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N E T W O R K  S C I E N C E

A vast space of compact strategies for 
effective decisions
Tzuhsuan Ma* and Ann M. Hermundstad*

Inference-based decision-making, which underlies a broad range of behavioral tasks, is typically studied using a 
small number of handcrafted models. We instead enumerate a complete ensemble of strategies that could be used 
to effectively, but not necessarily optimally, solve a dynamic foraging task. Each strategy is expressed as a behav-
ioral “program” that uses a limited number of internal states to specify actions conditioned on past observations. 
We show that the ensemble of strategies is enormous—comprising a quarter million programs with up to five inter-
nal states—but can nevertheless be understood in terms of algorithmic “mutations” that alter the structure of indi-
vidual programs. We devise embedding algorithms that reveal how mutations away from a Bayesian-like strategy 
can diversify behavior while preserving performance, and we construct a compositional description to link low-
dimensional changes in algorithmic structure with high-dimensional changes in behavior. Together, this work pro-
vides an alternative approach for understanding individual variability in behavior across animals and tasks.

INTRODUCTION
To thrive in an uncertain and changing world, animals benefit from 
making inferences about hidden properties of the world to guide de-
cisions and plan future actions. This is true of many tasks, such as 
localizing a food source from noisy measurements of odorants (1–3), 
predicting the location of a moving target during pursuit (4, 5), or 
planning efficient routes through a set of subgoals (6, 7). In these and 
other domains, there are in principle many possible strategies for 
making and using inferences to guide behavior and thus many pos-
sible ways to achieve good performance. A common theoretical ap-
proach is to derive the optimal strategy for maximizing performance 
on a particular task (8–10). This strategy can then be used as a bench-
mark to compare to behavioral data or dissected to understand the 
algorithmic features that enable optimal performance under differ-
ent constraints. In the sensory domain, a long history of work has 
explored optimal coding schemes under bandwidth constraints (11–
13); more recently, several lines of work have explored optimal 
decision-making strategies under constraints of time (14) or compu-
tational complexity (15). However, by focusing on a single strategy 
that achieves optimal performance, these approaches do not provide 
a way to understand the diversity of effective strategies that could be 
used to achieve ‘good enough’ performance. Humans adopt a variety 
of heuristic strategies when making decisions, often deviating from 
the theoretical optimum (16). In other animals, studies of decision-
making typically characterize average performance, but individuals 
often exhibit a great deal of variability in behavior within and across 
tasks (17). To what extent this behavioral variability reflects differ-
ences in underlying strategy is less clear. A powerful approach to 
address this question is to study relationships between the many 
possible strategies for solving any given task. To this end, we develop 
a framework for building and exploring an entire space of strategies 
that vary in their computational complexity, behavior, and perfor-
mance (Fig. 1A, top). Studying relationships in this space could pro-
vide insight into why different individuals might adopt different 

strategies for the same task domain, and how such strategies might 
generalize across different task domains (Fig. 1A, bottom).

To build a space of strategies, we consider a general scenario in 
which an animal makes observations about a changing environ-
ment and uses those observations to guide future actions that lead 
to rewards. To increase rewards, the animal can rely on an internal 
strategy to make inferences about hidden properties of the environ-
ment and use those inferences to guide more effective actions 
(Fig. 1B). This scenario forms the basis of a broad range of tasks; for 
specificity, we focus on a widely studied task used in humans (18, 
19), nonhuman primates (20, 21), rodents (19, 22–25), and flies 
(26) in which an animal forages for rewards from two ports whose 
reward probabilities change dynamically over time (Fig.  1C and 
Materials and Methods).

In such a scenario, the optimal strategy for maximizing rewar1ds 
can be derived in two sequential steps, via two complementary ap-
proaches (Fig. 1D) (27–29): (i) optimal inference, for which Bayesian 
techniques can be used to derive the ideal observer that uses incom-
ing observations (e.g., the presence or absence of reward) to update 
an internal belief about hidden properties of the world (e.g., the iden-
tity of the most rewarding port), and (ii) optimal action selection, for 
which reinforcement learning techniques can be used to derive the 
behavioral policy (e.g., the port that should be sampled on any given 
trial) that maximizes rewards given the observer’s internal belief. 
Achieving optimal performance requires updating the internal belief 
with arbitrarily fine precision. Given limited precision to store and 
update this belief, there are no theoretical guarantees that the best 
strategy can be derived by separately optimizing an ideal observer 
and a behavioral policy.

We develop an alternative approach that circumvents this prob-
lem and that enables us to directly probe how such limitations affect 
performance. Instead of optimizing a single strategy, we enumerate 
all possible strategies that use a limited number of internal states to 
guide actions based on past observations (Fig. 1, E and F). The num-
ber of these internal states constrains the amount of memory that can 
be used to store information about the outcomes of past actions. In 
the limit that the number of states becomes infinite, we show that this 
formulation can exactly reproduce the optimal strategy described 
above, complete with the interpretation that actions are guided by an 
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evolving internal belief. However, when the number of states is finite 
and small, we show that this formulation yields a wide diversity of 
resource-limited strategies that no longer lend themselves to the 
same interpretation but nevertheless achieve good performance. We 
refer to these strategies as “small programs,” each of which specifies a 
different algorithm for guiding actions based on past observations 
and can thus serve as a generative model of animal behavior.

RESULTS
We construct the space of programs using the set of actions and out-
comes that specify the task itself (Fig. 1E). For the specific dynamic 

foraging task that we consider, there are two actions that correspond 
to sampling from each of the two reward ports. For each action, 
there are two possible outcomes that correspond to the receipt or 
omission of reward. We use this set of actions and outcomes to spec-
ify the elements of our small programs: Each program consists of 
(i) a finite set of internal states that are labeled by action and (ii) a 
finite set of transitions between states that are labeled by outcome. 
For a program with M internal states, there are 2M possible labelings 
of these states and 2M transitions between states that can be ar-
ranged in up to M2M different configurations. Together, the num-
ber and labeling of internal states and the configuration of transitions 
between states specify the “structure” of the program. Different 
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Fig. 1. Constructing compact behavioral programs. (A) Top: The space of strategies for solving a task can be large, with many strategies that achieve good enough 
performance. Bottom: Studying relationships between strategies could provide insight into behavioral variability across animals and tasks. (B) General task setup: 
An animal makes inferences about hidden properties of the environment to guide actions. (C) Specific task setup: An animal forages from two ports whose reward prob-
abilities change over time. (D) The optimal unconstrained strategy consists of an optimal policy coupled to a Bayesian ideal observer. (E) We formulate a constrained 
strategy as a small program that uses a limited number of internal states to select actions based on past actions and observations. (F) Each program generates sequences 
of actions depending on the outcomes of past actions. (G) The optimal unconstrained strategy (D) can be translated into a small program by discretizing the belief update 
implemented by the ideal Bayesian observer and coupled to the optimal behavioral policy. Top: Optimal belief update. Middle: Belief values can be partitioned into 
discrete states (filled circles) labeled by the action they specify (blue versus green). The belief update specifies transitions between states, depending on whether a reward 
was received (solid versus dashed arrows). Bottom: States and transitions represented as a Bayesian program. (H) Top: A 30-state program approximates the Bayesian 
update in (G) and has two directions of integration that can be interpreted as increasing confidence about either option. Bottom: The two-state Bayesian program, 
win-stay, lose-go (WSLG), continues taking the same action upon winning (i.e., receiving a reward) and switches actions upon losing (i.e., not receiving a reward). 
(I) Example behavior produced by the 30-state Bayesian program in (H).
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program structures generate different actions depending on the out-
comes of past actions; we use these sequences of outcome-dependent 
actions as a readout of the “behavior” of each program (Fig. 1F).

