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Synaptic wiring motifs in posterior parietal 
cortex support decision-making

Aaron T. Kuan1,5,11, Giulio Bondanelli2,3,11, Laura N. Driscoll1,6, Julie Han1,7, Minsu Kim1, 
David G. C. Hildebrand1,8, Brett J. Graham1,9, Daniel E. Wilson1, Logan A. Thomas1,10, 
Stefano Panzeri2,3 ✉, Christopher D. Harvey1 ✉ & Wei-Chung Allen Lee1,4 ✉

The posterior parietal cortex exhibits choice-selective activity during perceptual 
decision-making tasks1–10. However, it is not known how this selective activity arises 
from the underlying synaptic connectivity. Here we combined virtual-reality 
behaviour, two-photon calcium imaging, high-throughput electron microscopy and 
circuit modelling to analyse how synaptic connectivity between neurons in the 
posterior parietal cortex relates to their selective activity. We found that excitatory 
pyramidal neurons preferentially target inhibitory interneurons with the same 
selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons 
with opposite selectivity, forming an opponent inhibition motif. This motif was 
present even between neurons with activity peaks in different task epochs. We 
developed neural-circuit models of the computations performed by these motifs, and 
found that opponent inhibition between neural populations with opposite selectivity 
amplifies selective inputs, thereby improving the encoding of trial-type information. 
The models also predict that opponent inhibition between neurons with activity 
peaks in different task epochs contributes to creating choice-specific sequential 
activity. These results provide evidence for how synaptic connectivity in cortical 
circuits supports a learned decision-making task.

Decision-making is a critical component of behaviour and cognition, 
and understanding how it is implemented has been a long-standing 
goal in neuroscience. Experiments in primates have revealed the 
importance of the neocortex for perceptual decision-making, includ-
ing the posterior parietal cortex (PPC), in which neuronal activity is 
predictive of upcoming behavioural choices1,2. Such choice-selective 
activity has also been found in the rodent PPC3–10. However, it remains 
unclear how this selective neuronal activity arises. Models of cortical 
decision-making circuits propose that choice alternatives are repre-
sented by pools of recurrently connected excitatory neurons, which 
compete through inhibitory connectivity11,12. Pioneering work often 
assumed that inhibitory activity was non-selective and inhibitory con-
nectivity non-specific13,14, but recent research has shown that inhibitory 
activity is as selective as excitatory activity, which suggests that inhibi-
tory connectivity may follow choice-selective rules10. Indeed, recent 
models have shown that selective inhibition can crucially alter circuit 
function by stabilizing network activity or maximizing competition 
between opposing excitatory pools15. However, activity measurements 
in the PPC are consistent with multiple possible circuit architectures10,15, 
and measurement of the underlying synaptic connectivity is lacking.

Until recently, direct measurements of synaptic connectivity within 
large neuronal populations have not been technically feasible. However, 

advances in high-throughput electron microscopy (EM) have now made 
it possible to comprehensively map synaptic connectivity within cir-
cuits16–21. Such connectomic approaches in the cortex have focused 
mainly on sensory areas such as the visual cortex22–27, in which inhibitory 
activity and connectivity are generally less selective than excitatory22,28 
(but also see refs. 29,30). As a result, little is known about synaptic 
connectivity in association areas such as the PPC and how it may differ 
from the sensory cortex.

Here we combined a decision-making task, two-photon calcium 
imaging and automated serial-section EM3,19,31 to measure how synap-
tic connectivity of hundreds of cortical neurons relates to their func-
tional selectivity in the PPC. We found selective excitatory-to-inhibitory 
(E-to-I) and inhibitory-to-excitatory (I-to-E) connectivity: excitatory 
neurons preferentially targeted inhibitory neurons with the same selec-
tivity, whereas inhibitory neurons preferred excitatory targets with 
opposite selectivity. Together, these preferences form an opponent 
inhibition motif, in which neurons associated with one choice sup-
press the activity of neurons associated with the alternative choice. 
The opponent-inhibition motif was present even between neurons with 
activity peaks in different task epochs. To investigate the functional 
implications of this connectivity motif, we modelled recurrent circuits 
with excitatory and inhibitory populations. The models predict that 
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opponent inhibition supports amplification of input selectivity and 
promotes reliable encoding of choices corresponding to each trial type, 
and that opponent inhibition between neurons of which the activity 
peaks in different epochs contributes to the creation of choice-specific 
sequential activity.

Behaviour, imaging and EM
We trained mice to perform a two-alternative forced-choice task in a 
virtual reality T-maze and used two-photon calcium imaging to meas-
ure the activity of layer 2/3 neurons in the left-hemisphere PPC dur-
ing task performance3,31 (Fig. 1a and Extended Data Fig. 1a–c). These 
behavioural and functional imaging data were included in a previous 
study31. Consistent with previous results3,31, many PPC neurons exhib-
ited temporal activity peaks that were selective for trial type (left or 
right turn trials; Fig. 1b) and staggered relative to one another in time, 
forming sequences of neuronal activation that spanned the length of 
a task trial3,31,32 (Extended Data Figs. 1d–f and 2). To quantify trial-type 
selectivity, we defined the maximum selectivity as the maximum value 
of the mutual information (MI) between the neuronal activity and trial 
type across time within the trial (Fig. 1b and Methods). Away from the 
timepoint of maximum selectivity, neurons often had non-zero activity 
that typically shared the same left/right preference as the maximum, 
such that the maximum was generally representative of selectivity 
throughout the trial (Extended Data Figs. 1e,f and 2). Over the popula-
tion of neurons, there was a diversity of maximum-selectivity values 
(Extended Data Figs. 1g,h and 2).

We preserved the brain of one animal immediately after the 
conclusion of behavioural experiments and used EM to generate a 
high-resolution structural map of the same neurons of which the activ-
ity was previously measured in vivo (Fig. 1c and Methods). We used 
the GridTape automated transmission EM pipeline19 to collect and 
image 2,500 serial 40 nm thin sections and aligned them to form a 
three-dimensional volume spanning all six cortical layers with about 
1.2 mm extent (medial–lateral) and around 100 μm depth (ante-
rior–posterior). This dataset encompasses approximately 0.1 mm3 
at 4.3 nm × 4.3 nm × 40 nm per voxel resolution (Fig. 1d). We next 
co-registered the in vivo and EM data to match calcium-imaging regions 
of interest to cell bodies in the EM volume (Methods and Extended Data 
Fig. 1i,j). We were therefore able to relate behaviour, neuronal activity 
and network anatomy in the PPC.

Using the EM data, we reconstructed the axons and dendrites of the 
functionally characterized cells within the volume (Fig. 1e) and clas-
sified them as excitatory pyramidal cells or inhibitory interneurons 
(non-pyramidal) on the basis of their morphology (n = 124 (pyramidal) 
and n = 16 (non-pyramidal); Extended Data Figs. 3 and 4). Non-pyramidal 
cells in the PPC were generally as selective as pyramidal cells (Extended 
Data Fig. 1h; P = 0.20, Kolmogorov–Smirnov test), consistent with 
recent functional imaging experiments10.

To map the connectivity of the functionally characterized neurons, 
we annotated all of the outgoing synapses from their axons within the 
EM volume and traced the corresponding post-synaptic dendrites 
back to their cell bodies. We identified 233 synapses in which the 
post-synaptic cell was also a functionally characterized neuron (Fig. 1e 
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Fig. 1 | Behaviour, functional imaging and EM. a, Schematic of 
decision-making behaviour consisting of a navigational two-alternative 
forced-choice memory task performed in virtual reality. b, The trial-averaged 
activity (act.) for left (blue) and right (red) trials from two example selective 
neurons, plotted along with the MI with the trial type (bottom). The magnitude 
of the maximum selectivity was defined as the maximum value of the MI 
(dotted horizontal line). a.u., arbitrary units. c, Image of the cranial window of 
the selected mouse, showing the location of overlapping calcium imaging (2p, 
green) and EM (black) datasets within the PPC. Scale bar, 1 mm. d, Schematic of 

the volumetric EM dataset consisting of 2,500 serial sections. Insets: images at 
a progressively higher resolution, highlighting cell bodies (magenta) and an 
individual synapse (cyan; the arrows indicate the PSD). L, layer; ax, axon; den, 
dendrite. e, Reconstructed circuit in the PPC, consisting of 124 excitatory 
neurons (triangles) and 16 inhibitory neurons (circles) colour coded by 
selectivity (key). Inset: summary of the reconstructed circuit, indicating the 
number of neurons of each type (within shapes) and the number of synaptic 
connections (next to arrows). The direct E-to-I and I-to-E connections that are 
analysed in detail in Figs. 2 and 3 are shown in bold. Scale bar, 100 μm.
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(inset)). The majority of these direct connections were I-to-E (74%), 
followed by E-to-I (12%), so we focused our analysis on these types of 
connections. We also quantified the area of the post-synaptic density 
(PSD area) associated with each synapse (Fig. 1d (inset) and Methods), 
which correlates with functional synaptic strength33.

