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There is a growing consensus in behavioral neuroscience that the 
brain makes simple choices by first assigning a value to all of the 
options under consideration and then comparing them1–3. This has 
motivated an interest in the computational properties of value com-
parison processes, and in understanding the extent to which they can 
generate reward-maximizing choices.

Although many popular models of value-based choice implicitly 
assume that the comparison process involves a trivial instantaneous 
maximization problem4,5, casual observation suggests that the under-
lying processes are more sophisticated and that visual fixations are likely 
to be involved. Consider, for example, a typical buyer at the grocery 
store choosing between two snacks. Instead of approaching the shelf and 
immediately selecting his preferred option, the individual’s gaze shifts 
repeatedly between the items until one of them is eventually selected.

We propose a model of how simple value-based binary choices are 
made and of the role of visual fixations in the comparison of values. 
The model makes stark qualitative and quantitative predictions about 
the relationship between fixation patterns and choices, which we test 
using eye-tracking (Fig. 1a). Subjects are shown high-resolution pic-
tures of two food items and are free to look at them as much as they 
want before indicating their choice with a button press.

The theory developed here builds on the framework of drift-
 diffusion models (DDM) of binary response selection6–19, and 
 especially on applications of these models to the realm of perceptual 
decision making18,20–31, where they have provided accurate descrip-
tions of the psychometric data and important insights into the acti-
vity of the lateral intraparietal area (LIP). These models assume that 
stochastic evidence for one response (compared to the other) is accu-
mulated over time until the integrated evidence passes a decision-
threshold and a choice is made. The level of the threshold is set to 
balance the benefit of accumulating more information with the cost 
of taking more time to reach a decision.

There are two key differences between our work and the previous 
studies on perceptual discrimination. First, in both tasks subjects must 

determine the value of two potential responses, but in perceptual dis-
crimination tasks subjects typically see a single stochastic stimulus, 
whereas in our task subjects see two non-stochastic pictures of food 
items. Second, fixations are not involved in the standard perceptual dis-
crimination task because subjects maintain central fixation at all times, 
whereas here the fixations are crucial for the decisions. The key idea of 
our model is that fixations affect the DDM value comparison process 
by introducing a temporary drift bias toward the fixated item. This drift 
bias in turn leads to a choice bias for items that are fixated on more.

RESULTS
Computational model
Following the literature on DDMs, our model assumes that the brain 
computes a relative decision value (RDV) that evolves over time as a 
Markov Gaussian process until a choice is made (Fig. 1b). The RDV 
starts each trial at 0 and continually evolves over time at one of two 
possible rates (depending on which item is fixated), and a choice is 
made when it reaches a barrier at either +1 or −1. If the RDV reaches 
the +1 threshold the left item is chosen and if it reaches the −1 thresh-
old the right item is chosen.

The key difference between our model and the standard drift diffu-
sion model is that in our model the slope with which the RDV signal 
evolves at any particular instant depends on the fixation location. 
In particular, the slope is proportional to the weighted difference 
between the values of the fixated and unfixated items. The weight 
discounts the value of the unfixated item relative to the fixated one. 
When the subject is looking at the left item the RDV changes accord-
ing to Vt = Vt−1 + d(rleft − θrright) + t, and when he looks at the 
right item, it changes according to Vt = Vt−1 + d(rright − θrleft) + t,  
where Vt is the value of the RDV at time t, rleft and rright denote the 
values of the two options, d is a constant that controls the speed of 
integration (in units of ms−1), θ between 0 and 1 is a parameter that 
reflects the bias toward the fixated option, and t is white Gaussian 
noise with variance σ2 (randomly sampled once every millisecond).
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Most organisms facing a choice between multiple stimuli will look repeatedly at them, presumably implementing a comparison 
process between the items’ values. Little is known about the nature of the comparison process in value-based decision-making 
or about the role of visual fixations in this process. We created a computational model of value-based binary choice in which 
fixations guide the comparison process and tested it on humans using eye-tracking. We found that the model can quantitatively 
explain complex relationships between fixation patterns and choices, as well as several fixation-driven decision biases.
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With respect to the fixation process, the model assumes that the 
first fixation goes to the left item with probability p (independent of 
the values of the options), that fixations alternate between the two 
items until a barrier is crossed, and that fixations have a maximum 
duration given by a fixed distribution that depends on the difficulty 
of the choice, as measured by rbest – rworst. A fixation terminates if 
either its maximum duration is reached, or the RDV terminates the 
choice process by crossing a barrier.