At one extreme, given an infinitely large number of internal 
states, the transitions between states can be chosen to exactly repro-
duce the belief update derived via Bayesian inference (Fig. 1G). In 
this case, the internal states can be sorted by belief and used to spec-
ify the optimal actions conditioned on belief (Fig. 1, H and I; illus-
trated for M = 30); in the limit that M → ∞, the resulting program 
achieves optimal performance. At the other extreme, given only two 
internal states, the best program achieves much lower, albeit better-
than-chance, performance by implementing a “win-stay, lose-go” 
(WSLG) strategy in which it continues taking the same action upon 
receiving reward and switches to the alternative action upon an 
omission of reward (Fig. 1H; M = 2). WSLG is the smallest program 
that can approximate the Bayesian update. We use these two perfor-
mance extremes to define and bound the space of “good” programs 
whose performance exceeds that of WSLG. The number of such pro-
grams depends on the parameters of the task; for example, in 
more volatile environments where the reward probabilities change 
more frequently, both WSLG and the optimal Bayesian strategy 
exhibit similar performance, and there is little room to improve 
upon the WSLG strategy (fig. S1). We thus chose task parameters 
that give rise to a large performance gap between these two strate-
gies (Materials and Methods).

For this set of task parameters, we enumerated and evaluated the 
performance of all unique programs that have up to five internal 
states (Materials and Methods). There are 268,536 such programs; of 
these, 4230 (1.6%) exhibit good performance (i.e., they exceed 
WSLG; Fig.  2A). Within the subset of good programs, only 58 
(1.4%) are “structurally Bayesian” in nature, such that their state 
transitions can be obtained by approximating the belief space of a 
Bayesian strategy; the remaining 98.6% of good programs cannot be 
obtained by approximating a Bayesian strategy (Fig.  2, B and C). 
Thus, the majority of programs that we discovered through this enu-
meration are structurally distinct from the class of strategies that we 
would have devised through handcrafted approaches.

We next examined relationships between the structure and per-
formance of individual programs across the entire program space. 
To this end, we asked whether small changes in program structure 
lead to small to changes in performance, as would be indicative of a 
smooth relationship between structure and performance (Fig. 2D). 
When we rank-ordered the set of two-state programs by perfor-
mance, we found that neighboring programs are separated by a 
single algorithmic “mutation,” defined by relocating one transition 
or relabeling one state (Fig. 2E; see fig. S2 for an example of a single 
mutation between two programs of different sizes). We used this ob-
servation to design a tree embedding algorithm that captures the 
minimal relationships necessary to link changes in structure to 
changes in performance (figs. S3 and S4A). This algorithm iterative-
ly links pairs of programs by assigning a “child” program to the 
smallest and highest-performing “parent” program within a single 
mutation. The result of this algorithm can be visualized as a two-
dimensional (2D) tree whose nodes correspond to individual pro-
grams and whose edges correspond to single mutations between 
programs. We can then color individual nodes by performance (or 
any other attribute); if small changes in program structure give rise 
to consistent changes in performance, then we should then observe 
a smooth gradation in color across the entire tree. This is indeed 

what we find (Fig. 2F and fig. S5); this relationship is not as smooth 
when the embedding is performed with respect to a different attri-
bute other than performance (fig. S6). Within this embedding, nearly 
all good programs form a single connected subtree; this subtree 
emerges across a wide range of performance thresholds (fig. S7) and 
even when we randomize performance prior to performing the em-
bedding (fig.  S8). Thus, single mutations to a good program will 
tend to result in another good program. This relationship was suffi-
ciently strong that we were able to design an evolutionary search 
algorithm (fig. S9) that efficiently recovered a large majority of good 
programs by searching a small fraction of the entire program space 
(Fig. 2G).

These results highlight how altering the structure of individual 
programs can nevertheless preserve good performance. However, 
the fact that structurally distinct programs achieve similar perfor-
mance does not necessarily imply that they use the same behavioral 
sequences to do so. We thus asked whether we could smoothly relate 
changes in program structure to the changes in behavior that enable 
high performance, and whether such structural changes tended to 
preserve or diversify patterns of behavior across the space of good 
programs (Fig. 3A).

To assess this, we explored how single mutations alter the distri-
bution of behavioral sequences produced by each good program. 
These behavioral sequences can be defined in terms of outcome-
action pairs; the contingencies “win-stay” (i.e., given that I received 
a reward, repeat the same action) and “lose-go” (i.e., given that I did 
not receive a reward, do not repeat the same action) are examples of 
such outcome-action pairs (Fig.  3B, top). We enumerated the se-
quences of outcome-action pairs produced by all good programs, up 
to a maximum sequence length of 10; we then used the steady-state 
distribution of these sequences as a description of the “behavioral 
repertoire” of each program (Materials and Methods).

We first isolated programs whose behavioral repertoire was suf-
ficiently distinct so as to make them easily distinguishable from an 
ensemble of other programs [Fig. 3C and Materials and Methods; 
see also (30)]. We measured this distinguishability with respect to 
two ensembles of programs: the entire set of good programs and the 
subset of structurally Bayesian programs. We used the first measure-
ment to select programs whose behavior was sufficiently unique so 
as to make them globally distinguishable within the ensemble of 
good programs; we used the second measurement to select pro-
grams whose behavior was sufficiently non-Bayesian so as to distin-
guish them within the ensemble of structurally Bayesian programs 
(Materials and Methods). We found that a majority of programs 
were not globally distinguishable based on their behavioral reper-
toire (Fig. 3D; gray and light pink points). However, a large subset 
(12.5%) of programs was both globally distinguishable and non-
Bayesian in behavior (Fig. 3D; brightly colored points).