E-to-I connectivity
We first investigated how E-to-I connectivity in the PPC is related to 
selective activity. We compared the number of synapses between neu-
rons that preferred the same trial type at their maximum selectivity 
(co-selective) versus those with opposite preferences (anti-selective) 
(Fig. 2a). As the opportunities for neurons to make synaptic connections 
are limited to locations where their axons and dendrites come into close 
proximity, we also quantified the axon–dendrite overlap23,34 between 

all pairs of neurons (Fig. 2b and Extended Data Fig. 5a). Although the 
axon/dendrite overlaps were similar for co-selective and anti-selective 
pairs (P = 0.56, Mann–Whitney U-test), the number of synapses per μm 
overlap (normalized synapse frequency) was over two times higher 
for co-selective pairs (Fig. 2c; 0.021 ± 0.006 μm−1 (anti-selective) and 
0.045 ± 0.005 μm−1 (co-selective); P = 0.018, Mann–Whitney U-test; 
Fig. 2e–g and Extended Data Fig. 5b).

To account for the continuous distribution of selectivity strengths 
across neurons (Extended Data Fig. 1g,h), we defined for each cell pair a 
maximum-selectivity similarity, the magnitude of which quantifies how 
selective the cells are, and the sign of which indicates whether the cells 
are co-selective or anti-selective (Methods and Extended Data Fig. 5c). 
The maximum-selectivity similarity was strongly correlated with the 
normalized synapse frequency (r = 0.65, P = 0.001, Pearson correlation 
test; Fig. 2h, Extended Data Fig. 5d and Supplementary Table 1). As the 
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Fig. 2 | Co-selective E-to-I connectivity. a, Schematic of E-to-I connections 
among functionally characterized neurons. Connections are classified as 
co-selective (co; green) or anti-selective (anti; purple). b, Schematic of the 
axon–dendrite overlap and normalized synapse frequency metric, which 
quantifies the likelihood of synapses between a specific axon–dendrite pair 
per µm of overlap (axon path length within 5 µm of the dendrite). Grey, 
presynaptic axon; orange, post-synaptic dendrites; black, axon–dendrite 
overlap; cyan arrows, synaptic connections. c, The normalized synapse 
frequency between co-selective neurons (green) is more than twice as frequent 
as between anti-selective neurons (purple) (0.021 ± 0.006 μm−1, n = 6 
connections (anti-selective); 0.045 ± 0.005 μm−1, n = 15 (co-selective); P = 0.018, 
Mann–Whitney U-test). d, Synapses between co-selective neurons (green)  
have PSDs almost twice as large as those between anti-selective neurons 
(0.12 ± 0.02 μm2, n = 8 synapses (anti-selective); 0.22 ± 0.03 μm2, n = 21 
(co-selective); P = 0.046, Mann–Whitney U-test). e–g, Example connections, 

including strongly anti-selective (e), weakly co-selective (f) and strongly 
co-selective (g) neuron pairs, coloured as in b. The left/right selectivity of pre- 
and post-synaptic neurons is indicated by the coloured icons. Neuron pairs 
correspond to data points indicated by arrows in c and h. For e–g, scale bars, 
20 μm. h, The normalized synapse frequency is correlated with the maximum- 
selectivity similarity. n = 21 connections. The dotted line is the linear fit 
(r = 0.65, P = 0.001, Pearson correlation test). i–k, EM images showing example 
synapses between strongly anti-selective (i), weakly co-selective ( j) and 
strongly co-selective (k) neuron pairs. PSDs are indicated by cyan arrows. 
Synapses correspond to data points indicated by arrows in d and l and are from 
the same connections shown in e–g, respectively. For i–k, scale bars, 500 nm.  
l, The log-transformed PSD area is correlated with the maximum-selectivity 
similarity index. n = 29 synapses. The dotted line is the linear fit (r = 0.56, 
P = 0.002, Pearson correlation test). Data are mean ± s.e.m. Two-tailed 
significance tests were performed.
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maximum selectivity can occur at different times in the trial for differ-
ent neurons, we also defined a ‘simultaneous-selectivity similarity’, 
which compares the selectivity of the pre-synaptic and post-synaptic 
neurons at the same timepoints (Methods and Extended Data Fig. 5e) 
and therefore relates more directly to synaptic interactions between 
neurons. The simultaneous-selectivity similarity was also strongly cor-
related with the normalized synapse frequency (Extended Data Fig. 5f; 
r = 0.58, P = 0.006, Pearson correlation test). These results indicate 
that excitatory neurons preferentially target inhibitory partners with 
similar selectivity.

We next examined whether the size of individual synapses was cor-
related with the selectivity of the connected neurons. The PSD area 
of cortical excitatory synapses is known to correlate with functional 
strength33. Here we found that co-selective E-to-I synapses had PSD areas 
nearly two times larger than those of anti-selective synapses (Fig. 2d; 
0.12 ± 0.02 μm2 (anti-selective) and 0.22 ± 0.03 μm2 (co-selective); 
P = 0.046, Mann–Whitney U-test). Synapse size was also strongly corre-
lated with maximum-selectivity similarity (Fig. 2i–l; r = 0.56, P = 0.002, 
Pearson correlation test) and simultaneous-selectivity similarity 
(Extended Data Fig. 5g; r = 0.50, P = 0.006, Pearson correlation test).

Consistent with previous research31, we observed that the functional 
selectivity of PPC neurons can change over time even after the animal 
attains stable, expert performance of the task (Extended Data Fig. 5h). 
Concordantly, selectivity similarity between pairs of neurons also drifts 
on the timescale of days (Extended Data Fig. 5i). Comparing earlier 
with later behavioural sessions (Extended Data Fig. 1a) revealed that 
structure–function correlations are weaker on days further from when 
the brain was preserved (Extended Data Fig. 5j,k). This suggests that 
synaptic connections in the PPC may also change over timescales of 
days, which is consistent with turnover rates of some types of axon 
boutons and dendritic spines35.

I-to-E connectivity
We next examined whether I-to-E connectivity was also functionally 
selective (Fig. 3a). We found that the normalized synapse frequency 
(synapses per μm of axon/dendrite overlap; Fig. 2b) was higher for 
anti-selective I-to-E pairs compared with co-selective pairs (Fig. 3b 
and Extended Data Fig. 6a,b; 0.020 ± 0.002 μm−1 (anti-selective) and 
0.015 ± 0.001 μm−1 (co-selective); P = 0.028, Mann–Whitney U-test), 
and was negatively correlated with the maximum-selectivity similar-
ity (Fig. 3c; r = −0.22, P = 0.023, Pearson correlation test, Extended 
Data Fig. 6c and Supplementary Table 2). These correlations were 
weaker on days further from when the brain was preserved (Extended 
Data Fig. 6d). The normalized synapse frequency was also negatively 

correlated with simultaneous-selectivity similarity for I-to-E connec-
tions (Extended Data Fig. 6e; r = −0.20, P = 0.041, Pearson correlation 
test). These results indicate that inhibitory neurons preferentially target 
excitatory partners with opposite selectivity.

In contrast to E-to-I connectivity, we did not detect a significant dif-
ference in the PSD area of I-to-E synapses between co-selective and 
anti-selective pairs (Fig. 3d; P = 0.69, Mann–Whitney U-test), and PSD 
area was not significantly correlated with the maximum-selectivity 
similarity (Fig. 3e; r = 0.084, P = 0.29, Pearson correlation test), sug-
gesting that selective I-to-E connectivity may be mediated more by the 
number of synapses than the strength of individual synapses.

Activity peaks of connected neurons
We considered how connectivity relates to neurons that have differ-
ences in the timing of their peak activity within a trial. The majority of 
connected E-to-I and I-to-E neuron pairs had activity peaks in different 
temporal epochs in the trial (Extended Data Fig. 7a–c), suggesting that 
trial-type selectivity may be a stronger determinant of connectivity than 
the timing of the peak activity. This finding was somewhat surprising 
because connectivity might be expected to be strongest among neu-
rons with activity peaks at similar timepoints in the trial. However, cells 
exhibit non-zero activity away from their peak activity times (Extended 
Data Figs. 1e,f and 2), which enables a presynaptic cell to influence 
the activity of a post-synaptic cell even if they have activity peaks in 
different epochs. We tested this idea by computing noise correlations 
(a measure of simultaneous trial-to-trial co-fluctuations in activity 
after regressing away covariations due to similar tuning to cue and/or 
behavioural variables such as running patterns32; Methods) and found 
that noise correlations were positively correlated with E-to-I connectiv-
ity and negatively correlated with I-to-E connectivity (Extended Data 
Fig. 7d,e). Furthermore, as noted above, the simultaneous-selectivity 
similarity was positively correlated with E-to-I synaptic connectivity 
(Extended Data Fig. 5f) and negatively correlated with I-to-E connec-
tivity (Extended Data Fig. 6e). Together, these results indicate that 
opponent inhibition patterns of connectivity can affect activity and 
computation on timescales relevant to direct synaptic transmission.

