and, 
therefore, were shared across task conditions (i.e., there were 36 task 
conditions, but only 6 motion and 6 color input traces were inferred 
per input dimension). The model incorporated additional input con-
straints, which simplified their temporal structure and were found to 
improve generalization performance. Time courses were constrained 
to be the same for all coherence levels of the same direction. That is, 
a single time course was shared for positive coherences (in-RF evi-
dence) and another one for negative coherences (out-RF evidence). 
The coherence strength level was learned as a scalar value that multi-
plied the time course u(t) = Tin,out(t)coh1,…,6. We also fitted a model 
constrained to learn fixed inputs in time, with T

in,out(1,… , t) = 1. 
The resulting input vectors (Bu) for this model also live in the input 
subspace defined by the input matrices B, but unlike the input vectors 
for the time-varying input model Bu(t), these do not move within the 
input subspaces over time and remain fixed throughout the trial 
(both in strength and direction). Orthonormal 2D subspaces that de-
mix coherence and coherence magnitude variance (coh and ∣coh∣) 
were found within each inferred 3D input subspace by linearly re-
gressing the inferred external input values against the experimental 
coherence values and their magnitudes (Fig. 4, D and E).

A different vector of initial conditions was also learned for each 
context xcx

0
. This parameter helped the model recreate the separation 

of trajectories in state space found across contexts [contextual axis 
in the Mante et al. study (1)]. Note that this feature cannot account 
for the contextual differences in input integration since the model is 
linear, so the relationship between inputs and dynamics modes 
is the same everywhere in state space. A fully constrained model 
across contexts, with flexibility only in the initial conditions, fails to 
selectively integrate and poorly reproduces the data (Fig. 2A, {A,B} 
model, and fig. S2B). The initial conditions simply add a shift to the 
overall dynamics in an input-independent manner since x0 is the 
same across all task conditions, so it could only capture baseline 
changes across contexts. This can be seen in the next equation, which 
illustrates the unfolding of the dynamics from the initial state and 
makes the dynamics and inputs convolution explicit

This equation also illustrates the presence of a summation degen-
eracy in the model. The first term defines CI effects, but these can 
also be captured by the input term. For this reason, in Figs. 4 and 8 
and figs. S3B, S4, and S8 (and associated supplementary figures of 
the RNN and monkey F extended data analysis), we subtracted 
out the across-condition mean from the input/data trajectories along 
the input dimensions.

The model was implemented in Python and optimized using gra-
dient descent (ADAM algorithm) to minimize the data reconstruc-
tion MSE,

where N = number of neurons, T = trial duration, K = number of 
conditions, and C  =  number of contexts. Since the data were z-
scored, the MSE captured the fraction of unexplained variance in 
the data by the model. The cost function incorporated an input 
norm penalty to constrain the space of possible solutions and to fa-
vor learning small inputs. This encouraged that task-related vari-
ables in the data other than the inputs, in particular, integration 
signals, were generated dynamically by the model. Incorporating 
the penalty minimally affected performance and helped provide 
consistent solutions across fits even when parameters were initial-
ized at random. Therefore, we incorporated such penalty in all our 
model fits and randomly initialized all parameters. The resulting 
objective function was

The input penalty weight λinp was set to 10−5. Lower values re-
sulted in inconsistent solutions across random initializations, with 
varying performance. Higher values (>10−2) resulted in substantial 
error increases and poor convergence, especially for the {Acx,B} 
model. Inputs inferred in the range λinp = 10−5 − 10−2 were qualita-
tively similar and had comparable errors. The parameters were ran-
domly initialized by sampling from a Gaussian distribution with 
zero mean and SD of 0.01. The ADAM optimizer learning rate was 
set to 0.009 and the rest of parameters to default. The convergence 
criteria was set to ΔCost < 10−5, maximum iterations to 10,000, and 
minimum iterations to 5000.