In simulated runs of the model, the RDV generally moved toward 
the fixated item, but the slope depended on the values of the two items 
(Fig. 1c,d). For example, the RDV signal integrated toward the left 
barrier when the subject fixated on the left item, even though it had 
a lower value than the right item (Fig. 1d). This suggests that visual 
fixations are important for the integration process.

Hypotheses and model fitting
We carried out a simple eye-tracking experiment to investigate the 
extent to which the drift diffusion model outlined here captures key 
patterns of the relationship between the fixation and choice data. We 
were particularly interested in distinguishing between three alterna-
tive models: model 1, the regular DDM given by the case of θ = 1, 
model 2, a DDM with full fixation bias given by the case of θ = 0, and 
model 3, a DDM with partial fixation bias given by the case 0 < θ < 1.  
The experiment consisted of two stages. In the first stage subjects 
rated how much they would like to eat 70 food items at the end of the 
experiment (scale −10 to 10). The liking ratings provide an independ-
ent measure of the value of individual items. In the second stage sub-
jects made 100 choices between pairs of neutral or appetitive foods. 
Afterwards they ate the item chosen in a randomly selected trial. We 
measured eye-movements at 50 Hz.

We fitted the model to the even-numbered trials of the group data 
using maximum likelihood estimation (MLE) on the observed choices 
and reaction times. The best fitting model had parameters d = 0.0002 
ms−1, θ = 0.3 and σ = 0.02, with a log-likelihood value of −3,704.

We used the same procedure to fit models with θ = 1 and θ = 0.  
In both cases the best-fitting models had parameters d = 0.0002 ms−1  
and σ = 0.02. We then used the likelihood ratio statistic to test the 
hypothesis that θ was significantly less than 1 (log-likelihood = 
−3,708, P = 0.008) and significantly larger than 0 (log-likelihood =  
−3,710, P = 0.0005). This provides support for model 3 over the 
standard and full fixation bias drift-diffusion models (see also 
Table 1 and Supplementary Figs. 1–10, which compare the 
fits of the three models). We also carried out a restricted fit of 
the model to individual subject data. The mean (s.d.) estimated  
θ value from individual model fits was 0.52 (0.3), and 35/39  
subjects had an estimate of this parameter less than 1 (Supplementary  
Figs. 11 and 12).

To investigate the ability of the model to predict the data quantita-
tively, we then simulated the model 1,000 times for each pair of liking 
ratings, using the estimated maximum likelihood parameters, and by 
sampling fixation lengths from the empirical fixation data (taking into 
account that fixation durations are related to decision difficulty, as 
described below). We assumed that the location of the first fixation 
is chosen probabilistically to match the empirical data (look left first 
with probability 74%). The results of the simulations are described 
below. Note that in all comparisons of the model with the data, we 
present only the odd-numbered trials, as the model was fitted to the 
even-numbered trials.

Basic psychometrics
The model predicted the choice and reaction time curves quite well 
in the odd-numbered trials. The choice data (χ2 goodness-of-fit  
statistic = 4.47, P = 0.92) indicated that choices were a logistic func-
tion of the value differences (Fig. 2), which means that the best 
option was selected only 78% of the time. Note that the amount of 
noise in the choice process is controlled by the Gaussian noise in the 
integration process and by the random fixation durations. The θ = 0  
model was comparably poor fitting.
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Figure 1 Experiment and model.  
(a) Choice trial. Subjects are forced to  
fixate at the center of the screen for 2 s.  
They are then presented with images  
of two items and given as much time  
as they want to make their choice. After a 
selection is made a yellow box highlights  
the chosen item for 1 s. RT, reaction time.  
(b) Model. A relative decision value (RDV) 
evolves over time with a slope that is biased 
toward the item that is being fixated. The 
slope dictates the average rate of change 
of the RDV, but there is also an error term 
drawn from a Gaussian distribution. When 
the RDV hits the barrier a choice is made for 
the corresponding item. The shaded vertical 
regions represent the item being fixated.  
(c,d) Simulated runs of the model using  
d = 0.005, σ = 0.05 and θ = 0.6, to give  
a better intuition for the decision process.