Circuit modelling
Together, co-selective E-to-I (Fig. 2) and anti-selective I-to-E connec-
tivity (Fig. 3) comprise an opponent inhibition motif (Fig. 4a (top)). 
We used network modelling to investigate how opponent inhibition 
may support decision-making computations. We first studied a linear 
rate model10,14 comprising two excitatory and two inhibitory units. 

−0.25 0 0.25
Maximum-selectivity similarity

–1.5

–1.0

–0.5

lo
g-

tr
an

sf
or

m
ed

P
S

D
 a

re
a 

(μ
m

2 )

P = 0.29

–0.25 0 0.25
Maximum-selectivity similarity

0

0.02

0.04

0.06

N
or

m
al

iz
ed

 s
yn

ap
se

fr
eq

ue
nc

y 
(μ

m
−

1 )

P = 0.023

Anti Co
Neuron pairs

0.02

0.04

0.06

N
or

m
al

iz
ed

 s
yn

ap
se

fr
eq

ue
nc

y 
(μ

m
−

1 )

P = 0.028 dc
Left Right

Co Anti

Types of connections

Excitatory

Inhibitory

a eb

Anti Co
Neuron pairs

0

0.2

0.4

0.6

P
S

D
 a

re
a 

(μ
m

2 )

P = 0.69

Fig. 3 | Anti-selective I-to-E connectivity. a, Schematic of I-to-E connections 
among functionally characterized neurons. Connections are classified as 
co-selective (green) or anti-selective (purple). b, The normalized synapse 
frequency is greater for anti-selective (purple) than co-selective (green) I-to-E 
connections (0.020 ± 0.002 μm−1, n = 40 connections (anti-selective); 
0.015 ± 0.001 μm−1, n = 63 (co-selective); P = 0.028, Mann–Whitney U-test).  
c, The normalized synapse frequency is negatively correlated with the 
maximum-selectivity similarity. n = 103 connections. The dotted line is the 

linear fit (r = −0.22, P = 0.023, Pearson correlation test). d, PSD areas are not 
significantly different for anti-tuned (purple) and co-tuned (green) I-to-E 
connections (0.15 ± 0.01 μm2, n = 60 connections (anti-tuned); 0.16 ± 0.01 μm2, 
n = 96 (co-tuned); P = 0.69, Mann–Whitney U-test). e, The PSD area is not 
significantly correlated with the maximum-selectivity similarity. n = 156 
synapses. The dotted line is the linear fit (r = 0.08, P = 0.29, Pearson correlation 
test). Data are mean ± s.e.m. Two-tailed significance tests were performed.
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Left- or right-selective excitatory neurons (EL, ER) receive elevated 
external input during left or right trials and interact with left- and 
right-selective inhibitory neurons (IL, IR) (Fig. 4a, Methods and Sup-
plementary Methods). In networks with opponent inhibition, input 
onto EL decreases ER activity through feed-forward inhibition, which 
amplifies EL activity through feedback disinhibition13–15,36–38 (Fig. 4b). 
In left trials, both suppression of ER and amplification of EL increased 
the difference between neural activity on left and right trials, and this 
difference was therefore larger for networks with stronger opponent 
inhibition (Methods, Extended Data Fig. 8a–c and Supplementary 
Methods). As a consequence, networks with stronger opponent inhibi-
tion supported more accurate decoding of trial type in the presence of 
readout noise (Fig. 4c,d and Extended Data Fig. 8d,e). Opponent inhibi-
tion also improved decoding accuracy over a broad range of values of 
E-to-E selectivity, and even without recurrent excitatory connections 
(Extended Data Fig. 8f), as well as in networks in which both E and I 
neurons received external selective input (Extended Data Fig. 9a,b). 
When time-dependent input noise was included, opponent inhibition 
amplified the signal more than it amplified the noise, therefore enhanc-
ing trial-type encoding (Extended Data Fig. 8g–j).

Although the linear rate model explains how opponent inhibition can 
affect network coding, it does not include heterogeneity of connection 
weights, nor does it produce sequential activity peaks as observed in 
the experimental data. To determine whether its predictions hold for 
more biologically constrained models, we built a recurrent neural net-
work (RNN) model with the same number of excitatory and inhibitory 

neurons as the experimentally reconstructed circuit (Fig. 4e), and 
trained the connection weights of the RNNs to reproduce the meas-
ured calcium activity for left and right trials39,40 (Methods). After train-
ing, the RNNs generated dynamics that accurately reproduced PPC 
activity39 (Fig. 4f). Although we did not constrain the selectivity of 
the RNN connections, the trained RNNs exhibited co-selective E-to-I 
and anti-selective I-to-E motifs, similar to those found experimentally 
(Fig. 4g,h and Extended Data Fig. 9c). To investigate whether these 
motifs supported signal amplification, as predicted by the linear rate 
model, we systematically manipulated the RNN connectivity41 by per-
turbing the E-to-I or I-to-E selectivity around the trained values, and 
regenerated the dynamics using the new connections (Supplementary 
Methods). Stronger opponent inhibition (stronger E-to-I co-selectivity 
or I-to-E anti-selectivity) amplified the separation between left and right 
population responses (Fig. 4i and Extended Data Fig. 9d), further sug-
gesting that opponent inhibition may enhance the coding of trial-type 
signals in the PPC.

In the RNNs, as with the experimental data, connections comprising 
the opponent inhibition motif also include many neuron pairs with 
peaks in different trial epochs (Extended Data Figs. 7b,c and 10a). By 
perturbing the connections in the RNNs, we found that the selectivity of 
connections both between neurons with peaks in the same or different 
trial epochs promotes the separation between left- and right-choice 
population responses (Extended Data Fig. 10b–d). An analysis of the 
modelled currents during network dynamics revealed strong off-peak 
inhibition specific to connections between neurons peaking in different 
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encoding. a, Illustration of the linear rate model comprising two excitatory 
and two inhibitory units. Left (or right) trial-type input is fed to EL (or ER) (top). 
Bottom, variants in which I-to-E selectivity differs. The purple and green  
arrows indicate stronger anti-selectivity (anti-sel.) and co-selectivity (co-sel.), 
respectively. b, EL and ER activity (solid lines) in response to a left trial-type 
input (dotted lines) for a network with opponent inhibition. EL is amplified and 
ER is suppressed. c, The relative decoding accuracy (ratio of output to input 
decoding accuracy) as a function of E-to-I and I-to-E selectivity. The black 
square indicates the parameters used for b. d, The relative decoding accuracy 
as a function of E-to-I (top) and I-to-E (bottom) selectivity, corresponding to  
the dashed lines in c. e, Illustration of an RNN fit to the population activity.  
The networks are trained to reproduce experimental trial-averaged activity.  
f, Examples of the PPC activity (coloured lines) and RNN fits (black lines) for one 

excitatory (top) and one inhibitory (bottom) neuron. g, Correlations between 
connectivity strength and the maximum-selectivity similarity for E-to-I (top) 
and I-to-E (bottom) connections for a single RNN. E-to-I connections are 
positively correlated (co-selective), whereas I-to-E connections are negatively 
correlated (anti-selective). h, The correlation between connection strengths 
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Methods). The solid lines show the median and the error bars show the 
interquartile range. n = 147 randomly initialized RNNs.
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epochs (Extended Data Fig. 10e), suggesting that I-to-E connections 
are critical for the formation of sequential activity peaks. Weakening 
or removing connections between neurons with peaks in different 
trial epochs disrupted trial-type selective sequential activity dynam-
ics (Extended Data Fig. 10f–m and Supplementary Methods). Taken 
together, these results suggest that selective connections between 
neurons with activity peaks at different times are crucial for generating 
trial-type-selective and sequential population dynamics.