Note that the LDS was simply optimized to minimize the 
MSE of the condition-averaged PSTHs. We did not learn any ob-
servations noise model or inferred a latent state distribution, 
contrary to more standard formulations of the LDS, which are 
fully probabilistic [and typically infer Gaussian latents, or Gaussian 
latents combined with Poisson observations (69)]. We considered 
this a simpler case given that our data were trial averaged. Fur-
thermore, our focus was to analyze the parameters of the dy-
namical model, which are part of the prior distribution over the 
latents in the probabilistic LDS, and not the data-corrected pos-
terior distribution. The latents in our model are simply generated 
through forward prediction from the learned initial conditions 
x0 based on the learned inputs and dynamics parameters (i.e., 
using Eq. 2).

x(t) = A
t
x0 +

t∑

t�=1

A
t−t�

Bu
(
t
�
)

(2)

MSE =
1

NTKC

�

t,k,cx

‖ycx
t,k
− ŷ

cx

t,k
‖2
2 (3)

Cost =
1

NTKC

�

t,k,cx

‖ycx
t,k
− ŷ

cx

t,k
‖2
2
+ λinp

�

t,k,cx

‖Bcxucx
t,k
‖2
2 (4)
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TFR model
The model consists of a factorization of the data tensor structure into 
three main low-rank tensors

where n = number of neurons, t = time steps, k = conditions, l = 
latent dimensionality, u = input dimensionality + 1D baseline. The 
tensor C (an orthonormal matrix) sets the rank of the factorization 
and maps the low-d core tensor AB into the high-dimensional neu-
ral space. The inputs tensor U captures the CD effects in the data and 
acts as a regressor, when this is known. When learned, as it is the 
case here, it is used to capture task-related variables, such as motion 
and color input signals. Note that similar to the LDS, these signals 
are assumed linearly mixed in the population at each time step.

In the previous equation, for clarity (as in Fig. 2C), we omitted an 
indicator tensor T that emulates the LDS-like convolution of inputs 
and dynamics

where Ttt�t�� = δ
(
t− t� = t��

)
. One can see how this model encom-

passes the LDS by writing

where A and B correspond to the LDS dynamics and input subspace 
matrices, respectively. This equation shows that the TFR model has 
the flexibility to learn different parameters to capture the data at 
each point in time: In the AB core tensor, each entry along the tem-
poral dimension can be of any value. In the LDS model, on the con-
trary, the parameters at each point in time are constrained to be 
powers of time of the dynamics matrix A (times the input matrix B). 
This is a subset of the possible parameters the TFR model can learn 
and specifies a constrained relationship between subsequent points 
in time that must follow linear dynamics.

The inputs incorporated constraints analogous to the LDS. First, 
inputs were repeated across conditions with an additional indicator 
tensor Q

where c = (6 × u) + 1 indexes the six coherence conditions for each 
input dimension, plus baseline (that captures CI effects). In this way, 
the tensor U is designed to extract common task-related variables 
across conditions. Second, the temporal structure of the inputs was 
constrained to be the same for coherences of the same direction. For 
that, the input tensor U was factorized further as follows

where d = (2 × u) + 1 indexed the two possible coherence directions, 
per input dimension, plus the baseline.

The parameters of the TFR model can be computed by alternat-
ing the estimation of the tensors W = CAB and U. For that, one can 
consider the tensor unfolding Y(n)(tk) and compute C and AB via re-
duced rank regression, with fixed U. Then, knowing W, the least 
squares estimate of U can be computed. In practice, we estimated the 
parameters following the same optimization procedure we used for 
the LDS, which provided identical results. That is, the model was 
implemented in Python and optimized using ADAM, with objective 
given by the data reconstruction MSE.

The TFR model is related to existing regression-based methods 
that find task-related variance in the data (1, 12, 70) but with the 
difference that TFR incorporates task regressors that are themselves 
learned from the data. Another key distinction is that TFR considers 
a joint factorization of the whole data tensor structure, similar to 
other studies (71), but the tensor components relate to the parame-
ters of the task and are themselves low-d.
Parameter count for the LDS and TFR models
In both the LDS and the TFR model classes, the number of data 
points well exceeded the number of model parameters. In the LDS, 
we included an input penalty to the cost when fitting the models, so 
the effective number of parameters is even lower. Furthermore, we 
estimated the latent and input dimensionality using cross-validation, 
demonstrating that the models generalize well with the chosen 
number of parameters.

Monkey A: data points = 785,160; number of parameters, LDS 
{A,Bcx} = 14,605, LDS {Acx,B} = 13,215, TFR {ABcx} = 12,438.