To understand how this behavioral diversity could arise through 
mutations in program structure, we designed a second tree embed-
ding algorithm that preferentially assigns a child program to the 
smallest and most behaviorally similar parent program, again pro-
vided that they are within a single mutation of one another (figs. S3 
and S4B; to construct a fully connected tree, note that we included a 
small number of “connection” programs with subthreshold perfor-
mance; see Materials and Methods for details). This algorithm at-
tempts to create a behaviorally smooth embedding, in which small 
variations in the structure of a program lead to small variations in 
behavioral repertoire. Enforcing such smoothness ensures that any 

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024



Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024)     21 June 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

4 of 14

01 5
7

152
131

133129

ABC

Maximum
size of
space

Total
number of
programs

Fraction of all
programs with

good performance

Fraction of good
programs that are

structurally Bayesian

5 20% (1 of 5) 100% (1 of 1)

129 3.1% (4 of 129) 100% (4 of 4)

5108 2.1% (108 of 5108)   24% (26 of 108)

268,536 1.6% (4230 of 268,536)  1.4% (58 of 4230)

205

G

C

A B D

E

All programs (268,536)

Poor (264,306)

Good programs (4230)

Structurally non-Bayesian

Structurally Bayesian

Random
performance

Highest
performance

Lowest
performance

Relocating one transition

Mutation

Relabeling one state

0 1 A B C

7655

152

205

129

5108

ID

ID

Program

5

0
(WSLG)

Mutation

Maximum
size of 
space

Fraction of
entire space
explored

Fraction of
good programs
discovered

11% 50%

5% 52%

10% 70%

Good (4230)
Non-Bayesian (4172)

StructurePerformance

Strategy BStrategy A

Bayesian (58)

98.4% 98.6%1.6% 1.4%

Reward rate

Program ID

StrategyBayesian
0.316 (100%)

Top 2-state program
0.278 (88%)

Top 5-state program
0.304 (96%)0.264

Random policy
0.25 0.2290.2230.176

205

1527

5

133

131

129

01ABC

F

5108

Patchy
relationship

Rearrange

Smooth
relationship

How do changes in structure affect performance?

Structural change
(“mutation”)

7403

?

Fig. 2. The space of behavioral programs is highly structured. (A) There exist 268,536 unique programs with up to M = 5 internal states; these can be grouped accord-
ing to performance (left) and structure (right). Note that the optimal Bayesian strategy, with M → ∞, is not included in this ensemble. (B) Structurally Bayesian programs 
have two clear directions of integration that can be interpreted as increasing confidence about a particular option (see Fig. 1H); in contrast, no matter how one orders the 
program states, structurally non-Bayesian programs do not have such clear integration or interpretation. (C) Decomposition of program space for increasingly large pro-
grams. As the maximum program size increases, structurally Bayesian programs comprise an exponentially small proportion of all good programs. (D) Depending on the 
underlying organization of the program space, changes in structure could lead to patchier or smoother changes in performance. (E) Sorting the set of two-state programs 
by performance reveals that each neighboring pair of programs is related by a single algorithmic mutation (top; colored arrows), defined as a relabeling of a single state 
or a relocation of a single transition (bottom). The “win-go, lose-stay” program (program C) suffers from the worst performance; it requires three mutations for this pro-
gram to exceed chance performance and four mutations to match WSLG (program 0). (F) We designed a tree embedding algorithm to extract relationships between 
program structure and performance, shown for all programs with up to M = 4 states (note that program 5108 is not in this embedding; see fig. S5 for a full visualization 
up to M = 5 states). In this embedding, each node corresponds to a single program, each edge corresponds to a single mutation, and colors indicate performance. (G) An 
evolutionary algorithm discovers a large fraction of all good programs by searching a small fraction of the entire program space.
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action) conditioned on past outcomes (“win” versus “lose”). (C) Some behavioral sequences are unique to each program (top rows), and some are shared (bottom rows; 
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behavioral discontinuities arising from single mutations cannot be 
removed through alternate embeddings; consistent with this, our 
performance-based embedding that does not impose behavioral 
similarity results in far more discontinuities (fig. S10). These muta-
tions, which we refer to as “key” mutations, substantially alter the 
behavioral repertoire of a program; we distinguish these from “sloppy” 
mutations that largely preserve the behavioral repertoire of a pro-
gram (Materials and Methods). Figure 3E shows this behavioral tree 
embedding performed on the ensemble of good programs, with 
nodes colored according to the classifications shown in Fig. 3D, and 
with key and sloppy mutations marked in black and gray, respec-
tively. We find that the set of behaviorally Bayesian programs are 
clustered around the root of the tree; this root corresponds to WSLG, 
which is Bayesian in both its structure and behavior. In contrast, 
programs that produce distinct, non-Bayesian behaviors tend to 
occupy regions near the leaves of the tree, and they typically emerge 
following a small number of key mutations from the root. These 
behaviors can be further separated through a simple clustering algo-
rithm (Fig. 3E, inset), which reveals that behaviorally similar sub-
groups tend to occupy different local regions of the tree. Together, 
this shows how structural and behavioral diversity across the entire 
space of programs emerges through an accumulation of mutations 
to a single root program: Near the root, sloppy mutations introduce 
structural diversity while preserving Bayesian-like behavior; mov-
ing away from the root, key mutations introduce behavioral diver-
sity and endow the program space with non-Bayesian behavior, 
which is then preserved through subsequent sloppy mutations.

Behavioral sequences provide a holistic description of each pro-
gram that is directly linked to performance. However, this descrip-
tion requires specifying the probability of observing each of hundreds 
of thousands of sequences. We thus asked whether we could extract 
an interpretable functional logic that describes behavior through the 
addition and subtraction of a compact set of functional elements 
rather than through changes in a large set of sequence probabilities 
(Fig. 4A). To this end, we identified a minimal set of subsequences 
that capture the behavioral repertoire of each program. We refer to 
the elements in this minimal set as functional “motifs.” Each motif is 
a specific subsequence that can be visualized by traversing an action-
outcome path through a program; when repeated in succession, we 
require that each motif must be able to generate a stable action-
outcome loop (Fig.  4B). An individual program can then be de-
scribed by the combination of motifs that it uses to generate a 
majority of its behavioral sequences (Materials and Methods).

We use these motifs to understand the emergence of behavioral 
diversity across the entire behavioral tree and to study the “heritable” 
elements of behavior that are passed through successive genera-
tions of programs within local branches of the behavioral tree 
(Fig. 4C). At the root of the tree, the ensemble of structurally Bayes-
ian programs can be described by a compact set of 22 motifs; at the 
leaves of the tree, we require an additional 166 motifs to capture the 
behavior of globally distinguishable, behaviorally non-Bayesian 
programs (Fig.  4D). While a large fraction of these motifs are 
shared with the ensemble of globally indistinguishable programs, 
more than one-third of the motifs are specific to the ensemble of 
behaviorally non-Bayesian programs. These non-Bayesian motifs 
emerge at a much higher rate compared to the set of globally indis-
tinguishable motifs (inset of Fig. 4D), and they are responsible for 
the distinct behavioral signatures that differentiate behavioral sub-
groups (Fig. 4E and fig. S11).

To illustrate how non-Bayesian motifs can arise through muta-
tions in program structure, we focused on a local region of the be-
havioral tree that is anchored to a single key mutation (Fig.  4C). 
Figure 4F highlights one program (program 9) before a key muta-
tion; all but one of its descendants produce a similar set of motifs 
after a sloppy mutation (Fig. 4F, left histogram). One of its descen-
dants, program 24, differs from program 9 by a single key mutation 
that endows the program with a new set of non-Bayesian motifs 
(starred bars in the right histogram of Fig. 4F). These new motifs 
again persist within the descendants of program 24 and are among 
the motifs that define the behavioral subgroup to which program 24 
belongs. Figure  4G illustrates how a single motif is inherited by 
structurally distinct descendants of each program, and how a single 
key mutation can introduce a new and heritable motif. The persis-
tence of the same combinations of motifs within multiple structur-
ally distinct programs ensures that these programs generate similar 
distributions of sequences despite variability in underlying structure 
(Fig. 4H). However, we also observe that the same distribution of 
sequences can be generated by different combinations of motifs 
(Fig. 4I). Both properties give rise to similarity in behavior across 
distance regions of program space (Fig. 4C).