If opponent inhibition is used to compute signals relevant for choice, 
we would expect inhibitory activity to have a role in determining 
whether the animal makes the correct choice. To test this, we exam-
ined how the activity of I and E neurons in the PPC differed on error 
trials versus correct trials. Selective activity was generally degraded 
(reduced or reversed) on error trials (Extended Data Fig. 11a), and 
this degradation was comparable in magnitude for I and E neurons 
(Extended Data Fig. 11b,c). Thus, the activity of both I and E neurons 
was related to the mouse’s choice. To confirm this result, we performed 
additional behavioural and functional imaging experiments on mice 
in which inhibitory neurons were labelled (Methods and Extended 
Data Fig. 11d) and found results consistent with those from the mouse 
used for EM analysis (Extended Data Fig. 11c). To understand how 
error trial selectivity degradation relates to selective connectivity, 
we also examined how I and E unit activity in the linear rate model 
correlate with choice (defined on the basis of which E unit was more 
active in each trial13,14). Only networks with opponent inhibition exhib-
ited inhibitory selectivity degradation on error trials comparable in 
magnitude to excitatory selectivity degradation, as observed in the 
experimental data (Extended Data Fig. 11c,e). Taken together, these 
analyses suggest that inhibitory activity could have a role in produc-
ing correct choices and provides further evidence that opponent 
inhibition contributes to choice-selective activity and, ultimately,  
decision-making.

Discussion
We sought to understand the relationships between trial-type-selective 
neuron activity and synaptic connectivity in the PPC. Although selective 
activity in the PPC has been reported in many previous studies3,5–10,42, 
accompanying connectivity data have been lacking. Here we used auto-
mated serial-section transmission EM19 to acquire synapse-resolution 
images in a volume from the PPC that was functionally imaged during 
behaviour. As neuronal arborizations extend over large distances in 
the mammalian cortex, it is critical to image a large enough volume to 
sample them. The EM volume collected here in the PPC contains a much 
larger volume compared with previous cortical EM datasets21–24,26 (but 
also see refs. 20,27), enabling the reconstruction of substantial portions 
of axonal and dendritic arborizations, including synaptic connections 
made on distal branches. The resulting connectivity data, combined 
with behavioural and functional imaging data from the same animal, 
enabled us to reveal circuit motifs that support decision-making. Still, 
these data include only a modest sample size of functionally character-
ized neurons and synapses between them, and do not include synapses 
made outside the EM volume. Future functional connectomic datasets 
involving larger EM volumes and more neurons will probably reveal 
additional circuit motifs.

We found that the frequency and size of synaptic connections in 
the PPC depended significantly on the selectivity of pre-synaptic 
and post-synaptic neurons. For E-to-I connections, co-selective syn-
apses were larger and more frequent, whereas, for I-to-E connections, 
anti-selective synapses were more frequent. We did not detect a dif-
ference in the synapse size between co-selective and anti-selective 
I-to-E connections. However, synapse size analysis for both E-to-I and 
I-to-E connections should be interpreted cautiously, as the correlation 
between synapse size and functional strength in the cortex has been 
directly measured only for E-to-E synapses33.

The combination of co-selective E-to-I and anti-selective I-to-E com-
prises an opponent inhibition motif, in which the activity of left-selective 
excitatory neurons suppresses the activity of right-selective ones, and 
vice versa. This motif has been shown to mediate action selection in 
zebrafish and Drosophila43,44, and a related motif has been reported 
in the ferret visual cortex45, but motifs of this type have not previ-
ously been reported in the association cortex. Previous research in 
the mouse PPC proposed that selective connectivity motifs underlie 
choice-selective inhibitory activity, but could not rule out models with 
non-selective inhibition10. Here, the combination of neuronal activity 
measurements and EM-based connectomics in the same neurons has 
enabled the identification of the underlying connectivity motifs.

Selective inhibitory connectivity in the PPC contrasts with the pri-
mary visual cortex, in which previous connectomic analysis has sug-
gested that E-to-I connectivity is non-selective in mice22 (but also see 
refs. 46–48). This suggests that specific inhibitory connectivity may 
be a distinct feature of PPC relative to the primary visual cortex, which 
underlies specialized functional roles of different cortical areas. Alter-
natively, opponent inhibition may be a more general motif that can arise 
in both sensory and association cortices with task learning49, as well 
as in the motor cortex50. Experiments comparing connectivity across 
multiple cortical areas in the same trained animal will be needed to 
assess how general opponent inhibition is across the cortex.

Although we observed selective connectivity across a population 
of neurons, the individual connection probabilities between neuron 
pairs were quite variable. This connection noise is a source of biologi-
cal variability51 that places limits on our ability to detect connectivity 
motifs given limited experimental sample sizes. Thus, although data 
presented here were sufficient to reveal the opponent inhibition motif, 
more subtle motifs may require more data to uncover. For example, we 
did not find selectivity in E-to-E connections (Extended Data Fig. 6f,j), 
but recurrent E-to-E co-selectivity (which is found in the primary 
visual cortex23,52) might be observable with a larger dataset. Thus, we 
anticipate that future connectomics experiments encompassing even 
larger volumes and numbers of functionally characterized neurons 
will uncover additional connectivity motifs and elucidate differences 
among interneuron subtypes. Nevertheless, our circuit modelling sug-
gests that advantages of opponent inhibition apply over a wide range 
of E-to-E and I-to-I selectivity (Extended Data Fig. 8f).

In models of decision-making, the formation of categorical choices is 
typically facilitated by non-selective lateral inhibition12. Recently, it has 
been proposed that selective inhibition could have one of two possible 
roles: promoting competition with anti-selective I-to-E connectiv-
ity, or stabilizing dynamics through co-selective I-to-E connectivity15. 
These distinct contributions are also present in the linear rate model 
presented here (Extended Data Fig. 8f). Our anatomical data suggests 
that PPC lies in the competition regime.

Although some decision-making models focus on the production 
of categorical choices through winner-take-all dynamics in attractor 
models13,15, previous research suggests that, during navigational tasks, 
the PPC produces more complex dynamics in which multiple activity 
patterns arise for each trial type53. These neural trajectories in the PPC 
probably represent a wide range of task and behavioural variables, 
including the mouse’s choice, its navigational movements and posi-
tion, and sensory cues from the environment3,31,54–56. For this reason, 
the model developed here focuses on a graded encoding of the choice 
signal, whereby the PPC circuit helps to separate these multifaceted 
neural trajectories to enhance the encoding of the signals relevant for 
navigational decision-making.

Temporal sequences of activity in the cortex have become a prominent 
topic of discussion because they have been identified across many corti-
cal areas and in many contexts in recent years3,57,58. Although the analysis 
in this study has focused on choice selectivity, choice and temporal 
selectivity are intermingled within neuronal activity dynamics. Indeed, 
we observed that choice-specific connections include neuron pairs that 
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have activity peaks at different times (Extended Data Fig. 7a–c). Using 
modelling, we showed that recurrent networks need such connections 
to generate choice-specific sequences (Extended Data Fig. 10), which 
provides a theorical intuition for why we find such connections in the 
experimental connectivity data. Although further studies will be needed 
to fully understand how synaptic connectivity underlies temporal activ-
ity sequences, our study provides a start in this direction.

In summary, we identified an anatomical opponent inhibition motif 
consisting of functionally selective connectivity between excitatory 
and inhibitory neurons in the PPC. Using modelling, we showed that 
this opponent inhibitory motif improves the encoding of trial-type 
information. Together, these results identify an anatomical connectiv-
ity motif in the PPC that supports decision-making.
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Methods

Behaviour and calcium imaging
All of the experimental procedures were approved by the Harvard Medi-
cal School Institutional Animal Care and Use Committee. Mice were 
housed under a reversed 12 h–12 h light–dark light cycle. We trained 
mice to perform a two-alternative forced-choice delay task in a virtual 
reality T-maze and performed in vivo calcium imaging as previously 
described3,31 (Fig. 1a). In brief, the task consisted of cue, delay and turn 
phases. During the cue phase, the mice were presented with one of two 
visual cues on the walls of the T-maze. In the second half of the T-maze 
(the delay period), the cues were replaced by a neutral grey. At the 
T-intersection, the mice turned left or right based on the presented cue 
to earn a water reward. The mice performed the task by running on a 
spherical treadmill and were presented with visual stimuli projected 
onto a screen using the ViRMEn software engine59 (forked at https://
github.com/lauradriscoll/virmen).

We used raw calcium imaging and behavioural data from a single 
mouse originally from a previous study31. Owing to the extensive 
effort required to generate a large enough EM volume (~6 months 
for imaging, ~6 months for alignment, ~7,000 annotation hours for 
neuron tracing), it was not feasible to generate multiple such data-
sets from multiple animals in this study. In brief, the mouse was a 
male C57BL/6J mouse (The Jackson Laboratory) aged 8 weeks at the 
start of behavioural training, 14–18 weeks during imaging and 18–19 
weeks when the brain was preserved for EM imaging. GCaMP6m was 
expressed in left-hemisphere PPC layer 2/3 neurons by viral injection 
(AAV2/1-synapsin-1-GCaMP6m) and neuronal activity was recorded dur-
ing behaviour using a two-photon microscope (5.3 Hz volume imaging 
rate) controlled by ScanImage (v.4; Vidrio Technologies). Behaviour and 
functional imaging were recorded every day for around 30 consecutive 
days (with a few 1 day breaks). However, for the main analysis in this 
study, we focused on data from the last four sessions. For additional 
analyses investigating how structure-function relationships evolve 
over time, we used sessions 8–10 days before (early), 4–7 days before 
(middle) and the last 4 days before (late) euthanasia (Extended Data 
Figs. 1a, 5j,k and 6d).