Table 1 Summary of goodness-of-fit statistics
Figure 2a 2b 2c 4b 4c 5a, left 5a, right 5b 5c 5d 5e

θ = 0.3 0.92* 0.1* 0.39* 0.997* 0.824 0.96* 0.96* 0.75* 0.0062* 0.21 0.0016
θ = 0 10−5 0.01 10−5 0.01 0.96* 0.83 0.19 0.0002 10−13 0.76* 0.1*
θ = 1 10−16 0.0007 10−15 10−16 0.04 10−16 0.0001 10−13 10−11 0.0009 10−9

Each number is the P-value from the goodness-of-fit test of that model to the data. Note that the intermediate model (θ = 0.3) fits better than the other two models in most cases 
except Figures 4c and 5d,e (*).
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We also examined reaction times and number of fixations (good-
ness-of-fit: P = 0.10 and 0.39, respectively; Fig. 2). Both measures 
correlated with difficulty (mixed effects regression estimate −211 ms  
per rating, P = 10−11 and −0.171 fixations per rating, P = 10−15, 
respectively), a property of drift-diffusion models that also extends to  
our model.

Properties of the visual search process
The model makes strong assumptions about the nature of the fixation 
process (Fig. 3). First, the probability that the first fixation was to 
the best item was not significantly different from 0.5 and was unaf-
fected by the difference in ratings (Fig. 3a) (mixed effects regression 
estimates: intercept = 0.518, P = 0.31; slope = −0.0009 per rating,  
P = 0.88). Second, the middle fixation durations were independent 
of the value of the fixated items (mixed effects regression estimate: 
6.4 ms per rating, P = 0.21; Fig. 3b). Third, the middle fixation dura-
tion depended slightly on the difference in value between the fixated 
and nonfixated items (mixed effects regression estimate: 11.4 ms per 
rating, P = 0.0052; Fig. 3c), but depended more on the difficulty of 
the decision (mixed effects regression estimate −33.8 ms per rating,  
P = 10−5; Fig. 3d).

In the estimation and simulation procedures, we took into account 
the dependency of middle fixation durations on value (Fig. 3d and 
Supplementary Figs. 13–15). The fixation distributions were best 
approximated by log-normal distributions (Supplementary Table 1 
and Supplementary Figs. 16–22).

Core model predictions
The model makes several strong predictions about the relationship 
between visual fixations, choices and reaction times and we tested 

these predictions using the eye-tracking 
data. First, consistent with the data, the 
model predicts that final fixations should be 
shorter than middle fixations, as fixations 
are interrupted when a barrier is crossed  
(P = 0.0002; Fig. 4a). First fixations were also 
shorter than middle ones (P = 10−14) which 
was not predicted ex ante by the theory, 
but which we incorporated ex post into the  
computational model’s estimation and  
simulation procedures.

Second, the model correctly predicts 
that subjects will generally choose the item 
they looked at last, unless that item is much 
worse than the other one (χ2 goodness-of-fit 
 statistic = 1.96, P = 0.997; Fig. 4b). To see 

why, recall that the RDV climbs toward the barrier of the fixated  
item unless the fixated item is worse enough than the other item that 
the drift rate becomes negative. The θ = 0 model cannot account for 
this pattern (Fig. 4b).

Third, the model predicts that the longer you have looked at item A 
during a trial, the longer you will have to look at item B before choos-
ing it over item A. The intuition is simple: on average, the longer one 
looks at item A the farther the RDV gets from item B’s barrier, and 
thus the farther it will have to travel back to hit that threshold. This 
was approximately the case (mixed effects regression coefficient = 
−0.08, P = 0.11, median-split test P = 0.03; Fig. 4c). The estimated 
model is consistent with this pattern (goodness-of-fit: P = 0.82), 
whereas the θ = 1 model is not.

Choice biases
The model also predicts that when θ < 1 the decision processes 
should show several choice biases. First, it predicts a last-fixation 
bias: subjects should be more likely to choose an item (for a given 
rating difference) if their last fixation is to that item as opposed to the 
other one. This is a direct implication of the fact that the value of the 
unfixated item is discounted. As predicted, there was a sizable bias in 
both the simulated and the subject data (logit mixed effect regression:  
P = 10−16, χ2 goodness-of-fit statistic = 3.64, P = 0.96 for last fixation 
left and = 3.58, P = 0.96 for last fixation right; Fig. 5a). In contrast, the 
θ = 1 model predicts that the last fixation will have no effect.