Together, these results highlight how diversity within an ensem-
ble of effective behavioral strategies arises at multiple different levels 
(Fig. 4J): through the structural mutations that give rise to different 
functional motifs; through the combinations of those motifs that 
give rise to a set of behavioral sequences; and through the different 
sets of behavioral sequences that underlie good performance.

DISCUSSION
There are, in principle, many possible ways that the brain can lever-
age knowledge about an animal’s surroundings to guide behavior 
(31, 32), depending on resource constraints and performance de-
mands. Here, we used a well-studied dynamic foraging task (18–26) 
to illustrate the power of enumerating and studying relationships 
between a complete ensemble of compact strategies that achieve 
“good enough” performance. The focus on efficiency and robustness 
(33–35), rather than strict optimality, is conceptually similar to ear-
lier artificial intelligence (AI) approaches that explored heuristics 
for efficiently solving particular tasks (16, 36, 37); the focus on the 
enumeration and discovery, rather than the construction, of candi-
date behavioral strategies bears similarity to the enumeration of 
structure-function relationships in neural networks (38, 39) and to 
the deduction of models from animal behavior (40, 41); the focus on 
a spectrum of good solutions, rather than a single optimum, is con-
ceptually related to work that formalizes the degree of optimality of 
a system (42). By combining these distinct axes, we discovered a vast 
array of strategies that are structurally and behaviorally distinct 
from those typically derived from first principles or through the re-
verse engineering of optimized black-box models.

Our results highlight that the behavioral repertoire for a task can 
be large, and individual strategies can deviate substantially from the 
norm without appreciably compromising performance. We charac-
terized these deviations relative to strategies that approximate the 
Bayesian optimum. Previous studies have identified heuristic strate-
gies that closely approximate this optimum (43, 44); here, we chose to 
define this optimum using a broad ensemble of strategies whose 
structure or behavior was indistinguishable from an approximate 
Bayesian strategy. This broad definition enabled us to identify highly 
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Fig. 4. Functional motifs combine to generate diverse behavior. (A) We sought an interpretable functional logic to capture the high-dimensional distribution of sequence 
probabilities (top) using a small number of functional elements (bottom). (B) For each program, we extract a minimal set of behavioral subsequences, or functional motifs, 
that capture a majority of its behavioral sequences (Materials and Methods). Each motif can be visualized by traversing an action-outcome path through a program and 
must form a stable loop when repeated in succession (red box). (C) In (D) to (I), we use motifs to study behavioral features that are inherited along different lineages of the 
behavioral tree in Fig. 3E. (D) Distribution of motifs across different behavioral subgroups. Inset shows the rate at which new non-Bayesian motifs are generated by struc-
turally non-Bayesian programs. (E) Top five non-Bayesian motifs shared by a majority of programs within each behavioral subgroup (note that subgroup 7 only expresses 
four non-Bayesian motifs). See fig. S11 for full characterization. (F) A key mutation to program 9 creates new non-Bayesian motifs within program 24 (starred bars; e.g., 
lw) that distinguish the descendants of programs 9 and 24 (left and right histograms, respectively). (G) Example program lineage. Motif LWll is inherited by the descen-
dants of program 9 through sloppy mutations. Program 24 inherits this motif and creates a new motif, lw, via a key mutation; this is inherited by its descendants through 
sloppy mutations. (H and I) Two examples of functional convergence between a descendant of program 9 and a program on a distant lineage (C), where structurally dis-
tinct programs use the same (H) or different (I) combinations of motifs to generate the same sequences. (J) Good performance can be achieved through different behavior, 
which can be generated by different combinations of functional motifs that are themselves expressed by many structurally distinct programs.
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non-Bayesian strategies that could not be explained by approximat-
ing the Bayesian optimum. To understand these diverse strategies, 
we did not attempt to average away variability among them; instead, 
we chose to study relationships between structure, function, behav-
ior, and performance observed across the entire strategy space. A tree 
embedding algorithm revealed that this space is largely “smooth” in 
nature, with iterative mutations in structure often leading to small 
and consistent changes in behavior and performance. This enabled 
us to devise an efficient evolutionary search algorithm that could be 
used to build and study larger strategy spaces for more complex 
tasks, where full enumeration would be prohibitive. However, this 
tree embedding also revealed that not all regions of the space are 
smooth; as a result, we could describe the diversification of strategies 
in terms of key mutations that alter the behavioral repertoire among 
different lineages of programs and sloppy mutations that preserve 
this repertoire within individual lineages.

Together, our findings suggest an alternative methodology for 
studying individual variability in animal behavior, where rather 
than summarizing the consistent patterns observed across multiple 
animals, it is possible to study the entire ensemble of strategies that 
would be consistent with the behavior of any individual animal. The 
finding that a myriad of distinct strategies can explain the same be-
havioral patterns is similar to the concept of sloppiness observed in 
multiparameter models of other biological systems, where many dif-
ferent parameter combinations can achieve the same model output 
(45–47). How these algorithmic strategies might be implemented 
mechanistically, for example, in recurrent networks of neurons, will 
likely yield an additional level of sloppiness in which many different 
mechanistic implementations can generate the same algorithmic 
strategy. Because we found that structural relationships between 
strategies contain information about their behavioral differences, we 
were able to understand how non-Bayesian strategies can emerge 
through an accumulation of mutations away from a Bayesian strat-
egy, with a small number of key mutations introducing new behav-
ioral diversity and a large number of sloppy mutations preserving 
that diversity across strategies. This raises an intriguing possibility 
for studying animal learning in terms of an evolution through pro-
gram space, where key mutations to an internal strategy could alter 
the behavioral repertoire of an animal in a manner that is discon-
tinuous in time and appears as abrupt “aha” moments (48, 49).

Moving forward, the approaches adopted here could be used to 
identify the minimal algorithmic components that enable strategies 
to generalize across different task domains, something that is not 
possible when studying single strategies in isolation (50, 51). Ob-
served suboptimalities in animal behavior could reflect a misunder-
standing of the task that animals are trying to solve, just as our good 
but suboptimal strategies might in fact be optimal for tasks not con-
sidered here. As a result, deviations from optimality on a single task, 
which could negatively affect overall performance when accumu-
lated over long timescales, could be offset when balanced across 
multiple tasks. By constructing and studying relationships in a joint 
task-strategy space, it might be possible to understand the many 
sources of robustness that enable different behavioral strategies to 
remain effective in the face of changing task demands.