For each session, we performed source extraction using Suite2p60 
(https://www.suite2p.org) and manually screened the resulting 
regions of interest (ROIs) to obtain putative cell bodies and associ-
ated calcium signals. The dF/F calcium signals were deconvolved 
using the constrained FOOPSI algorithm61 (https://github.com/epnev/
constrained-foopsi) to obtain an event rate that estimates the relative 
firing rate of each neuron over time. We synchronized the event rates 
to the behavioural trials structure to obtain trial-wise event rates for 
each neuron. As the length of trials can vary based on the how quickly 
the mouse runs, we synchronized based on three landmarks during the 
trial: the beginning of the trial, the start of the delay period and the end 
of the trial. Trial aligned event rates had 63 timepoints (each 188 ms) 
according to the following scheme: timepoints 1–13 correspond to the 
cue (beginning) epoch and are aligned to the landmark timepoint: 1, 
the start of trial (running onset); timepoints 14–25 correspond to the 
cue (end) epoch and are aligned to the landmark timepoint: 26, the  
start of delay period (cue offset); timepoints 26–38 correspond to  
the delay epoch and are aligned to the landmark timepoint: 26, the 
start of delay period (cue offset); timepoints 39–51 correspond to  
the turn epoch and are aligned to the landmark timepoint: 52, the end 
of the trial (reward given or omitted); and timepoints 52–63 correspond 
to the inter-trial interval and are aligned to the landmark timepoint: 
52, the end of the trial (reward given or omitted).

Thus, synchronized trials were not completely continuous in time 
(there are two discontinuities). We next calculated trial-averaged event 
rates by averaging over left and right trials separately.

For experiments analysing the activity of excitatory and inhibitory 
neurons during error trials, additional mice were trained to perform 

the virtual reality behavioural task. We injected the left-hemisphere 
PPC with AAV9-hSyn-jGCaMP7f, AAV9-mDlx-NLS-mRuby2 and 
AAV8-CaMKIIa-ChRmine-mCherry-Kv2.1 and installed a cranial win-
dow and headplate62–64. This set of viruses labelled both excitatory 
and inhibitory neurons with jGCaMP7f, excitatory neurons with a 
somatic membrane-localized red fluorophore and inhibitory neurons 
with a nuclear-localized red fluorophore (Extended Data Fig. 11d). We 
recorded neural activity in the PPC using two-photon microscopy 
(~30 Hz frame rate) and synchronized behaviour and imaging using 
frame triggers from the microscope and iteration triggers from  
ViRMEn. We also collected a z stack spanning ±10 μm around the 
imaging plane to record structural data from both the red and green  
channels. ROIs were automatically extracted using Suite2p and non-cell 
sources were discarded. After aligning the calcium imaging field-of- 
view to the structural z stack, for each source, we measured the red  
fluorescence in the somatic membrane and in the nucleus. To measure 
the nuclear red fluorescence, we eroded the masks for each source and 
took the mean grey value of the eroded ROI in the aligned red channel 
image; the somatic membrane red fluorescence was the mean grey 
value of all of the pixels in the ROI that were not included in the nuclear 
region. To identify neurons with enriched nuclear red fluorescence, we 
computed the ratio of nuclear to membrane fluorescence. We took cells 
with the top 10% of these values to be putative inhibitory interneurons 
labelled by AAV9-mDlx-NLS-mRuby2 and considered the bottom 70%  
of these values to be putative excitatory neurons with red fluorescence 
in the somatic membrane. These thresholds were chosen to be con-
servative in our labelling of inhibitory and excitatory neurons.

Information-theoretic selectivity index
For each neuron in each session, we calculated an information-theoretic 
trial-type selectivity index as follows. The event rates were converted 
to binary values by setting all non-zero values to 1, measuring when 
the neuron is active versus inactive. Then, as done previously32, we 
calculated the instantaneous MI65 between this binarized event rate 
and the identity of the sensory cue (which has two possible values for 
right and left trials) for each timepoint in the trial using the Informa-
tion Breakdown Toolbox66. This measures the instantaneous trial-type 
information, with trial type intended as the type of cue presented to 
the mouse. All left- and right-turn trials were included in this analysis, 
including error trials in which the mouse turned the wrong direction. 
Alternative analyses, such as including only correct trials or defining 
the trial type based on the mouse’s choice, lead to slightly different 
values of MI, but did not significantly change the results. We subtracted 
the limited-sampling bias from the information estimates using the 
Panzeri–Treves bias correction67, which improved the accuracy of 
information estimates by removing the confounding effect of dif-
ferences in trial numbers across sessions (see the ‘Method selection 
for estimating trial type selectivity and noise correlation’ section in 
the Supplementary Methods; Extended Data Fig. 12). We computed 
information in each available session (among the last four sessions) 
and then averaged the value across sessions to provide an information 
estimate for each neuron, as this optimized the SNR of the calculation 
(Extended Data Fig. 12). We estimated the significance of the informa-
tion value at each timepoint (P < 0.05) using the 95th percentile of the 
null-hypothesis distribution obtained by randomly permuting neural 
responses across trials66 (n = 1,000 permutations), and we set to zero 
non-significant information values to avoid attributing selectivity 
to timepoints that were not. The MI has units of bits and is bounded 
between 0 and 1.

We defined the magnitude of the maximum selectivity to be the 
maximum value of the MI across timepoints. The timepoint of peak 
MI was different for different neurons. We defined the sign of the 
maximum selectivity based on the trial-averaged event rates at the 
timepoint of peak MI. The maximum selectivity was given a negative 
sign if the trial-averaged binarized event rate was greater on left trials 

https://github.com/lauradriscoll/virmen
https://github.com/lauradriscoll/virmen
https://www.suite2p.org
https://github.com/epnev/constrained-foopsi
https://github.com/epnev/constrained-foopsi


than right. Thus, the maximum selectivity ranges from −1 to +1, with 
the sign indicating preferred trial type and the magnitude indicating 
MI with trial type, and 0 indicating non-significant information. Maxi-
mum selectivity values were calculated separately for each behavioural 
session. To obtain the overall maximum selectivity for each neuron, 
these values were averaged across the last four behavioural sessions 
before the mouse was euthanized (see the ‘Co-registration between 
in vivo and EM data’ section below for alignment of multiple sessions 
and EM data). For additional analyses investigating how structure–
function relationships evolve over sessions, we calculated maximum 
selectivity separately for early, middle and late sessions (Extended 
Data Figs. 1a, 5j,k and 6d).

This information-theoretic definition of selectivity is distinct 
from metrics based on receiver-operator characteristic analysis10 or 
trial-averaged activity3,31 used in other studies. In contrast to these other 
metrics, the MI metric quantifies information available in individual 
trials and can capture any linear or nonlinear tuning. However, these 
different metrics for selectivity are highly correlated with each other, 
so the main conclusions of this study also hold when using alternative 
definitions of selectivity.

Note that, in our dataset, the number of right-selective neurons 
outnumbered the left-selective (Extended Data Figs. 1g and 2). As a 
result, the number of functionally characterized left-selective inhibi-
tory neurons was small. Thus, our findings on trial-type selective con-
nectivity primarily comes from connections involving right-selective 
inhibitory neurons.

Error trial analysis
To investigate the relationship between neuronal activity and the ani-
mal’s choice, we compared correct and error trials (Extended Data 
Fig. 11). Error trials were defined as trials in which the animal turned the 
wrong direction, causing a mismatch between the cue and the choice. 
As the rate of error trials was low, we pooled trials from 11 sessions 
(including early, middle and late sessions indicated in the Extended 
Data Fig. 1a). However, each individual neuron was typically detected 
in several, but not all 11 sessions. To account for experimental differ-
ences across sessions, we normalized the deconvolved activity of each 
neuron in each session to the average activity level of that neuron across 
the whole session.

For each neuron, we defined the preferred and non-preferred cue 
based on the functional selectivity of that neuron. For example, for 
a left-selective neuron, the preferred cue was the one that indicates a 
left turn (white cue), and the non-preferred was the one that indicates a 
right turn (black cue). By definition, neurons are generally more active 
during preferred-cue trials than non-preferred.