Second, the model predicts that there should be a choice bias that 
depends on the total amount of time spent looking at one item versus 
the other: controlling for value differences, the probability of choos-
ing an item should increase with the excess time for which it is fix-
ated. A mixed effects logit regression shows that this was the case  
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(P = 10−8). This prediction follows from the fact that the RDV always 
evolves more toward an item’s barrier when it is being looked at than 
when it is not. Fixation duration and order are independent of an 
item’s value, highlighting this bias in both the data and the simulations  
(χ2 goodness-of-fit statistic = 3.43, P = 0.75; Fig. 5b). We further 
tested this hypothesis by correcting for the difference in liking rat-
ings. For each trial we took the actual choice (1 or 0) and subtracted 
the average probability that left was chosen in all trials with that dif-
ference in liking ratings. These ‘corrected’ choice probabilities were 
plotted as a function of the fixation time advantage for the left item 
(goodness-of-fit: P = 0.0062; Fig. 5c). This eliminates any possible 
influence of the measured liking ratings on the fixation durations 
and shows that there is a substantial effect of total fixation time on 
choice. In contrast, the θ = 1 model predicts that exposure time will 
have no effect on choice.

In a related result, the duration of the first fixation was correlated 
with choice (χ2 goodness-of-fit statistic = 4.55, P = 0.21, mixed effects 
regression: P = 0.028; Fig. 5d). This effect is still there after correcting 
for the difference in liking ratings (goodness-of-fit: P = 0.0016; Fig. 5e). 
As before, this relationship is not predicted by the θ = 1 model.

Third, the model correctly predicts that any left-looking biases 
should translate into left-choice biases (Fig. 5f). The more likely a 

subject was to look left first, the more likely he was to choose items 
on the left, with a correlation of 0.38 (P = 0.017) and a Spearman’s 
non-parametric correlation of 0.49 (P = 0.002).

Alternative models
The results above showed that our variant of the drift-diffusion model 
can account for a wide range of correlations between the pattern of 
fixations, reaction times and choices. A natural question to ask is 
whether alternative models can provide a similar account of the data. 
Although a comprehensive estimation and comparison of alternative 
models is beyond the scope of this study, here we present exploratory 
results regarding the ability of three natural alternatives to account 
for the key patterns in the data (Online Methods).

The first alternative model is a DDM in which the RDV signal evolu-
tion is independent of the fixations (so that θ = 1). Instead, the model 
reverses the direction of causality by assuming that fixation lengths are 
affected by the local value of the RDV signal. In particular, fixations to 
an item are longer the more the RDV favors that item. This alternative 
model is interesting because it produces a correlation between fixation 
lengths and choices without giving a causal role to fixations.

We investigated the qualitative properties of this model by assum-
ing a simple and concrete functional form for the impact of the RDV 

Figure 4 Basic model predictions. (a) Fixation 
duration by type. Middle fixations indicate any 
fixations that were not the first or last fixations 
of the trial. (b) Probability that the last fixation 
is to the chosen item as a function of the 
difference in liking ratings between the fixated 
and unfixated items in that last fixation.  
(c) Amount of time spent looking more at Item B 
before the last fixation (to Item A), as a function 
of the duration of that last fixation. The black 
dashed line indicates the simulated data using 
the MLE parameters. Subject data includes only odd-numbered trials. In b, the gray dash-dotted line indicates the simulated data for the θ = 0 model, 
and the vertical dotted lines indicate the points at which the simulation curves cross the horizontal line at chance. In c, the gray dash-dotted line 
indicates the simulated data for the θ = 1 model. Bars denote s.e., clustered by subject.
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Figure 5 Choice biases. (a) Psychometric choice curve 
conditional on the location of the last fixation. (b) Probability 
that left is chosen as a function of the excess amount of time for 
which the left item was fixated during the trial. (c) Analogous 
to b, except subtracting the probability of choosing left for 
each difference in liking ratings. (d) Probability that the first-
seen item is chosen as a function of the duration of that first 
fixation. (e) Analogous to d, except subtracting the probability of 
choosing the first-seen item for each difference in liking ratings. 
(f) Probability of choosing left as a function of the probability of 
looking left first. Each circle represents a different subject. The 
black dashed line indicates the simulated data using the MLE 
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on the probability of terminating fixations with one free parameter 
P* (Online Methods). All other parameters were assumed to be the 
same as those that we obtained in the best-fitting version of our model 
with θ = 1. The free parameter P* was chosen to recreate the effect of 
net total fixation time on choice probability. The model could do this 
quite well (Fig. 6a). Unfortunately, however, the value of P* needed 
to match this psychometric curve also generated too many fixations 
(Fig. 6b). This problem could not be overcome by adjusting two other 
key parameters of the model: the integration slope d, or the Gaussian 
noise σ (Supplementary Figs. 23 and 24).