MATERIALS AND METHODS
Here, we briefly summarize key aspects of our methods, and we refer 
the reader to the Supplementary Materials for further details. In the 

Supplementary Text, we provide a discussion of alternative method-
ologies related to embeddings (section S1), sloppiness (section S2), 
compositionality (section S3), and efficient search (section S4). We 
also provide a comprehensive discussion of our specific methodolo-
gies (sections S5 to S10); we briefly describe these methodologies 
below, and we refer the reader to the associated Supplementary 
Materials sections for further details. Last, a description of the code 
base can be found in Supplementary Text, section S11.

Behavioral task
We considered a dynamic foraging task (also called a nonstationary 
two-armed bandit task) in which an animal samples from two dif-
ferent ports to gather rewards (fig. S1A). On each time step, the ani-
mal selects one of two binary actions, a ∈ {a−, a+} (corresponding to 
sampling a left and right port, respectively) and can receive one of 
two binary outcomes, o ∈ {o−, o+} (unrewarding and rewarding, re-
spectively). A hidden binary world state s ∈ {s−, s+} determines the 
probability that a given action will produce a given observation; we 
assume that s switches states at a fixed probability h ∈ [0.05, .5] 
per time step, such that each port yields rewards with a high prob-
ability phigh ≡ p(o+∣s±, a±) when a and s are aligned, and a low re-
ward probability plow ≡ p(o+∣s±, a∓) when they are misaligned. In 
other words, when the world is in state s+, taking the action a+ will 
yield reward with higher probability; conversely, when the world 
is in state s−, taking the action a− will yield reward with higher 
probability. This task can be fully specified by the baseline reward 
rate of the two arms p = (phigh + plow)∕2 (or, alternatively, the reward 
gain Δp = 2p − 1 ), the reward contrast between the two arms Δp = 
phigh − plow, and the hazard rate h. The dynamics of the task are then 
governed by the following two parameterized conditional probability 
distributions

Ideal Bayesian observer
To choose the best action at any point in time, the optimal strategy 
involves inferring the hidden world state from the outcomes of past 
actions. To perform this inference, we construct an ideal Bayesian 
observer that has knowledge of p , Δp, and h but does not know the 
current world state st (i.e., it does not know the identity of the more 
rewarding port). The observer maintains a belief ut ≡ p(st = s+ ∣ …) − 
p(st = s− ∣ …) about the current world state, where ut ∈ [−1,1]. Upon 
selecting an action a and observing an outcome o, the observer can 
iteratively update its belief according to the following equation 
(Fig. 1G and fig. S1B)

Optimal Bayesian strategy
Our task is an example of a partially observable Markov decision 
process (POMDP). Using Bayesian reinforcement learning (RL), 
we can factorize this POMDP into the two separate problems of 
(i) deriving the optimal inference to update a belief about the hidden 
world state and (ii) finding the optimal behavioral policy (also 
referred to in the text as optimal action selection) to select actions 

p(st ∣ st−1)=

(
1−h h

h 1−h

)
world dynamics

p(o ∣ s, a)=
1

2

[
1+o (s aΔp+Δp)

]
reward delivery

(1)

ut+1 = (1 − 2h) ⋅
at ot Δp + (1 + otΔp) ut
at ot Δp ut + (1 + otΔp)

≡ U(ut , at , ot) (2)
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based on the current belief (27–29). The former can be done using 
Bayesian formalism, as discussed above. The latter is equivalent to a 
standard RL problem with a fully observable MDP defined over be-
lief states. With this equivalence, standard RL algorithms such as value 
iteration can be used to efficiently find the optimal policy π(a∣u) that 
maximizes cumulative reward 〈o = o+〉. To derive the optimal policy, 
we discretize the belief space into 200 non-overlapping, equally 
sized bins, and we use value iteration to optimize the value func-
tion v(u, t):

where r(o) = 1 if o = o+ and 0 otherwise. Note that, here, we modify 
standard value iteration (29) with a built-in running average of 
reward over an infinite horizon. The optimal policy is then a* = 
argmaxa q(u, a) = sgn u. This corresponds to a deterministic greedy 
policy in which the optimal action is always to sample from the re-
ward port that aligns with the observer’s current belief (i.e., it selects 
a = a+ if ut > 0 and a = a− if ut < 0).

Discretizing the optimal Bayesian strategy
To construct discretized Bayesian strategies (referred to in the text 
as structurally Bayesian programs; Figs. 1, G to I, and 2B), we dis-
cretized the belief space into M ∈ {2,3,4,5} equal non-overlapping 
bins spanning u ∈[ − αuub, αuub]. Here, uub is the fixed-point belief 
value achieved upon continual winning (see section S5.5 for deriva-
tion), and α ∈ (0,1] is a parameter used to control the range of dis-
cretization. Given a set of discrete bins labeled by states m = 0, …, M − 1, 
we derived the transition matrix p(m′∣m, o) by finding, for each ini-
tial state m (corresponding to initial belief u), the final state m′ that 
is closest to the updated belief value u′ upon taking the optimal ac-
tion a* = sgn u and observing an outcome o. Because the transi-
tioned belief value can fall between two neighboring discrete states, 
we additionally considered transition matrices that include all com-
binations of nearest and next-nearest state transitions. For each 
transition matrix p(m′∣m, o), we assigned a deterministic action to 
each state as specified by the optimal policy [i.e., we constructed the 
discrete-state policy π(a∣m) from the optimal policy π(a∣u) = sgn u]. 
This process generates a set of discrete Bayesian programs that we 
then filter using a set of “rule-out rules” to eliminate invalid pro-
grams (discussed in the next section). Note that this approach is 
guaranteed to generate programs that have ordered state transitions 
consistent with Bayesian belief integration. For more details regard-
ing the Bayesian formalism described above, see Supplementary 
Text, section S5.

Selecting task parameters
All results were generated using the following parameter setting: 
p = 0.3 , Δp = −0.5, and h = 0.05. These parameters were chosen 
by first examining the behavioral difference between the optimal 
Bayesian strategy and the smallest and best-performing resource-
constrained program, the WSLG program. The behavioral differ-
ence between these programs serves as a proxy for the number of 
small programs that can achieve good performance; in certain 
parameter regimes (e.g., large hazard rates; fig. S1D), the optimal 

Bayesian strategy converges to WSLG, and the space of good pro-
grams collapses. We thus chose task parameters that generate a large 
behavioral difference between these two programs. For more details 
regarding the collapse of the good program space, see Supplemen-
tary Text, section S6.

Enumerating a complete ensemble of unique programs
Our behavioral programs are deterministic Markov chains, which 
are graphs without any inherent notion of node ordering. However, 
to enumerate over graphs, one has to impose a labeling over nodes. 
This, together with other sources of symmetry, leads to multiple re-
peated programs. We eliminate these repeated programs through 
the following set of rule-out rules:

1) Remove identical programs under node permutation.
2) Remove reducible programs that contain sinks (a subset of 

nodes that absorb all occupancy during a random walk) and drains 
(the subset of remaining nodes).

3) Remove periodic programs whose node occupancy distribu-
tion does not converge over time.

4) Remove identical programs under node inversion (this corre-
sponds to exchanging a+ and a−, which generates identical behavior 
under the symmetric task that we consider).