To analyse how activity changes on error trials compared to correct 
trials, we quantified for each neuron the relative change in activity for 
preferred (Δpreferred) and non-preferred (Δnon-preferred) trials:

Δ =

act(preferred correct trials) − act(preferred error trials)
act(all preferred trials)

preferred

Δ =

act(non preferred error trials) − act(non preferred correct trials)
act(all non preferred trials)

non preferred

‐ ‐
‐

‐

where act(x) refers to the mean activity over trials of type x, with activ-
ity averaged over both trial types and across time for each trial (except 
in Extended Data Fig. 11a, in which activity is shown as a function of 
time for visualization purposes). Generally, when the animal makes 
an error, neuronal activity is lower on preferred trials and higher on 
non-preferred trials, which is consistent with the activity encoding to 
some extent the (erroneous) choice. Thus, the functional selectivity of 

neurons is degraded (or even switched) on error trials. We defined the 
signs of Δpreferred and Δnon-preferred to both be positive in this case.

To quantify the overall selectivity degradation, we defined the 
‘error trial selectivity degradation’ for a given neuron i (Extended Data 
Fig. 11b) as:

‐D Δ Δ= + .i preferred non preferred

For a neural population, the error trial selectivity degradation was 
defined as:

D Δ Δ= median( ) + median( ),preferred non preferred‐

where the median is taken over neurons belonging to the neural popula-
tion considered (Extended Data Fig. 11c). The median, rather than the 
mean, was used to reduce the effect of outliers that can result due to 
the small number of error trials.

Positive values of Di indicate that the neuron’s selective activity is 
degraded in error trials compared with correct trials. In fact, if a neu-
ron’s activity is selective for the wrong choice on error trials, Δpreferred, 
Δnon-preferred and Di are all positive. Null values of Di indicate that the selec-
tive activity does not change between correct and error trials. If a neu-
ron’s activity is the same on error and correct trials, Δpreferred, Δnon-preferred 
and Di are all 0. Negative values of Di (rarely seen in our data) would 
indicate that selective activity is enhanced in error trials.

To assess the statistical significance of D for different populations of 
neurons (such as excitatory or inhibitory), we performed a permutation 
test in which we shuffled the identity of error trials (keeping the total 
number of error trials the same) and recalculated D for each shuffle. 
The P value of D was determined by comparing the measured D to this 
null distribution.

Note that the value of the degradation index D is sensitive to the 
number of trials and the number of error trials. If the number of error 
trials is small, results will become noisier and values of D will be closer 
to zero. To mitigate this, we excluded neurons with fewer than four total 
error trials of a given type (preferred or non-preferred). However, trial 
numerosity was far greater in the EM mouse (because it was based on 
many co-registered sections) compared with the additional mice with 
only 1–2 sessions. Thus, the magnitude of D cannot be meaningfully 
compared between the EM and additional mice, but can be compared 
between I and E neurons within each dataset, which share the same 
number of trials.

EM dataset
On the last day of in vivo imaging, we injected the tail vein with a fluores-
cent dye to label blood vessels (rhodamine B isothiocyanate–dextran 
(molecular mass, 70 kDa), 5% (v/v), Sigma-Aldrich) and acquired an 
anatomical 2p reference stack of the imaging ROI in the PPC (green 
channel, GCaMP6m for cells; red channel, rhodamine for blood ves-
sels). After performing behaviour and calcium imaging, the mouse was 
perfused transcardially (2% formaldehyde/2.5% glutaraldehyde in 0.1 M 
cacodylate buffer with 0.04% CaCl2) and the brain was prepared for 
EM imaging as previously described23. In brief, 200-μm-thick coronal 
vibratome sections were cut, post-fixed and en bloc stained with 1% 
osmium tetroxide/1.5% potassium ferrocyanide followed by 1% uranyl 
acetate, dehydrated with a graded ethanol series and embedded in 
resin (TAAB 812 Epon, Canemco).

We cut serial 1-μm-thick sections from regions a few sections away 
from the PPC, stained them with toluidine blue (EMS), imaged them 
with light microscopy and aligned them to large blood vessels on the 
surface of the brain (from photos taken through the cranial window) to 
estimate which sections overlap with the PPC regions imaged in vivo. We 
then used micro-CT (Zeiss Versa) to confirm the correct vibratome sec-
tion by registering corresponding vasculature between the micro-CT 
volume and 2p reference stack.
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We cut a series of 2,500 thin sections (thickness, 40–45 nm) and 

imaged them using the GridTape system as previously described19. 
In brief, we trimmed the tissue block to mesa containing the tissue of 
interest using an ultramicrotome (Leica UC7) and a diamond trimming 
knife (EMS-Diatome). Then, using an automated tape ultramicrotome 
(ATUM), we sectioned and collected 2,500 sections onto a reel of Grid-
Tape over a period of about 15 h. During pickup, 37 sections (out of 
2,500, comprising 1.4%) did not adhere to the transparent slots on the 
GridTape and 8 sections (0.3%) had ruptured film supports.

After sectioning and pickup, we post-stained the sections with lead  
citrate using a semi-automated reel-to-reel system. The sections 
were imaged using an automated transmission EM system over a 
period of about 6 months. For each section, an ROI of approximately 
1.2 mm × 0.7 mm was imaged (for the first 800 sections, a larger ROI of 
about 1.5 ×0.7 mm was imaged). During staining and imaging, 38 (1.5%) 
additional sections were damaged in a way that precluded successful 
imaging. Overall, 2,427 (97.1%) of the intended 2,500 sections were 
successfully imaged. The missed sections included one four-section 
gap, two three-section gaps and ten two-section gaps. The dataset 
consisted of around 400 TB of raw data (16-bit images). The raw images 
were converted to 8-bit format and stitched together to form a contigu-
ous three-dimensional volume using an elastic spring mesh algorithm 
(AlignTK).

Co-registration between in vivo and EM data
On the last day of in vivo imaging, we recorded a volumetric reference 
stack of the ROI in the PPC with 1 μm3 voxel size, which was used as a bridge 
between the calcium imaging planes for each session (4 planes separated 
by 25 μm in z) and the EM volume. First, we co-registered the reference 
stack to a down-sampled version of the EM volume (Extended Data Fig. 1i). 
Then, for each session, we co-registered the imaging planes to the refer-
ence stack. Both registrations were calculated by manually identifying a 
moderate number of correspondence points (~10–30) using the ImageJ 
(v.1.53) plugin BigWarp68 (release 6.0.0; https://imagej.net/BigWarp) 
to calculate an affine transformation matrix (custom MATLAB code).

Using these affine transformations, we overlaid the extracted source 
ROIs from each calcium imaging session onto the EM space, and man-
ually inspected each ROI for matching cell bodies in the EM volume 
(Extended Data Fig. 1j). Some ROIs were not associated with any cell 
bodies, presumably because they were other objects such as large 
dendrites. To increase confidence, we matched ROIs to EM for multiple 
sessions simultaneously, and used the trial-aligned activity to help to 
determine whether ROIs in different sessions were from the same neu-
ron. Activity was usually, but not always, similar for the same neuron 
over several sessions. At the conclusion of this correspondence process, 
we identified 140 functionally characterized neurons within the EM vol-
ume with matching calcium imaging ROIs. For most neurons, matching 
ROIs were found in multiple, but not all, sessions. This might be because 
they were not identified by the source extraction algorithm, or because 
they were excluded due to uncertainty in the co-registration and manual 
matching procedure. The co-registration results were reviewed by a 2nd 
expert annotator, and only cell matches that were agreed upon by the 
two independent annotators were included in analysis.

Neuronal circuit reconstruction
The morphology and connectivity of the functionally characterized 
neurons were reconstructed through manual tracing by a team of 
annotators using the CATMAID23,69,70 (release 2018.11.09) collabora-
tive annotation software. Starting from the cell body (which was pre-
viously co-registered to calcium imaging source ROIs), all branches 
(including axons and dendrites) were traced completely until they 
either ended or reached the boundary of the EM volume. In some cases, 
data quality issues such as missing sections or poor image quality pre-
vented further tracing. The functionally characterized neurons were 
classified as pyramidal or non-pyramidal (inhibitory) on the basis of 

their reconstructed morphology. Pyramidal cells were classified as 
such on the basis of characteristic features that included a prominent, 
pial-projecting apical dendrite, outward/downward projecting basal 
dendrites and downward-projecting axon (Extended Data Fig. 3). 
Non-pyramidal cells had a variety of morphologies probably corre-
sponding to distinct interneuron subtypes (Extended Data Fig. 4). In 
total, 124 excitatory and 16 inhibitory neurons with co-registered cal-
cium imaging were traced within the EM volume. For the main analyses, 
116 excitatory and 15 inhibitory neurons, which were detected in the 
calcium imaging data from the last four sessions (see the ‘Early, middle 
and late behavioural sessions’ section below) were used.