The second alternative model assumes that the RDV signal is modu-
lated by fixations, as in our main model, but differs on how a decision is 
triggered. It assumes that the reaction time is determined exogenously 
by a separate unmodeled process, and that the subject chooses the 
option with the best RDV at that time. We investigated the qualitative 
properties of this model by simulating it using the best-fitting para-
meters from the θ = 0.3 version of our model, and randomly sampling 
decision times from the actual empirical distribution.

Owing to its similarity to our model, it is not surprising that the 
model fits most of the psychometric data well (Supplementary 
Fig. 25). However, this set of parameters had problems account-
ing for the effect of the last fixation on choice, as well as the rela-
tionship between the last fixation duration and the relative fixation 
advantage (Fig. 6c,d). Varying other key parameters of the model 
did not improve the ability of the model to overcome this limitation 
(Supplementary Figs. 26–28). A comparison of the forces at work 
in both models provides an intuitive idea of why this is the case. In 
the barrierless model, there is no reason to expect that the final fixa-
tion duration would depend on the current fixation advantage for the 
other item, as the fixation is terminated exogenously. Furthermore, as 
the reaction time is determined exogenously, instead of being deter-
mining by crossing a barrier, the integration bias at work in our model 
is more limited here.

The third alternative model is similar to ours, except that the 
fixations change the locations of the choice barriers rather than the 

drift rate. We simulated this model using the 
best-fitting parameters from the θ = 1 model, 
and assuming that the magnitude of the  
barrier for the fixated item is lowered from  
1 to 0.8. The value of 0.8 was chosen so that 
the model would fit the basic psychometric 
data (Supplementary Fig. 29). However, 
although the model approximated the basic 
 psychometric data fairly well, it could not 
reproduce the effect of total fixation dura-
tion on choice (Fig. 6e), even when we 
varied the magnitude of the barrier drop 
(Supplementary Fig. 30). Note that in this 
model there are two competing forces at 
work. First, the longer an item is seen, the 
more time that item has a lower barrier and 
the more likely it is to be chosen. Second, 
the decrease in the barrier height for the fix-
ated item makes the final fixations shorter 
than they would have otherwise been. The 
 simulations show that the second effect  
is dominant.

DISCUSSION
The results presented here provide insight into 
the nature of the computational and psycho-

logical processes that guide simple choices. In particular, we found that 
a simple extension of the DDM in which fixations are involved in the 
value integration process could provide a remarkably good quantitative 
account of various relationships between the fixation and choice data, 
as well as of several sizable choice biases.

An important question raised by our results is whether the visual 
fixation process has a causal effect on the value comparison process. 
Several pieces of evidence suggest that this might be the case. First, 
our model assumes a causal effect and fits important moments of the 
data notably well. Second, we have shown that one simple alternative 
DDM in which values affect fixations, but in which the opposite is 
not true, does not seem to be able to simultaneously account for all 
the trends in the data. Third, consistent with the findings reported 
here, related studies have shown that it is possible to bias choices by 
manipulating relative fixation durations exogenously32,33. However, it 
is important to emphasize that by itself, the evidence provided here is 
not sufficient to establish a causal effect of fixations on choices.

Our model does not rule out the possibility that values have some 
effect on the pattern of fixations. In fact, as assumed in the model’s 
estimation and simulation procedures, fixation durations increased 
with the difficulty of the choice (Fig. 3d). However, our results suggest 
that even if these feedback results are present, random variation in 
fixation durations can affect the choice process directly. In this study 
we have treated these feedback effects from values to fixations as exo-
genous. Understanding the computational properties of these effects 
is an important open question for future research in this area.

Our exploratory robustness analysis casts some doubt on the ability 
of three natural alternative models of how fixations might interact 
with the choice process. Each of the models we tried fit many of 
the psychometric trends, but also had trouble with other important 
aspects of the data. However, these analyses were purely exploratory, 
and a systematic estimation and model comparison of alternative 
models is an important topic for future research.