5) Remove programs that contain sets of nodes that, when com-
bined, do not alter the behavior of a program (we refer to these 
nodes as “merger nodes” and the corresponding programs as “merger 
programs”).

The first three rules are task independent and relate only to ge-
neric features of Markov chains. Rules 2 and 3, which eliminate ill-
behaved Markov chains, can be checked using an open python 
library: QuantEcon (52). The last two rules are specific to the task 
we consider here and eliminate redundant programs that generate 
identical action-outcome sequences to other programs in the en-
semble. Note that rule 5, when applied in reverse, can be used to 
generate equivalent programs of different sizes (discussed in more 
detail below).

To optimize the enumeration of unique programs, we apply these 
rule-out rules in a particular order. We first enumerate the action 
labels for a fixed node ordering. For programs of size M = 2 to M = 
5, this constrains the unique action labels to the following set: [(−, +), 
(−, +, +), (−, +, +, +), (−, −, +, +), (−, +, +, +, +), and (−, −, +, +, +)] 
(note that, using rule 4, we do not include the symmetric set of ac-
tion labels). For any given program size M, we enumerate the M2M 
possible ways of assigning outcome-dependent transitions to the set 
of nodes, and we remove all transition matrices that have individual 
sinks and drains (rule 2; this step is fast, does not depend on the 
node labels, and eliminates a majority of invalid programs). We then 
include node labels and remove those programs that have merger 
nodes (rule 5). From this reduced set of programs, we remove pro-
grams that are repeated under node permutations; this step is slow, 
because it requires checking a single program against a list of valid 
programs. Last, we remove programs that generate periodic behavior 
or that have coupled sinks and drains (rules 2 and 3). We leave this 
step for last because it is the slowest in this process.

This enumeration reduces the set of 2M node labelings and M2M 
node transitions to a much smaller set of valid programs (see Table 1). 
We can easily enumerate all programs for M ≤ 5; this becomes dif-
ficult for M ≤ 6 and infeasible for M ≤ 7. This highlights the impor-
tance of constraining an enumeration either through an evolutionary 
algorithm (discussed below) or by leveraging additional aspects of 

v(u, t+1) =max
a

∑

u� ,o

p[u�, r(o) ∣u, a]

[
r(o)

t+1
+

t

t+1
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task structure. For more details regarding program enumeration, 
see Supplementary Text, section S7.

Evaluating program performance
The most common way to evaluate the performance of a Markov 
chain is to use Monte Carlo simulations, which necessitates long 
behavioral trajectories for reliable convergence. We circumvent this 
by propagating an entire belief distribution over time, which ensures 
orders-of-magnitude faster convergence at the cost of storing a full 
belief distribution in memory and allows us to account for the prob-
abilistic nature of world-state transitions. Note that the initial pro-
gram state transiently affects the belief distribution, but this impact 
dissipates after ∼1/h = 20 time steps. Here, we consider the steady-
state belief distribution that stabilizes after these initial transients. 
We refer to this algorithm as belief distribution propagation (BDP).

To compute the steady-state belief distribution for the optimal 
Bayesian strategy (fig. S1C), we first initialize the distribution of 
belief values using a uniform distribution across u ∈ [−1,1], dis-
cretized into 200 bins. We then propagate the probability of each 
belief value upon taking each action and receiving each outcome 
(i.e., we propagate across all four action-outcome pairs); this then 
generates four new belief values at t = 1 with corresponding proba-
bilities. For a given belief value indexed by i, the updated belief value 
at time t + 1 is found by summing across all actions, outcomes, and 
previous belief values that could have led to the given belief

This update takes an analogous form for small programs, with 
the program state m exchanged with the belief state u in Eq. 4. Given 
the steady-state belief distribution p(u, s) [or analogously, p(m, s)], 
it is straightforward to compute the corresponding steady-state 
reward rate

We defined good performance as having a steady-state reward 
rate that exceeded that of the WSLG program, and we referred to set 
of programs that meet this criterion as “good programs.” We used 
sequence distribution propagation (an extended version of BDP) 
to compute the steady-state probabilities of observing different 
behavioral sequences. As with BDP, we consider the steady-state 

distribution of behavioral sequences that stabilizes after initial tran-
sients. We computed this distribution for sequences of length lmax = 
10, which corresponds to 410 = 1,048,576 distinct sequences. Note 
that the belief distribution derived through our BDP algorithm is 
equivalent to computing the leading eigenvector of the transition 
matrix T with joint distribution p(s, m, a, o). While the eigenvector 
approach is faster than BDP, it is more difficult to scale up to the 
larger joint distributions that we encounter when computing se-
quence probabilities. For more details regarding program evalua-
tion, see Supplementary Text, section S8.

Mutating between programs
When two programs are of the same size, we define the structural 
distance between them as the minimal number of algorithmic op-
erations, or “mutations,” that are needed to permute one program 
into the other, assuming symmetry to the inversion of actions. 
Here, we define a single mutation as either the reassignment of one 
transition or the relabeling of one node. When two programs differ 
in size, we first compute all merger programs (discussed above) 
that are behaviorally equivalent to the smaller program but are 
identical in size to the larger program, and then we identify the 
merger program with the smallest structural distance to the larger 
program (fig. S2).

Tree embedding algorithm
To capture relationships between the structure and performance 
of behavioral programs, we designed a tree embedding algorithm 
(fig. S4A). Given an ensemble of small programs, we began by first 
sorting programs according to size (small to large) and then sorting 
according to performance (high to low). This sorting places WSLG 
at the top of the program list; this program defines the root of the 
tree. We then proceeded through the ordered list of programs, as-
signing each successive child program i in the list to a single parent 
program that is within a single mutation. If there are multiple candi-
date programs within a single mutation, we select the smallest and 
highest-performing program to be the parent of program i.

When we applied this tree embedding algorithm to the entire 
ensemble of small programs with M ≤ 5 (Fig. 2F and figs. S5 and S8), 
we found that nearly all good programs were closely connected to 
form a single subtree, with a small number of disconnected pro-
grams. To construct a single connected subtree of good programs, 
we included an additional 262 connection programs whose perfor-
mance was below the threshold performance of WSLG. This set of 
4492 programs comprise what we call the “good program network” 
(GPN) (Fig. 3 considers the behavioral properties of this network).

We visualized this tree using Gephi (53), with the Y. Hu layout 
(54). To briefly summarize this layout, all pairs of nodes are assigned 
a repulsive force, and connected pairs of nodes are assigned an 
attractive (spring) force. The layout algorithm tries to (i) find a 2D 
embedding that minimizes the energy from attractive and repulsive 
force between all pairs of nodes; (ii) partition the 2D space into 
hierarchical regions, so that the forces from many distant nodes can 
be quickly computed in a coarse-grained manner; and (iii) adap-
tively cool the layout using a faster initial rearrangement and a slower 
final refinement. For the tree-like network structures considered 
here, this layout will try to find a spatial embedding in which the 
more densely connected root of the tree is displayed near the center 
of the layout, and the more sparsely connected leaves of the tree are 
displayed near the edges of the layout.
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p(o+ ∣ s, a) π(a ∣u) p(u, s) (5)

Table 1. Number of unique labelings versus unique programs. 