Synaptic connections were identified by characteristic ultras-
tructural features71, including concentrated synaptic vesicles and a 
post-synaptic density (PSD), which is a darkening/thickening of the 
post-synaptic membrane at synapses. We annotated synapses in a way 
that also encodes an estimate of the area of the PSD. Connector objects 
were annotated on the section in which the PSD appeared longest, and 
the pre- and post-synaptic nodes were placed in a way such that the 
distance between them was equal to the length of the PSD (Figs. 1d 
and 2i–k). This length was taken to be the diameter of circular PSD to 
estimate PSD area. Although PSDs are not exactly circular, the errors 
inherent to this estimation are probably small compared with the large 
variations in size from synapse to synapse25,72.

Starting from the outgoing synapses on the axons of functionally 
characterized neurons, each post-synaptic neuron was traced until 
either the cell body was found or the neuron left the edge of the EM 
volume. Those post-synaptic partners with cell bodies within the vol-
ume were classified as pyramidal or non-pyramidal as described above. 
Some of the post-synaptic partners were other functionally charac-
terized neurons (direct connections). Thus, the first-order output 
connectivity of the functionally characterized neurons was traced 
completely within the EM volume (Fig. 1e (inset)).

All tracing (including neuronal morphologies and synapse size esti-
mations) was reviewed a second time by an independent reviewer. In 
general, we took a conservative approach to terminate ambiguous 
continuations to avoid merge errors. Neuron tracing required approxi-
mately 7,000 h, including around 5,000 h of tracing and about 2,000 h 
of reviewing.

Connectivity analysis
Analysis of neuron morphology and connectivity was performed by que-
rying the CATMAID database and performing calculations using custom 
Python code based on the navis (v.1.1.0; https://github.com/navis-org/
navis) and pymaid (v.2.4.0; https://github.com/navis-org/pymaid) librar-
ies. Specific details for particular analyses are provided below.

Axon–dendrite overlap
To quantify how many opportunities pairs of neurons have to make 
synaptic connections, we calculated the axon–dendrite overlap, 
which is the length of pre-synaptic axon that comes within 5 μm of 
the post-synaptic dendrites. All neuron pairs with synaptic connections 
had non-zero axon–dendrite overlap, because the axons and dendrites 
need to come into close proximity to form a synapse. Neuron pairs that 
have a high frequency of synapses per overlap were interpreted to have 
a high affinity for forming synaptic connections. The axon–dendrite 
overlap was calculated using the cable_overlap function in navis. To 
mitigate tracing irregularities, the neuron skeletons were first resam-
pled at 100 nm inter-node distance and then smoothed with a radius 
of 1 μm. We also examined the effect of changing the 5 μm distance 
threshold in Extended Data Fig. 5d and 6c.

Maximum-selectivity similarity
The maximum-selectivity similarity s quantifies in a continuous manner 
how similar the selectivity is between two neurons, and was defined as 
(Extended Data Fig. 5c):
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where c1 and c2 are the maximum selectivity values (across timepoints) 
for the two neurons, and the sign of s is positive if c1 and c2 have the 
same sign (co-selective) and negative if they have opposite sign 
(anti-selective). Thus, the maximum-selectivity similarity encodes 
both directionality and strength of selectivity.

A pair of neurons was considered to be co-selective if their selectivity 
indices (see the ‘Information-theoretic selectivity index’ section above) 
had the same sign, and anti-selective for opposite sign.

Simultaneous-selectivity similarity
The maximum-selectivity similarity used in the main analysis combines 
the maximum selectivity (over timepoints) of the pre- and post-synaptic 
neurons separately. This metric does not guarantee that the same time-
point is used to calculated selectivity for the pre- and post-synaptic 
neurons. Thus, a pair of neurons can have high maximum-selectivity 
similarity even if they are never active at the same time or during the 
same temporal epoch.

To quantify selectivity similarity of neurons restricted to timepoints 
at which they are both active, we developed the simultaneous-selectivity 
similarity (Extended Data Figs. 5e–g and 6e). For this metric, the 
simultaneous-selectivity similarity s(t) is first calculated from the simul-
taneous trial-type MI values c1(t) and c2(t) for each timepoint (see the 
‘Information-theoretic selectivity index’ section above):

s t c t c t c t c t( ) = sign( ( ) ( )) ( ) ( ) .1 2 1 2∣ ∣ ∣ ∣

Finally, we defined the simultaneous-selectivity similarity as the value 
of s(t) at the timepoint with the maximum absolute value across time-
points within the trial length. Therefore, this metric considers only selec-
tivity of simultaneous activity in the pre- and post-synaptic neurons.

Synapse size
The PSD area was calculated for each individual synaptic connection 
based on synapse annotations that estimated the PSD size (see the 
‘Neuronal circuit reconstruction’ section above). The PSD area has 
been shown to be a correlate of synapse strength (at least for E-to-E 
synapses in sensory cortex33).

Normalized synapse frequency
The normalized synapse frequency f quantifies how many synapses are 
made between a source and target neuron, normalized to the length 
of overlap between the pre-synaptic axon and post-synaptic dendrite.

f N L= / ,a

where N is the number of synaptic connections and La is the axon– 
dendrite overlap, defined as the path length of the source neuron’s axon 
that is within 5 μm (maximal spine length23; Extended Data Figs. 5d and 
6c) of dendrites of the target neuron (Fig. 2b). The La value quantifies 
how many opportunities there are for the two neurons to connect based 
on their fine-scale morphology23.

Non-connected neuron pairs
In addition to neuron pairs connected by synapses, there were also 
many non-connected pairs of neurons that have non-zero axon– 
dendrite overlap but do not form synaptic connections within the EM 
dataset. However, we cannot rule out the possibility that they form 
connections outside the bounds of the dataset (due to the limited 
volume) or that some connections were missed due to tracing errors. 
Nevertheless, the non-connected pairs can be informative of connec-
tion selectivity; in particular, pairs that have a large amount of axon–
dendrite overlap without making a connection suggest a low affinity 
for forming synapses.

To include non-connected neuron pairs in the selectivity analysis, 
we calculated a pooled synapse frequency fpool as:

f
N N
L L

=
+
+

,pool
cn non

cn non

where Ncn is the total number of synapses among connected pairs, Nnon 
is the number of non-connected pairs, Lcn is the total axon–dendrite 
overlap among connected pairs, and Lnon is the total overlap among 
non-connected pairs. To avoid outliers and noise from pairs with very 
little cable overlap (which can vary strongly based on small differences 
in local tracing), only non-connected pairs with an axon–dendrite over-
lap of greater or equal to the average overlap per synapse (Lcn/Ncn) were 
included in this calculation. As non-connected pairs are weighted as if 
they have one synapse each, fpool should be considered to be an estimate 
of the upper bound on synapse frequency. For Extended Data Figs. 5b 
and 6b, fpool was calculated separately for co-selective and anti-selective 
pairs. Confidence intervals and P values (two-tailed) were calculated 
by bootstrapping over pairs of non-connected neurons.

Structure–function correlations
To quantify structure–function relationships (in Figs. 2h,l and 3c,e 
and Extended Data Figs. 5f,g,j,k and 6d,e, and across all cell types in 
Extended Data Fig. 6f–m), we calculated Pearson (linear) correlation 
coefficients between the functional (maximum-selectivity similarity 
or simultaneous-selectivity similarity) and anatomical (normalized 
synapse frequency or PSD area) measures. For normalized synapse 
frequency, each datapoint was a connection between two neurons, 
which can involve one or more synapses. The P values reported for 
these correlations indicate the probability that the correlation deviates 
from zero (Pearson correlation test with Student’s t-statistics73, using 
the scipy.stats.pearsonr or MATLAB corr functions).

Early, middle and late behavioural sessions
For analyses investigating how structure–function relationships evolve 
over time, functional selectivity indices were calculated separately from 
early (8–10 days before sacrifice), middle (4–7 days before) and late 
(0–3 days before) sessions. Correlations between similarity indices and 
connectivity (normalized synapse frequency or PSD area) were then 
calculated separately for early, middle and late sessions.

Noise correlations
In Extended Data Fig. 7d,e, we compute noise correlations between 
all pairs of simultaneously recorded neurons within the last four ses-
sions. To discount contributions to the neurons’ activity due to shared 
tuning of neurons to behavioural variables such as running patterns, 
we implemented a partial noise correlation calculation (adapted 
from a previous study32). For each neuron, and separately for each 
trial type, we performed at each timepoint a linear regression using 
as dependent variables the single-trial neuron’s activity and as inde-
pendent variables the single-trial values of the x and y positions and 
velocities and the heading angle. We then regressed away the linear 
contribution of the behavioural variables to neural activity as well as 
the trial-type mean activity, and computed noise correlations using the 
average over time during the trial of the residual activity. We pooled 
all available data from the four last sessions to compute the estimate 
of noise correlations for each pair. The details of the calculation pro-
cedure were set to optimize the signal-to-noise ratio of calculations 
on simulated activity of pairs of neurons (Extended Data Fig. 12; see 
the ‘Method selection for estimating trial type selectivity and noise 
correlation’ section of the Supplementary Methods). As regressions 
are meaningless in the absence of variability of firing across trials, 
for each pair of neurons, only timepoints at which both neurons had 
significant non-zero activity (corresponding to timepoints in which 
the P values of a one-sample t-test against zero activity was lower 
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than 0.05 for both neurons) were included in the noise correlation  
calculation.

