
Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

1 of 14

N E T W O R K S C I E N C E

A vast space of compact strategies for
effective decisions
Tzuhsuan Ma* and Ann M. Hermundstad*

Inference-based decision-making, which underlies a broad range of behavioral tasks, is typically studied using a
small number of handcrafted models. We instead enumerate a complete ensemble of strategies that could be used
to effectively, but not necessarily optimally, solve a dynamic foraging task. Each strategy is expressed as a behav-
ioral “program” that uses a limited number of internal states to specify actions conditioned on past observations.
We show that the ensemble of strategies is enormous—comprising a quarter million programs with up to five inter-
nal states—but can nevertheless be understood in terms of algorithmic “mutations” that alter the structure of indi-
vidual programs. We devise embedding algorithms that reveal how mutations away from a Bayesian-like strategy
can diversify behavior while preserving performance, and we construct a compositional description to link low-
dimensional changes in algorithmic structure with high-dimensional changes in behavior. Together, this work pro-
vides an alternative approach for understanding individual variability in behavior across animals and tasks.

INTRODUCTION
To thrive in an uncertain and changing world, animals benefit from
making inferences about hidden properties of the world to guide de-
cisions and plan future actions. This is true of many tasks, such as
localizing a food source from noisy measurements of odorants (1–3),
predicting the location of a moving target during pursuit (4, 5), or
planning efficient routes through a set of subgoals (6, 7). In these and
other domains, there are in principle many possible strategies for
making and using inferences to guide behavior and thus many pos-
sible ways to achieve good performance. A common theoretical ap-
proach is to derive the optimal strategy for maximizing performance
on a particular task (8–10). This strategy can then be used as a bench-
mark to compare to behavioral data or dissected to understand the
algorithmic features that enable optimal performance under differ-
ent constraints. In the sensory domain, a long history of work has
explored optimal coding schemes under bandwidth constraints (11–
13); more recently, several lines of work have explored optimal
decision-making strategies under constraints of time (14) or compu-
tational complexity (15). However, by focusing on a single strategy
that achieves optimal performance, these approaches do not provide
a way to understand the diversity of effective strategies that could be
used to achieve ‘good enough’ performance. Humans adopt a variety
of heuristic strategies when making decisions, often deviating from
the theoretical optimum (16). In other animals, studies of decision-
making typically characterize average performance, but individuals
often exhibit a great deal of variability in behavior within and across
tasks (17). To what extent this behavioral variability reflects differ-
ences in underlying strategy is less clear. A powerful approach to
address this question is to study relationships between the many
possible strategies for solving any given task. To this end, we develop
a framework for building and exploring an entire space of strategies
that vary in their computational complexity, behavior, and perfor-
mance (Fig. 1A, top). Studying relationships in this space could pro-
vide insight into why different individuals might adopt different

strategies for the same task domain, and how such strategies might
generalize across different task domains (Fig. 1A, bottom).

To build a space of strategies, we consider a general scenario in
which an animal makes observations about a changing environ-
ment and uses those observations to guide future actions that lead
to rewards. To increase rewards, the animal can rely on an internal
strategy to make inferences about hidden properties of the environ-
ment and use those inferences to guide more effective actions
(Fig. 1B). This scenario forms the basis of a broad range of tasks; for
specificity, we focus on a widely studied task used in humans (18,
19), nonhuman primates (20, 21), rodents (19, 22–25), and flies
(26) in which an animal forages for rewards from two ports whose
reward probabilities change dynamically over time (Fig. 1C and
Materials and Methods).

In such a scenario, the optimal strategy for maximizing rewar1ds
can be derived in two sequential steps, via two complementary ap-
proaches (Fig. 1D) (27–29): (i) optimal inference, for which Bayesian
techniques can be used to derive the ideal observer that uses incom-
ing observations (e.g., the presence or absence of reward) to update
an internal belief about hidden properties of the world (e.g., the iden-
tity of the most rewarding port), and (ii) optimal action selection, for
which reinforcement learning techniques can be used to derive the
behavioral policy (e.g., the port that should be sampled on any given
trial) that maximizes rewards given the observer’s internal belief.
Achieving optimal performance requires updating the internal belief
with arbitrarily fine precision. Given limited precision to store and
update this belief, there are no theoretical guarantees that the best
strategy can be derived by separately optimizing an ideal observer
and a behavioral policy.

We develop an alternative approach that circumvents this prob-
lem and that enables us to directly probe how such limitations affect
performance. Instead of optimizing a single strategy, we enumerate
all possible strategies that use a limited number of internal states to
guide actions based on past observations (Fig. 1, E and F). The num-
ber of these internal states constrains the amount of memory that can
be used to store information about the outcomes of past actions. In
the limit that the number of states becomes infinite, we show that this
formulation can exactly reproduce the optimal strategy described
above, complete with the interpretation that actions are guided by an

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
*Corresponding author. Email: mat@​janelia.​hhmi.​org (T.M.); hermundstada@​janelia.​
hhmi.​org (A.M.H.)