The theory developed here builds on the framework of DDM of 
binary response selection6–19, and especially on applications of these 
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models to the realm of perceptual decision making18,20–31. These 
models assume that noisy information is integrated over time up 
to a choice threshold. However, the nature of the noise in our task 
is quite different. In the standard dot motion task the stimulus 
itself is stochastic, whereas in our task the stimuli are static and 
the noise is generated internally. In particular, we hypothesize that 
the brain assigns value to the stimuli by sequentially and stochasti-
cally extracting features of the stimuli, retrieving the learnt values 
for such features, and then integrating those values. In the absence 
of fixations the computational problem has similar properties, and 
under appropriate assumptions, it can be shown that the DDM 
implements an optimal decision-making process that amounts to a 
sequential-likelihood ratio test18,23,24,34–36. However, the model that 
we investigated here does not seem to have that property because 
of the integration bias for the fixated item. An important question 
for future research is to determine the extent to which the model 
approximates an optimal Bayesian decision-making problem in 
which fixations are determined endogenously.

Our model is also related to the models of decision field the-
ory13,37–40, which also consider sequential integration models in the 
spirit of the DDM in which fixations matter. There are several dif-
ferences between these studies and our study. First, decision field 
theory assumes that items are multidimensional and that fixations 
matter by focusing the integration of value to a subset of dimensions. 
In contrast, we focused on choices among unidimensional stimuli 
where fixations matter because they bias the integration of value in 
favor of one of the items. Second, the predictions of decision field 
theory regarding the impact of fixations on choice have not been 
tested directly using eye-tracking.

One essential question is how the brain implements this model of 
decision-making. One brain region that is likely to be important is the 
medial orbital frontal cortex. A number of studies have shown that 
the medial orbital frontal cortex encodes value signals at the time of 
choice41–47, and these are the likely inputs to the comparator proc-
ess studied here. We conjecture that fixations affect this process by 
amplifying the relative value signal for the fixated item in the medial 
orbital frontal cortex.

Our results have important implications for the quality of choice 
processes and decision-making in general. First, as fixations might 
be affected by visual features of the items that are uncorrelated with 
value, such as their visual saliency48 or their location, the model 
predicts that such irrelevant factors could affect choices. Second, 
the model predicts that systematic biases in fixations could lead to 
deficits in decision-making. Extensions of this framework might help 
us to understand why individuals with autism who generally avoid 
eye contact show deficits in social decision making49. Finally, the 
model explains how cultural norms (for example, reading left to 
right) can interact with comparator processes to produce cultural 
choice biases. These biases help to explain, for example, why shelf 
and computer screen space on the top-left is more valuable than 
other positions.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Subjects. The experiment consisted of 39 Caltech students. Only subjects who 
self-reported regularly eating the snack foods (for example, potato chips and 
candy bars) used in the experiment and not being on a diet were allowed to 
participate. These steps were taken to ensure that the food items we used would 
be motivationally relevant. This would not have been the case if the subjects did 
not like junk food. Subjects were paid a $20 show-up fee, in addition to receiving 
one food item. Caltech’s Human Subjects Internal Review Board approved the 
experiment. Written informed consent was obtained from all participants.

Task. Subjects were asked to refrain from eating for 3 h before the start of the 
experiment. After the experiment they were required to stay in the room with 
the experimenter for 30 min while eating the food item that they chose in a 
randomly selected trial (see below). Subjects were not allowed to eat anything 
else during this time.

In the initial rating phase subjects entered liking ratings for 70 different 
foods using an on-screen slider bar (“how much would you like to eat this 
at the end of the experiment?”, scale −10 to 10). The initial location of the 
slider was randomized to reduce anchoring effects. This rating screen had  
a free response time. The food was kept in the room with the subjects during  
the experimental session to assure them that all the items were available. 
Furthermore, subjects briefly saw all the items at this point so that they could 
effectively use the rating scale.

In the choice phase, subjects made their choices by pressing the left or right 
arrow keys on the keyboard. The choice screen had a free response time. Food 
items that received a negative rating in the rating phase of the experiment were 
excluded from the choice phase. We did not tell subjects about this feature of 
the experiment because doing so could have changed their incentives during 
the rating phase.

The items shown in each trial were chosen pseudo-randomly according to the 
following rules: (i) no item was used in more than 6 trials; (ii) the difference in 
liking ratings between the two items was constrained to be 5 or less; (iii) if at some 
point in the experiment (i) and (ii) could no longer both be satisfied, then the 
difference in allowable liking ratings was expanded to 7, but these trials occurred 
for only 5 subjects and so were discarded from the analyses. The spatial location 
of the items was randomized.