Monkey F: data points = 619,920; number of parameters, LDS 
{A,Bcx} = 8603, LDS {Acx,B} = 8694, TFR {ABcx} = 8848.
RNN model
We generated data from an RNN model of the same type as used by 
Mante and colleagues (1)

Briefly, the model was a nonlinear RNN trained using back prop-
agation to solve the same contextual decision-making task as the 
monkeys. Contrary to the LDS, the RNN was not optimized to 
reproduce the complex and heterogeneous responses of PFC neu-
rons, i.e., to match PFC’s dynamics. This network was designed with 
the same built-in assumptions as in the original model (Fig. 1C), 
namely, that the external coherence input signals um and uc were 
noisy but constant in time, with the mean proportional to the 
strength of the coherence evidence, and that these reached the cir-
cuit through two fixed input dimensions across contexts bm and bc. 
The model had the flexibility to learn different contextual input vec-
tors bcx, whose activation changed the dynamics of a fixed, nonlinear 
recurrent network (with connectivity A). This allowed the model to 
switch its state between two approximately linear regimes (Acx

app
= 

Amot
app

/Acol
app

), performing different computations in each context, 
namely, selecting the contextually relevant input signals for integra-
tion toward a choice and dynamically discarding the irrelevant ones. 
In the original study, the RNN population activity ycx

RNN
 was ana-

lyzed and qualitatively compared with the PFC activity, revealing 
some shared features that were suggestive of a common contextual-
integration mechanism between PFC and the network. The network 
could be “reverse engineered” to understand the mechanism under-
lying such computation by linearizing the dynamics around the 
identified fixed points of the system [obtaining different local dy-
namics matrices Amot∕col

app , which, however, were similar in dynamics 
and could be averaged (1)]. In this work, we instead focused on ana-
lyzing the properties of LDS models fit to the RNN population activ-
ity ycx

RNN
 (the z-scored condition-averaged responses, as in the PFC 

data, but from 100 RNN units) and recovered one or two dynamics 
matrices (Amot∕col in the {A,Bcx} model; Amot and Acol in the {Acx,B} 
model) that approximated the global dynamics of the RNN popula-
tion in both contexts. For further details on the RNN training and 
analysis, we refer to the original study (1).

Yntk ≈ CnlABltuUutk (5)

Yntk ≈ CnlABlt��uTtt�t��Uut�k (6)

ABlt��uTtt�t�� =

{
At−t�

ll
Blu t≥ t�

0 otherwise
(7)

Yntk ≈ Cnl ABlt��u Ttt�t�� Qukc Uct� (8)

Yntk ≈ Cnl ABlt��u Ttt�t�� Qukcd Pc Rdt� (9)

y(t) = Atanh
[
y(t−1)

]
+ bmum + bcuc + bcx (10)
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Dynamics analysis
Eigenspectrum and time constants
The eigenspectrum of the LDS dynamics matrices contains both real 
and imaginary eigenvalues (fig. S6A), which come in complex-
conjugate pairs

In discrete time dynamical systems, the absolute value of the ei-
genvalues determines the rate of decay or growth of each dynamic 
mode (72) (in continuous time models, instead, this is controlled by 
the real part of the eigenvalues). Modes are stable if they either de-
cay or persist

The slower the decay, the slower or more persistent a given mode 
is, and the greater input information is preserved along it. The time 
constant measures the time at which the initial state will have de-
cayed by 37% (1/e  =  0.37) along a given mode. Considering that 
each time step is 50 ms (the data binning size), the time constant is 
computed as

We classify a mode as slow if it has a norm close to one, that is, if 
∣λ∣ > 0.8. This corresponds to a decay time constant of τ > 224 ms, 
which encompasses approximately a third of the trial duration. Given 
that the inferred external inputs in the two models are strong for the 
first third of the trial (Fig. 4, A and B), inputs mapped onto such slow 
modes largely persist until the end of the trial, albeit with some decay 
for modes ∣λ∣ = 0.8 − 0.9. In particular, by the second third of the 
trial, inputs would have decayed by at most 37%. We consider the 
slowest modes to have ∣λ∣ > 0.9 and time constant τ > 475 ms. These 
are strongly persistent and preserved most input information until 
the end of the trial. The relatively fast decaying modes (∣λ∣ = 0.7 − 0.8, 
τ = 140 − 224 ms) are somewhat persistent but lose most input in-
formation by the end of the trial.