Copyright © 2024 The
Authors, some rights
reserved; exclusive
licensee American
Association for the
Advancement of
Science. No claim to
original U.S.
Government Works.
Distributed under a
Creative Commons
Attribution License 4.0
(CC BY).

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

mailto:mat@​janelia.​hhmi.​org
mailto:hermundstada@​janelia.​hhmi.​org
mailto:hermundstada@​janelia.​hhmi.​org
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fsciadv.adj4064&domain=pdf&date_stamp=2024-06-21

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

2 of 14

evolving internal belief. However, when the number of states is finite
and small, we show that this formulation yields a wide diversity of
resource-limited strategies that no longer lend themselves to the
same interpretation but nevertheless achieve good performance. We
refer to these strategies as “small programs,” each of which specifies a
different algorithm for guiding actions based on past observations
and can thus serve as a generative model of animal behavior.

RESULTS
We construct the space of programs using the set of actions and out-
comes that specify the task itself (Fig. 1E). For the specific dynamic

foraging task that we consider, there are two actions that correspond
to sampling from each of the two reward ports. For each action,
there are two possible outcomes that correspond to the receipt or
omission of reward. We use this set of actions and outcomes to spec-
ify the elements of our small programs: Each program consists of
(i) a finite set of internal states that are labeled by action and (ii) a
finite set of transitions between states that are labeled by outcome.
For a program with M internal states, there are 2M possible labelings
of these states and 2M transitions between states that can be ar-
ranged in up to M2M different configurations. Together, the num-
ber and labeling of internal states and the configuration of transitions
between states specify the “structure” of the program. Different

B

C

E

FHidden properties
of changing environment

Hidden & changing yield
of food patches

A B
Reward
No reward

M internal states, labeled by action

Small program
with limited number of internal states

Sample A
Sample B

Internal strategy

Inference

ObservationsActions

Action
selection

2M transitions, labeled by outcome

+ + =

Reward
No reward

Initial state
at time t

Sample BSample A

Constrained strategy
Based on past actions and

observations, should I sample A or B? (3) Reward

(4) No reward

M = 30

M = 2

G

H

I

Belief at time t

B
el
ie
f a
t t
im
e
t +

 1

A

B

(2)

(1)

(4)

(3)

Sample A
Sample B

No reward
Reward

Outcome

BA

t + 2 t + 3 t + 4 t + 5t + 1t

Lose

AAction
Time

Outcome

A A A B B

Lose Lose Lose Win

B
el
ie
f u
pd
at
e
fo
r i
de
al
 o
bs
er
ve
r

D
is
cr
et
iz
at
io
n
of
 b
el
ie
f u
pd
at
e

P
ro
gr
am

Optimal policy

SamSample A

(1)

(4) No reward

(2) Reward

(1) No reward

A

Measure performance

OptimalGood enough

How can we probe
an entire space of strategies?

What type of understanding
might such a space enable?

Structure of variability
across individuals

Features that generalize
across tasks

D

Ideal observer
Based on my

past observations, do
I believe that A or B
is more rewarding?

Optimal policy
Based on my

current belief, should
I sample A or B

to maximize reward?

Unconstrained strategy

Observation
orA or B

Action

t + 2 t + 3 t + 4t + 1t

Task 1

Task 2

Strategy

Explore
relationships in
• structure
• function
• behavior

More confident
that A is better

More confident
that B is better

?

Fig. 1. Constructing compact behavioral programs. (A) Top: The space of strategies for solving a task can be large, with many strategies that achieve good enough
performance. Bottom: Studying relationships between strategies could provide insight into behavioral variability across animals and tasks. (B) General task setup:
An animal makes inferences about hidden properties of the environment to guide actions. (C) Specific task setup: An animal forages from two ports whose reward prob-
abilities change over time. (D) The optimal unconstrained strategy consists of an optimal policy coupled to a Bayesian ideal observer. (E) We formulate a constrained
strategy as a small program that uses a limited number of internal states to select actions based on past actions and observations. (F) Each program generates sequences
of actions depending on the outcomes of past actions. (G) The optimal unconstrained strategy (D) can be translated into a small program by discretizing the belief update
implemented by the ideal Bayesian observer and coupled to the optimal behavioral policy. Top: Optimal belief update. Middle: Belief values can be partitioned into
discrete states (filled circles) labeled by the action they specify (blue versus green). The belief update specifies transitions between states, depending on whether a reward
was received (solid versus dashed arrows). Bottom: States and transitions represented as a Bayesian program. (H) Top: A 30-state program approximates the Bayesian
update in (G) and has two directions of integration that can be interpreted as increasing confidence about either option. Bottom: The two-state Bayesian program,
win-stay, lose-go (WSLG), continues taking the same action upon winning (i.e., receiving a reward) and switches actions upon losing (i.e., not receiving a reward).
(I) Example behavior produced by the 30-state Bayesian program in (H).