M # Unique labelings (2MM2M) # Unique programs

2 64 5

3 5832 124

4 1,048,576 4979

5 312,500,000 263,428
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Comparing tree embeddings
To quantify the smoothness of a tree embedding, we computed a 
variant of the z-score, measured with respect to a given embedding 
attribute a observed between parent and child programs

where std(a) measures the SD in the attribute across the entire en-
semble of programs. Note that the numerator of Eq. 6 depends on 
the embedding, but the denominator does not. In fig. S6D, we com-
pared the distribution of z-scores for two different attributes: the 
performance and the wiring length of individual programs. Both 
histograms were computed across the ensemble of programs 
with M ≤ 5.

To compute the wiring length of individual programs, we as-
signed a distance D ∈ {0,1,2,3,4} to each transition in the program, 
where D = 0 denotes a self-loop. This distance depends on the or-
dering of nodes in the program; we thus identified the node order-
ing that minimizes the net summed transition distance, measured 
across all transitions in the program. We refer to this net distance as 
the wiring length of the program. To demonstrate that the tree em-
bedding algorithm is sensitive to different program attributes, we 
performed a tree embedding that links a child program to the parent 
program with minimal wiring length (rather than maximal perfor-
mance; this is shown in fig. S6).

Efficient search via an evolutionary algorithm
We designed an evolutionary algorithm for efficiently discovering 
a space of good programs (fig. S9). This algorithm has three key 
features that distinguish it from generic evolutionary algorithms 
(discussed in more detail below): (i) At each generation, we con-
sider all possible mutations from a given set of programs; (ii) we 
use a flexible performance threshold to retain good mutants; and 
(iii) we “hibernate” unselected mutants to be reconsidered at a 
later generation.

This algorithm operates on a reservoir of programs that are each 
labeled with one of three status labels: (i) “morph” (programs that 
are ready to be mutated); (ii) “frozen” (programs that have previ-
ously been mutated); and (iii) “idle” (programs in hibernation). In a 
given generation, we first select all programs with the label morph. 
For each program in this set, we generate all programs that are with-
in a single mutation; for a program of size M, this includes all merg-
er programs of size M + 1 that are within a single mutation. We then 
filter these mutants using the rule-out rules described above, re-
move any mutants that are redundant with existing programs in the 
reservoir, and set the status of all remaining mutants to idle; the sta-
tus of their parent programs is set to frozen. We then select the top-
performing ∼ log (Nidle) programs with label idle and update their 
status to morph to be mutated in the next generation. All other idle 
programs remain in the reservoir to be considered at a later genera-
tion. After a fixed number of generation, we count the total number 
of programs in the reservoir (including morphed, frozen, and idle 
programs), and we measure the fraction of these whose perfor-
mance exceeds that of WSLG. Figure 2G reports the fraction of good 
programs that were discovered after 16 generations, beginning with 
an initial program reservoir that consisted of programs 0 and 1. For 
more details regarding the tree embedding and evolutionary search 
algorithms, see Supplementary Text, section S9.

Behavioral tree embedding algorithm
To quantify the behavioral similarity between programs, we first 
define a confusion matrix C�

ij
({}) ≡ p{}(prog i ∣prog j) that speci-

fies how likely it is to mistake program j for program i within a given 
ensemble of programs {}, given the distribution of length-ℓ outcome-
action sequences that each program generates

where p[(o, a)ℓ∣prog i] specifies the distribution of outcome-action se-
quences of length ℓ produced by program i. Note that the entries of this 
matrix are always normalized with respect to a particular ensemble of 
programs {}, specified by the normalization factor in the denomina-
tor. We use C�

ij
({}) to define the behavioral similarity between all 

pairs of programs within a given ensemble {}. For a given program i, 
we identify the top n�

i
= round

[
1∕C�

ii
({})

]
 programs that are most 

easily confused with program i. These programs then specify binary en-
tries in a behavioral similarity matrix B�

ij
({}) . We define the total 

behavioral similarity Bij({}) =
∑10

�=1
B�

ij
({}) ∈ [1, 10] by account-

ing for all sequences up to a maximum length ℓ = 10.
We used Bij({}) to perform a behavioral tree embedding of all 

programs in the GPN (see fig. S4B for a visual summary of this algo-
rithm). Here, {} is the ensemble of 4230 good programs and 262 
connection programs. Analogous to the tree embedding algorithm, 
we first constructed a list of program pairs that are separated by a 
structural distance of 1 (dij = 1, Mi ≤ Mj). We then sorted these pairs 
first according to their behavioral similarity (high to low) and then 
according to their performance (high to low). We then proceeded 
through this list by selecting, for each child program j, the most be-
haviorally similar and highest-performing parent program i from 
the list of candidate child-parent pairs. This algorithm successfully 
finds a smooth embedding in which 4464 program pairs are maxi-
mally similar (Bij({}) = Bmax = 10) and 28 pairs are dissimilar 
(Bij({}) < Bmax). The mutations that link these pairs of programs 
define the sets of sloppy and key mutations, respectively (Fig. 3E).

Classifying program behavior
We categorized programs based on their behavior using two differ-
ent thresholds on the “distinguishability” of individual programs 
(Fig. 3D). These thresholds were used to describe and visualize the 
features of the good program space and were not used to perform 
any tree embeddings or to extract functional motifs.

To define the distinguishability of each program, we used the di-
agonal entries of the confusion matrix C�=10

ii
({}) (Fig. 3C). To de-

fine the set of “globally distinguishable” programs, we measured the 
distinguishability of each program within the “GPN” (i.e., we de-
fined {} = GPN to be the ensemble of 4230 good programs and 
262 connection programs). We defined the total summed distin-
guishability of this ensemble to be Ctot

GPN
=

∑
i
C
�=10
ii

(GPN) ; we then 
defined a threshold value of distinguishability C∗

GPN
 as

z(prog i) =
aprog i − aparent(prog i)

std(a) (6)
C
�

ij
({})≡p{}(prog i ∣prog j)=

�

(o,a)�

p
�
(o, a)� ∣prog i

�
p
�
(o, a)l ∣prog j

�

∑
i�∈{}

p
�
(o, a)� ∣prog i�

� (7)

∑

{i∣C�=10
ii

(GPN)<C
∗
GPN

}

C
�=10
ii

(GPN) =
C
tot
GPN

2 (8)
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where C�=10
ii

 is sorted in descending order. In other words, C∗
GPN

 dif-
ferentiates two sets of programs that each account for half of the total 
summed distinguishability across the entire ensemble: a minimal set 
of globally distinguishable programs [ C�=10

ii
(GPN) ≥ C

∗
GPN

 ] and a max-
imal set of “globally indistinguishable” programs [ C�=10

ii
(GPN) < C

∗
GPN

 ]. 
Note that in computing Ctot

GPN
 and C∗

GPN
 , we excluded the set of 27 

“low-performing” connection programs whose performance is lower 
than random but whose distinguishability is among the highest. 
This threshold ( C∗