Many of the eigenvalues were imaginary, indicating the presence 
of rotational dynamics in the data (61). Some of the eigenvalues 
were negative, which also indicate the presence of oscillations (55). 
A few models identified slightly unstable eigenmodes (with eigen-
value norm slightly bigger than 1), but this is expected when learn-
ing from finite trial lengths and limited data samples (68). However, 
the models inferred from monkey F data, in particular for the 
{A,Bcx} model, seemed to use instability properties of the dynamics 
to capture specific features of the data (fig. S21, A and D).
Rotational dynamics measure
As mentioned above, the existence of complex eigenvalues indi-
cates the presence of rotational dynamics in the data. Rotations are 
confined to the planes defined by pairs of complex-conjugate eigen-
vectors, with directions spanned by the real and imaginary compo-
nents of the vectors. On each plane, state trajectories are shaped by 
the rotation matrix J, which derives from the dynamics matrix A 

expressed in the Jordan normal form (72). As an example, for a 2D 
system with two distinct complex eigenvalues, which come as a 
complex-conjugate pair λ − λ† (Eq. 11), if we consider their phase 
plane representation in polar coordinates

where

the rotation matrix J is given by

Rotations evolve in time following powers of J, with amplitude 
over time (the rate of decay or growth) given by the absolute value of 
the eigenvalues, and with rotation frequency ω

Note that the frequency increases when the ratio λim
λre

 is big. The 
rotation frequency ω is given in rad∕s and f = ω∕(2π) in Hz. Since 
the data were downsampled at 20 Hz (50-ms bins), the frequency is 
given by f = 20ω∕(2π) in Hz (the value reported in Fig. 7). For real 
modes, the rotation frequency is zero.
Non-normality measure
The Henrici’s index measures the degree of non-normality of the 
dynamics and is given by (73)

This is a normalized metric with values between 0 and 1, with 0 
indicating that the system is normal and 1 that is maximally non-
normal. A system is normal when its dynamics can be described with 
an orthonormal eigenvector basis. A system is non-normal when its 
eigenvectors do not necessarily form an orthonormal basis, and the 
transformation to eigenvector coordinates may involve a strong dis-
tortion of the phase space (73). In normal linear networks, the 
network responses are explained with a linear combination of expo-
nentially decaying modes (if the system is stable), with timescales 
defined by the corresponding eigenvalue (Eq. 13). In non-normal 
stable networks, however, more complex patterns can emerge, which 
often involve transient responses where the network activity tempo-
rarily grows, but eventually decays as in normal systems.

A crucial property of non-normal systems is that they have dif-
ferent left and right eigenvectors

with L = R−1, whereas for normal systems L = R† († = conjugate 
transpose). This non-normal property allowed the RNN trained by 
Mante et al. to change the leading left eigenvectors across contexts 
while keeping the right eigenvectors pointing in the same di-
rection (1).

λ=λre+λimi

λ† =λre−λimi
(11)

λ ≤1 ∀λ real

∣λ∣ =

√
λ2
re
+λ2

im
≤1 ∀λ complex

(12)

x
t
=∣λ∣t x0

(1∕e)x0=∣λ∣
t
x0

τ=
log(1∕e)

log ∣λ∣
50

(13)

λ
re
=∣λ∣ cosω λ

im
=∣λ∣ sinω (14)

ω = arctan

(
λim

λre

)
(15)

J =

[
λ
re

−λ
im

λ
im

λ
re

]
=∣λ∣

[
cosω − sinω

sinω cosω

]
(16)

J
t =

(
∣λ∣

[
cosω − sinω

sinω cosω

])t

=∣λ∣t
[
cosωt − sinωt

sinωt cosωt

]
(17)

H =

�
‖A‖2

F
−

∑
i
∣λ

i
∣2

‖A‖
F

(18)