After subjects indicated their choice, a yellow box was drawn around the cho-
sen item (with the other item still on-screen) and displayed for 1 s, followed by a 
fixation screen before the beginning of the next trial.

eye-tracking. Subjects’ fixation patterns were recorded at 50 Hz using a Tobii 
desktop-mounted eye-tracker. Before each choice trial, subjects were required 
to maintain a fixation at the center of the screen for 2 s before the items would 
appear, ensuring that subjects began every choice fixating on the same location.

data analysis. Choice trials with no item fixations for more than 40 ms at the 
beginning or end of the trial were excluded from analysis. The mean (s.e.m.) 
number of trials dropped per subject was 2.8 ± 1.5. For all measurements follow-
ing the first item fixation and preceding the last item fixation of the trial, blank 
fixations were dealt with according to the following rules.

If the blank fixations were recorded between fixations on the same item, then 
those blank fixations were changed to that item. So, for example, a fixation pattern  
of ‘Left’, ‘Blank’, ‘Left’ would become ‘Left’, ‘Left’, ‘Left’. The assumption here is 
that the eye-tracker simply lost the subject’s eyes during this time. The alternate 
hypothesis is that the subject looked away from the item without looking at the 
other item, but we consider this to be an unlikely scenario.

If blank fixations were recorded between fixations on different items, then 
those blank fixations were recorded as non-item fixations and discarded from 
further analysis. The assumption here is that the subject took time to shift 
his gaze from one item to the other, and during that time was not fixating on  
either item.

group model fitting. The computational model was fit to the choice and reaction 
time data from the even numbered trials of the pooled data from the 39 subjects. 
The MLE procedure was implemented as follows. First, we set apart the even tri-
als of the data to estimate the model. Then for each set of parameters and pair of 
liking ratings in the data we ran 1,000 simulations of the model. In the simulations 

we randomly sampled fixation times from the empirical distribution conditional 
on the measure of choice difficulty given by rbest – rworst. First fixations were 
sampled separately from the rest. We also used the empirical fact that subjects 
looked left first 74% of the time and that the first fixations were independent of 
value. Finally, the simulations assume instantaneous transitions between fixa-
tions, while in the data there are often delays between fixations. To compensate, 
we calculated the total amount of ‘transition’ time in each trial, randomly sampled 
from the empirical distribution of those ‘transition’ times, and added them to the 
simulated reaction times.

Second, we computed the probability of each data point for each set of parameters 
as follows. The empirical spread of reaction times ranged from 525 ms to 25 s so 
in the fitting procedure we discarded any simulation trials below 500 ms or above 
25 s. The rest of the reaction times were separated into bins from 500–6,000 ms,  
each one spanning 100 ms, except for the first bin, which went from 500–1,000 ms,  
and the final bin, which went from 7,000–25,000 ms. For each combination of 
liking ratings, we then split the data into the trials where Left was chosen and 
where Right was chosen, and then for each group we counted the number of data 
trials in each reaction time bin. For the simulations, we similarly calculated the 
probability that a simulation trial occurs in each reaction time bin, conditional 
on Left or Right being chosen.

Third, we computed the set of parameters that maximized the log-likelihood 
of the data by taking the logarithms of each of these probabilities, multiplying 
by the number of data trials in each bin, and summing them up. The resulting 
number is used to assess how well the model fit the data, with less negative num-
bers indicating better fits.

In the simulations, we vary σ as a function of the slope d, rather than absolutely. 
Therefore, we let σ = d*μ and perform a grid search over values of d, μ and θ. The 
search for the maximum likelihood parameters was carried out in three steps. 
First we did a coarse grid search with d in {0.0001, 0.00015, 0.0002, 0.00025},  
μ in {80, 100, 120, 140} and θ in {0.3, 0.5, 0.7, 0.9}. Second, we used the results 
from the first search to define a finer search with d in {0.000175, 0.0002, 0.000225}, 
μ in {90, 100, 110} and θ in {0.2, 0.3, 0.4}.

group likelihood ratio tests. We tested whether θ was significantly different from 
1 and 0 by performing likelihood ratio tests. These tests use the results from the 
MLE described above, as well as those from another MLE model in which θ was 
fixed to 0 or 1. This procedure was carried out exactly the same as before, using 
only the even-numbered trials and starting with a coarse search with d in {0.0001, 
0.00015, 0.0002, 0.00025} and μ in {80, 100, 120, 140}, followed by a finer search 
with d in {0.000175, 0.0002, 0.000225} and μ in {90, 100, 110}. The best fitting set 
of parameters in both cases was d = 0.0002 ms−1 and μ = 100, with a log-likelihood 
value of −3,708 for θ = 1 and −3,710 for θ = 0. From these log-likelihood values 
we calculated the likelihood ratio statistic, which for the case of θ = 1 is given by 
LR = 2(x(θ = 0.3) − x(θ = 1)). Here, x is the log-likelihood value for each set of 
parameters. This test statistic is distributed as χ2(1).

group simulations. We carried out 1,000 simulations for every combination 
of values in the dataset using the maximum likelihood parameter estimates and 
sampling fixation durations from the odd-numbered trials.