Same-epoch and different-epoch connections
For each neuron, we defined the peak epoch as the epoch (see the 
‘Behaviour and calcium imaging’ section for definitions of the epochs) 
in which the trial average activity (defined as the mean over trials and 
over left and right trial types) reached its maximum value. Connec-
tions between neuron pairs that shared the same peak epoch were 
referred to as same-epoch connections, whereas connections between 
pairs with different peak epochs were referred to as different-epoch 
connections.

Network models
We examined a simple linear network model with recurrent connec-
tions (Fig. 4 and Extended Data Figs. 8, 9a,b and 11c,e). The network 
comprises excitatory and inhibitory units organized in two trial-type 
selective subnetworks, each of them including one excitatory and one 
inhibitory unit (respectively EL,IL and ER,IR for left and right subnet-
works). The dynamics of the network follows the differential equation:

̇ ∑r r J r I η t= − + + + ( ), (1)i i
j

N

ij j i i
=1

=4

ext,

where r r r r r= ( , , , )E I E IL L R R
 represents the firing rate deviation from the 

baseline activity level. The term Jij represents the connectivity weight 
between the presynaptic unit j and the post-synaptic unit i. We model 
left and right trial types through modulations of the external trial-type 
selective input to the excitatory units, Iext,i, assumed to be constant in 
time. The term ηi(t) represents a source of zero-mean Gaussian input 
noise to unit i, which in general depends on time.

For each pre-synaptic and post-synaptic types X,Y ∈ E,I, we denoted 
by wYX

in  and wYX
out the synapses that connect units belonging to the same 

or to different subnetworks, respectively, and we assumed that these 
connections were symmetric with respect to the left and right subnet-
works L and R. We denote by Δ w w= −YX YX YX

in out the connection selectiv-
ity for the X-to-Y synapses.

We examined the response of the network to external inputs. We 
defined the network response as the steady state of the network with 
external input Iext and zero external noise. When the dynamics is linear, 
the steady-state r* can be written as a function of the connectivity matrix 
J and of the external input Iext as:

I∗ = ( − ) . (2)−1
extr J I

We therefore examined the network dynamics as a function of ΔYX at 
fixed average connection strength S w w= +YX YX YX

in out . In Fig. 4b–d and 
Extended Data Figs. 8 and 9a,b, we set the overall magnitude of the 
connectivity weights to S S= = 2IE EI , while varying the E-to-I selectivity 
in the range Δ ∈ [0,2]IE  and the I-to-E selectivity in the range Δ ∈ [−2,2]EI  
(Fig. 4b–d and Extended Data Fig. 8).

Assuming that the external selective inputs are symmetric for left 
and right trials (that is, for left trials, c c= ( , 0, , 0)L 1 2I  with c1 > c2, while, 
for right trials, I c c= ( , 0, , 0)R 2 1  with c1 > c2), we computed the trial-type 
encoding dimensions, defined as the vectors connecting the 
trial-specific mean responses of the excitatory units on left and right 
trials, both at the input and output stages, given by din = IL − IR and 
d r r= −out L R

∗ ∗, where L/R
∗r  are the responses of the network to inputs 

L/RI . The input encoding dimension is the dimension connecting 
trial-specific responses in the absence of recurrent connections.  
The input and output encoding dimensions are related through the 
relationship:

δ
=

1
, (3)out ind d

where δ Δ Δ Δ Δ= (1 − ) (1 + ) +EE II EI IE. When the value of δ decreases, the 
separation between the output mean activities ||dout|| increases. More-
over, when δ < 1, the separation between trial-specific activities at the 
output is larger than at the input stage. Importantly, under the assump-
tion of symmetric inputs for left and right trial types, the separation 
of mean responses depends only on the connection selectivity ΔXY, but 
not on the average connection strength SXY. In the absence of E-to-E 
and I-to-I connections, increased separation of trial-specific activities 
occurs when Δ Δ < 0EI IE , corresponding to co-selective E-to-I and 
anti-selective I-to-E (Fig. 4c,d and Extended Data Figs. 8 and 9a,b).

In Fig. 4c,d and Extended Data Figs. 8 and 9a,b, we computed the 
decoding accuracy of an optimal linear decoder trained to classify trial 
types from the neural activity of the excitatory units. Given the differ-
ence in mean activity between left and right trial types Δμ, and the noise 
covariance matrix C, we computed the signal-to-noise ratio as 

Δ C Δμ μSNR = T −1 .
The decoding accuracy of an optimal linear classifier can then be 

computed as:
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In Fig. 4c,d and Extended Data Figs. 8 and 9a,b, we defined the rela-
tive decoding accuracy as:

Relative decoding accuracy =
Decoding accuracy(output) − 0.5
Decoding accuracy(input) − 0.5

In Extended Data Fig. 11, we examined the predictions of the network 
model on how the activity of the excitatory and inhibitory units affect 
the correctness of the behavioural choices. As in previous work13,14, the 
behavioural choice was modelled by comparing the firing rate of the 
two excitatory units. The model expressed a left choice when the left 
excitatory unit fired more strongly than the right excitatory unit. The 
model choices were determined from the excitatory responses alone 
because generally only excitatory neurons project to downstream 
areas. Correct/error trials were those in which the trial-type identity 
and choice coincided/differed. We considered the version of the model 
with input on excitatory units. For only the analyses of Extended Data 
Fig. 11, we added a non-selective background input term on top of the 
trial-type selective input component. The common background input 
determined the average firing across the preferred and non-preferred 
trial-types. The inclusion of a background input does not affect any of 
the results of the other analyses (Fig. 4b–d and Extended Data Figs. 8 
and 9a,b), but aided the comparison between the model and the data in 
this specific analysis as, in the comparisons of activity on error versus 
correct trials in PPC data, the activity differences were normalized to 
the average activity over all trials (Extended Data Fig. 11; see the ‘Error 
trial analysis’ section above).

In Fig.  4e–i and Extended Data Figs.  9c,d and 10, we trained 
high-dimensional RNN models74 to reproduce the trial-averaged PPC 
activity traces on left and right trials. We then analysed the connectivity 
weights obtained after training to evaluate the predictions of the linear 
rate model on the trained networks. Before training, the PPC traces 
were normalized to the peak of each cell’s activity on preferred trials. 
The RNN is described by the differential equation

̇ ∑τx x J ϕ x I t σξ t= − + ( ) + ( ) + ( ) , (5)i i
j

N

ij j i i
=1

ext,

where xi represent the synaptic current of neuron i and r ϕ x= ( )i i  is the 
firing rate of neuron i, Iext,i represents the trial-type selective external 
input, σξ t( )i  is a source of time-dependent external noise (Gaussian 
noise with zero mean and standard deviation σ, uncorrelated across 
neurons and time) and τ = 0.025 is the time constant of the neurons. 



The network is constrained to have the same number of neurons and 
the same type (116 E neurons and 15 I neurons) as the experimentally 
reconstructed circuit. Accordingly, the connectivity matrix Jij is con-
strained to satisfy Dale’s law, that is, with elements belonging to the 
same column having the same sign according to the type of the 
pre-synaptic neurons40. The external input Iext,i consisted of temporally 
correlated white noise (see the ‘The recurrent neural network model’ 
section of the Supplementary Methods). In Fig. 4e–i and Extended Data 
Fig. 10, the input was fed only to the excitatory neurons. In Extended 
Data Fig. 9c,d, both excitatory and inhibitory neurons selective for the 
same trial type received selective external input with the same ampli-
tude. Only RNNs that fit well with PPC activity (R2 > 0.3) were considered 
in the analyses of Fig. 4f–i and Extended Data Figs. 9c,d and 10.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Directions for accessing the EM dataset, reconstructed neurons and 
calcium imaging data are available at GitHub (https://github.com/
htem/PPC_inhibitoryMotifs).

Code availability
Software and analysis code is available at Zenodo (https://zenodo.
org/doi/10.5281/zenodo.10310186)75. Code used to perform all 
information-theoretic analyses was published previously66 and is avail-
able online (https://doi.org/10.1186/1471-2202-10-81). Code for the 
network model analyses is available at Zenodo (https://doi.org/10.5281/
zenodo.10200999)76.
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