GPN
= 0.0156 ) is displayed as the red vertical 

dashed line in Fig. 3D.
To define the set of “behaviorally Bayesian” programs, we mea-

sured the distinguishability of each program within the GPN with 
respect to the subset of structurally Bayesian (“SB”) programs; i.e., 
we defined {} = SB to be the ensemble of 65 structurally Bayesian 
programs within the GPN. We defined a threshold value of distin-
guishability C∗

SB
 as the maximum value of C�=10

ii
(SB) observed within 

the set of structurally Bayesian programs. This threshold selects the 
set of programs that are no more distinguishable from the ensemble 
of structurally Bayesian programs than the structurally Bayesian 
programs were from themselves. In defining this threshold, we ex-
cluded two outlier programs; one outlier (program 236) has a much 
higher value of C�=10

ii
(GPN) than all other structurally Bayesian pro-

grams; the second outlier (program 11) has a much higher value of 
C
�=10
ii

(SB) than all other structurally Bayesian programs. We there-
fore used the remaining 63 structurally Bayesian programs to define 
C∗
SB

 . All programs that fell below this threshold were labeled behav-
iorally Bayesian [ C�=10

ii
(SB) < C

∗
SB

 ], and the remaining programs 
were labeled “behaviorally non-Bayesian” [ C�=10

ii
(SB) ≥ C

∗
SB

 ]. This 
threshold value ( C∗

SB
= 0.202 ) is displayed as the black horizontal 

dashed line in Fig. 3D. Among the group of programs that are both 
globally distinguishable and behaviorally non-Bayesian, we further 
clustered the behavioral sequences of these programs using the Py-
thon package community_louvain (Fig. 3E, inset).

Decomposing behavioral sequences into motifs
We highlighted how a minimal set of functional motifs could be 
used to understand behavioral diversity among the ensemble of 
good programs (Fig. 4). We capture this behavioral diversity using 
the distributions of distinguishable behavioral sequences produced 
by different programs. Analogous to our definition of program dis-
tinguishability, we define sequence distinguishability as

As with program distinguishability, we define sequence distin-
guishability with respect to a particular ensemble of programs {}. 
To select the subset of distinguishable sequences, we rank-ordered 
sequences according to this distinguishability, and we selected the 
set of top-ranking sequences that together accounted for half of the 
distinguishability across the ensemble of sequences. We represent 
each of these sequences in terms of the variables L (lose-stay), W 
(win-stay), l (lose-go), and w (win-go).

We next extracted a minimal set of subsequences that could be 
combined to generate distinguishable behavioral sequences pro-
duced by a given program. We use the term “motif ” to refer to each 
subsequence within this minimal set. To extract a set of motifs, we 

began by first considering all subsequences of length ℓ < 10. For each 
subsequence, we used all cyclic permutations of the subsequence to 
generate length-10 sequences. For example, for a subsequence Wlw 
(with permutations Wlw, lwW, and wWl), the corresponding length-
10 sequences are WlwWlwWlw, lwWlwWlwW, and wWlwWlwWl. If 
all of these sequences exist with nonzero probability within the top 
95% of distinguishable sequences for a given program, then the sub-
sequence Wlw becomes a candidate motif for that program.

Given an ensemble of candidate motifs for a program, we selected 
the minimum number of shortest motifs that could account for all 
elements of a given sequence. For example, consider decomposing a 
sequence lLWllwlLl in terms of the candidate motifs {W, Lll, LWll, 
LlWl, Lllwl, Wlw, lw}. We first sorted these motifs by length and then 
iteratively checked the additional fraction of the entire sequence that 
can be explained by each successive motif. With this approach, the 
sequence lLWllwlLl can be generated by four motifs (W, lw, Lll, and 
LWll), which each contributes additional explanatory power beyond 
the previous motifs. That is, W explains one of nine of the sequence 
(the underlined snippet lLWllwlLl), lw another three of nine (the un-
derlined snippet lLWllwlLl), Lll another two of nine (the underlined 
snippet lLWllwlLl, where one of three of this snippet has already been 
explained by previous motifs, as indicated in gray), and lastly LWll 
another three of nine (three of four of the underlined snippet lLWll-
wlLl). We used this approach to extract the smallest set of motifs that 
could account for the set of most distinguishable sequences for a 
given program (i.e., those sequences that together account for half of 
the total distinguishability of the program). A given combination of 
motifs can be used to generate multiple distinct behavioral sequences.

Assigning motifs to behavioral subgroups
In Fig. 4 (D and E), we used motif statistics to dissect non-Bayesian 
behavior within the ensemble of globally distinguishable programs. 
The structurally Bayesian programs, of which there are 64 (exclud-
ing program 11, which is behaviorally dissimilar to the rest of the 
ensemble), together express 22 motifs. We refer to these as “Bayes-
ian motifs”; we refer to all other motifs as “non-Bayesian motifs.” 
These motifs are shared with the other ensembles of programs high-
lighted in Fig. 3D. We divide these remaining ensembles into two 
groups: the ensemble of 561 globally distinguishable programs 
(which expresses a total of 188 motifs) and the remaining ensemble 
of 3840 globally indistinguishable programs (which expresses a total 
of 220 motifs). These two ensembles share 116 motifs, including all 
22 Bayesian motifs, but they also each express sets of motifs that are 
unique to each ensemble. The globally distinguishable programs 
express 72 unique motifs, and the globally indistinguishable pro-
grams express 104 unique motifs. We used these to define the rate at 
which programs generate new motifs, given by the number of motifs 
that are unique to an ensemble, scaled by the number of programs in 
that ensemble. The results are reported in Fig. 4D.

Given the set of unique motifs within the ensemble of globally 
distinguishable programs, we assigned each motif i to a behavioral 
subgroup k based on the fraction of programs within the subgroup 
that express the motif [see Fig.  3 (D and E) for behavioral sub-
groups]. We refer to this as the prevalence of a motif i in a group k

C
seq k

ii
({}) =

p(seq k ∣prog i)2
∑

i� ∈ {}

p(seq k ∣prog i�) (9)

prevalence(motif i, group k)≡

number of programs in cluster k that express motif i

number of programs in cluster k (10)
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We then assigned each motif to the behavioral subgroup with the 
highest prevalence

In Fig. 4E and fig. S11, we used this procedure to assign the 166 
non-Bayesian motifs produced by the ensemble of globally distin-
guishable programs to each of the nine behavioral subgroups shown 
in Fig. 3 (D and E). In Fig. 4E, we displayed the top five motifs with the 
highest prevalence within each subgroup. This fraction is displayed 
for all motifs in fig. S11B and used to specify the size of markers in 
fig. S11C.

To compute the specificity of a motif i, we normalized the preva-
lence in Eq. 10 to compute the categorical probability of each motif 
across all behavioral subgroups, pmotif i, group k = prevalence(i, k)/∑k ‍ 
prevalence(i, k). We then used the categorical entropy of this prob-
ability to define the specificity of each motif

This specificity is shown by the radial distance and opacity of 
markers in fig. S11C. For more details regarding the behavioral tree 
embedding algorithm and behavioral classifications, see Supple-
mentary Text, section 10.
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Supplementary Text
Figs. S1 to S19
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