Individual model fitting. An important concern with the group fits above is 
that they do not provide a good description of the underlying distribution of 
parameters in the subject population. We investigated this issue with two further 
analyses. First (Supplementary Fig. 11), we set d = 0.0002 ms−1 and μ = 100 from 
the group level analysis and performed an MLE grid search over θ in {0, 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} using all trials and 1,000 simulations for every 
combination of values.

Second (Supplementary Fig. 12), we calculated the average difference in  
left-choice probability between last-fixation-left trials and last-fixation-right 
trials, for each subject (curves in Fig. 5a). Subjects with θ = 1 should show no 
difference between these two curves, whereas subjects with θ = 0.3 and θ = 0 
should show differences of 0.47 and 0.58, respectively (assuming d = 0.0002 ms−1  
and μ = 100).

goodness-of-fit calculations. For Figures 2b,c, 4c and 5c,e we could not 
compute χ2 goodness-of-fit statistics because the dependent variables are not 
binary. R2 statistics were also uninformative because of the high variability in  
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average fixation duration from subject to subject. Therefore, we devised a different 
goodness-of-fit statistic, which works as follows. For each value of the independent  
variable we ‘correct’ the dependent variable by subtracting the average simulated 
value from each subject’s average value. We then run a weighted least-squares 
(WLS) regression with the ‘corrected’ dependent variable. The weights in the 
regression were equal to the inverse of the variance. Note that if the simulations 
fit the data well, then the ‘corrected’ data should be a flat line at 0. On the other 
hand, if the simulation fits poorly, then the WLS coefficient should be nonzero. 
So, for goodness-of-fits, we report the P values for the coefficients of these WLS 
regressions. If the P values are less than 0.05 then we reject that the model fits 
the data.

Fitting the fixation distributions. To determine the best-fitting distributions 
for the first and middle fixation durations, we used a log-likelihood method 
to fit several different types of distribution to all the trials, as well as dividing 
trials by the absolute difference in the liking ratings. Supplementary Table 1 
 summarizes the best-fitting parameters from log-normal distributions (which 
were consistently the best or near-best distribution) and the log-likelihoods for 
the different distributions. Supplementary Figures 16–22 show the log-normal 
fits to the data.

mixed effect regressions. All mixed effect regressions had random effects for 
subject-specific constants and slopes. Only one regression, with three independ-
ent variables, was performed for Figure 3 (and Supplementary Figs. 13–15).

Alternative model simulations. The three alternative models (Fig. 6 and 
Supplementary Figs. 23–30) were each simulated using 500 runs for every com-
bination of values in the dataset, and fixation durations and reaction times were 
sampled (where appropriate) from the odd-numbered trials.

For the first alternative model, the probability of the fixation ending at each 

time point was given by p p
k

=
−
*

3
, where k is the magnitude of the distance 

between the RDV and the choice barrier for the currently fixated item. A value of 
P* = 0.02 was used as the benchmark value for this model. Two additional models 
were simulated for Supplementary Figure 24 with P* = 0.002 and 0.0005.

The second alternative model is described in the text. For the third alternative 
model, when a fixation was made to an item, the magnitude of that item’s choice 
barrier was lowered to 0.8. These values were chosen to roughly fit the patterns 
seen in Figure 2. Two additional models were simulated for Supplementary 
Figure 30 with the barriers lowered to 0.5 and 0.2.
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Erratum: Visual fixations and the computation and comparison of value in 
simple choice
Ian Krajbich, Carrie Armel & Antonio Rangel
Nat. Neurosci. 13, 1292–1298 (2010); published online 12 September 2010; corrected after print 10 February 2011

In the version of this article initially published, there were symbols dropped from the equations in the second paragraph of the results section. 
The term θright should have been θrright in the first equation and the term θ left should have been θrleft in the second equation. The error has been 
corrected in the HTML and PDF versions of the article.
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