A = RΛL (19)
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Input loads
The input loads are defined by the non-normalized projection of the 
coherence inputs onto the left eigenvectors, averaged across all time 
steps. To compute the input loads, we start by expressing the latents 
in the left eigenvectors basis

where we have taken the eigendecomposition of the matrix A, 
with R containing the right eigenvectors in its columns and L = R−1 the 
left eigenvectors in its rows. We have then left-multiplied by L. Defining 
�(t) = Lx(t), we obtain

The evolution of the latents in this basis is independent, that 
is, decoupled from one another—given that the matrix Λ is di-
agonal. Unrolling this equation, in time, we obtain

As the eigenmodes are independent, we can write down a set of 
uncoupled equations that describe the evolution of each eigenmode, 
one for each entry of the vector �, given by αl with l indexing the 
latent dimension

and ll being the lth left eigenvector. The input “load” is defined 
by the last term of the summation, which corresponds to the non-
normalized projection of the inputs onto the left eigenvectors (given 
that neither the input vectors nor the left eigenvectors are unit norm)

This term specifies how strongly the inputs are mapped onto the 
dynamic modes at each time step t, before being processed by the 
dynamics (i.e., in this basis, before being scaled by λ). The extent to 
which the inputs are mapped or “loaded” onto each mode depends 
on the alignment between the input vectors and each left eigenvec-
tor, as well as the norm of both vectors. For each pair of complex 
modes, the load is given by

where ℜ{.} and ℑ{.} take the real and imaginary components of 
their arguments. The rationale for the expression above comes from 
the following. For complex modes, Eq. 24 contains imaginary 
numbers since the left eigenvectors are complex, so we cannot in-
terpret the loads in this basis. However, we can do it in the original 
state vector basis x(t), which is real. To change basis, we use 
�(t) = Lx(t) and express x(t) as a linear decomposition of the state 
along each right eigenvector dimension. The coefficients of the lin-
ear decomposition are given by αl(t), which contains the input loads

We can now make explicit the contribution due to real eigen-
modes and complex eigenmodes, which come in complex conjugate 
pairs (l − l†)

Because of the complex conjugacy, the imaginary numbers end 
up cancelling out in the summation, and only real terms survive. 
This is why in this basis, the state vector x(t) is real. In particular, the 
way the complex roots end up contributing to the state dynamics is 
given by their real and imaginary parts. This is because for each pair 
of complex conjugate roots, two complementary real solutions exist, 
which are given by the sum and difference modes αl± (t)

This can be seen by expanding the complex term in the state 
equation

Thus

To understand how the inputs are loaded at each time step t into 
the dynamic modes to affect the latent state, we focus on the last 
term of the summation in the equation αl(t) (Eq. 23), as we did before

The last term contains the input loads along each real mode, 
l
⊺

l
Bu(t), which gives Eq. 24. This value indicates how much of the 

input is mapped along each right eigenvector direction rl (for l real). 
Thus, considering only this term, the latent state vector is recon-
structed with a linear combination of real right eigenvectors, weight-
ed by the input loads. Note, however, that the right eigenvectors are 
not orthogonal, so the result of the sum could be nontrivial, if, for 
instance, some of this vectors cancel out or give rise to transient am-
plification (Supplementary Text). The total input contribution or 
load along each direction rl is thus given by the norm of the vector 
l
⊺

l
Bu(t)rl. Since the real right eigenvectors are normalized, this is 

equal to l⊺
l
Bu(t), which gives Eq. 24. Similarly, the load for each 

complex conjugate pair of modes is given by the norm of the vector 
2
(
ℜ{l

⊺

l
}Bu(t)ℜ{rl}−ℑ{l

⊺

l
}Bu(t)ℑ{rl}

)
, which gives Eq. 25. This 

vector lives within the 2D plane spanned by the real and imaginary 
components of the complex-conjugate right eigenvector pairs.

To compute the loads in Fig. 5C, we use the inferred inputs for 
the largest motion and color positive coherence values and project 

x(t) =Ax(t−1)+Bu(t)

x(t) = (RΛL)x(t−1)+Bu(t)

Lx(t) =ΛLx(t−1)+LBu(t)

(20)

�(t) = Λ�(t−1) + LBu(t) (21)

�(t) = ΛtLx0 +

t∑

t�=1

Λt−t�LBu
(
t�
)

(22)

αl(t) = λt
l
l
⊺

l
x(0) +

t∑

t�=1

λt−t
�

l
l
⊺

l
Bu

(
t�
)

(23)

loadl(t) = l
⊺

l
Bu(t) (24)

load
l−l† (t)=2‖ℜ{l

⊺

l
}Bu(t)ℜ{r

l
}−ℑ{l

⊺

l
}Bu(t)ℑ{r

l
}‖ (25)

x(t) = R�(t) =
∑

l

αl(t)rl (26)

x(t)=
∑

l−l† ,img

[
αl(t)rl + α†

l
(t)r†

l

]
+
∑

l,real

αl(t)rl (27)

αl+ (t) =
1

2

(
αl(t)+α†

l
(t)

)
=ℜ{αl(t)}

αl− (t) =
1

2i

(
αl(t)−α†

l
(t)

)
=ℑ{αl(t)}

(28)

α
l(t)r l+α†

l
(t)r l† =

(
ℜ{α

l(t)}+ iℑ{α
l(t)}

)(
ℜ{r

l
}+ iℑ{r

l
}
)

+
(
ℜ{α

l(t)}− iℑ{α
l(t)}

)(
ℜ{r

l
}− iℑ{r

l
}
)

=2ℜ{α
l(t)}ℜ{r

l
}−2ℑ{α

l(t)}ℑ{r
l
}

=2
(
α
l+ (t)ℜ{r

l
}−α

l− (t)ℑ{r
l
}
)

(29)

x(t)=
∑

l−l† ,img

2
(
ℜ{αl(t)}ℜ{r l}−ℑ{αl(t)}ℑ{r l}

)

+
∑

l,real

αl(t)r l

(30)

x(t)input=
∑

l−l† ,img

2
(
ℜ{l

⊺

l
}Bu(t)ℜ{rl}−ℑ{l

⊺

l
}Bu(t)ℑ{rl}

)
+
∑

l,real

l
⊺

l
Bu(t)rl (31)
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them along the coherence dimension. Thus, the loads are computed 
using the coherence component of Bu(t), for all times and all 100 
randomly initialized models, and then averaged across time and 
models. For complex modes, the same load is shared across both 
complex conjugate pairs and is computed using Eq. 25.
Most amplifying dimensions
The most amplifying modes were found following (27), by comput-
ing the Observability Gramian Q and its associated eigenvectors. 
The most amplifying modes are defined by the eigenvectors with 
the largest associated eigenvalues. We computed the Observability 
Gramian by solving the following discrete-time Lyapunov equation

where A is the LDS models dynamics matrix and C is the loading 
matrix. We considered only stable models (27), which, in our case, 
were 90% of the 100 {A,Bcx} models and 85% (mot cx), 60% (col cx) 
of the {Acx,B} models in monkey A.
Models constrained to have normal dynamics
To learn models with normal dynamics, we included the penalty 
AA⊺ − A⊺A in our cost. To ensure that normality in the latent dy-
namics was accurately reflected in the reconstructed neural dynam-
ics, we fixed C to the orthonormal-column matrix identified in the 
standard fits. We enforced normality with different penalty weights 
(λdyn = 1 and λdyn = 1e5). These analyses are discussed in Supple-
mentary Text and fig. S5 (E to G).

Additional analysis methods
Alignment metrics
We report alignments between different dimensions using either dot 
products or angles (in degrees). When computing alignments be-
tween a given vector and complex eigenvectors, we consider the 
plane spanned by the real and imaginary components of the pair of 
complex conjugate eigenvectors and compute the minimum sub-
space angle between the vector and the plane.
Statistical tests
To test for statistically significant differences between distributions, 
such as the relevant versus irrelevant load distributions in Fig. 5C, 
we used a Wilcoxon rank sum test with significance level (P values) 
of P < 0.001 (Figs. 4, B and C, and 7B and fig. S7B and associated 
supplementary figures of the RNN and monkey F extended data 
analysis) or P < 0.05 (Fig. 5C and associated supplementary figures 
of the RNN and monkey F extended data analysis; also fig. S17). 
This is a two-sided rank sum test of the null hypothesis that two in-
dependent samples come from distributions with equal medians.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S24
Tables S1 to S5
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