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

3 of 14

program structures generate different actions depending on the out-
comes of past actions; we use these sequences of outcome-dependent
actions as a readout of the “behavior” of each program (Fig. 1F).

At one extreme, given an infinitely large number of internal
states, the transitions between states can be chosen to exactly repro-
duce the belief update derived via Bayesian inference (Fig. 1G). In
this case, the internal states can be sorted by belief and used to spec-
ify the optimal actions conditioned on belief (Fig. 1, H and I; illus-
trated for M = 30); in the limit that M → ∞, the resulting program
achieves optimal performance. At the other extreme, given only two
internal states, the best program achieves much lower, albeit better-
than-chance, performance by implementing a “win-stay, lose-go”
(WSLG) strategy in which it continues taking the same action upon
receiving reward and switches to the alternative action upon an
omission of reward (Fig. 1H; M = 2). WSLG is the smallest program
that can approximate the Bayesian update. We use these two perfor-
mance extremes to define and bound the space of “good” programs
whose performance exceeds that of WSLG. The number of such pro-
grams depends on the parameters of the task; for example, in
more volatile environments where the reward probabilities change
more frequently, both WSLG and the optimal Bayesian strategy
exhibit similar performance, and there is little room to improve
upon the WSLG strategy (fig. S1). We thus chose task parameters
that give rise to a large performance gap between these two strate-
gies (Materials and Methods).

For this set of task parameters, we enumerated and evaluated the
performance of all unique programs that have up to five internal
states (Materials and Methods). There are 268,536 such programs; of
these, 4230 (1.6%) exhibit good performance (i.e., they exceed
WSLG; Fig. 2A). Within the subset of good programs, only 58
(1.4%) are “structurally Bayesian” in nature, such that their state
transitions can be obtained by approximating the belief space of a
Bayesian strategy; the remaining 98.6% of good programs cannot be
obtained by approximating a Bayesian strategy (Fig. 2, B and C).
Thus, the majority of programs that we discovered through this enu-
meration are structurally distinct from the class of strategies that we
would have devised through handcrafted approaches.

We next examined relationships between the structure and per-
formance of individual programs across the entire program space.
To this end, we asked whether small changes in program structure
lead to small to changes in performance, as would be indicative of a
smooth relationship between structure and performance (Fig. 2D).
When we rank-ordered the set of two-state programs by perfor-
mance, we found that neighboring programs are separated by a
single algorithmic “mutation,” defined by relocating one transition
or relabeling one state (Fig. 2E; see fig. S2 for an example of a single
mutation between two programs of different sizes). We used this ob-
servation to design a tree embedding algorithm that captures the
minimal relationships necessary to link changes in structure to
changes in performance (figs. S3 and S4A). This algorithm iterative-
ly links pairs of programs by assigning a “child” program to the
smallest and highest-performing “parent” program within a single
mutation. The result of this algorithm can be visualized as a two-
dimensional (2D) tree whose nodes correspond to individual pro-
grams and whose edges correspond to single mutations between
programs. We can then color individual nodes by performance (or
any other attribute); if small changes in program structure give rise
to consistent changes in performance, then we should then observe
a smooth gradation in color across the entire tree. This is indeed

what we find (Fig. 2F and fig. S5); this relationship is not as smooth
when the embedding is performed with respect to a different attri-
bute other than performance (fig. S6). Within this embedding, nearly
all good programs form a single connected subtree; this subtree
emerges across a wide range of performance thresholds (fig. S7) and
even when we randomize performance prior to performing the em-
bedding (fig. S8). Thus, single mutations to a good program will
tend to result in another good program. This relationship was suffi-
ciently strong that we were able to design an evolutionary search
algorithm (fig. S9) that efficiently recovered a large majority of good
programs by searching a small fraction of the entire program space
(Fig. 2G).

These results highlight how altering the structure of individual
programs can nevertheless preserve good performance. However,
the fact that structurally distinct programs achieve similar perfor-
mance does not necessarily imply that they use the same behavioral
sequences to do so. We thus asked whether we could smoothly relate
changes in program structure to the changes in behavior that enable
high performance, and whether such structural changes tended to
preserve or diversify patterns of behavior across the space of good
programs (Fig. 3A).

To assess this, we explored how single mutations alter the distri-
bution of behavioral sequences produced by each good program.
These behavioral sequences can be defined in terms of outcome-
action pairs; the contingencies “win-stay” (i.e., given that I received
a reward, repeat the same action) and “lose-go” (i.e., given that I did
not receive a reward, do not repeat the same action) are examples of
such outcome-action pairs (Fig. 3B, top). We enumerated the se-
quences of outcome-action pairs produced by all good programs, up
to a maximum sequence length of 10; we then used the steady-state
distribution of these sequences as a description of the “behavioral
repertoire” of each program (Materials and Methods).

We first isolated programs whose behavioral repertoire was suf-
ficiently distinct so as to make them easily distinguishable from an
ensemble of other programs [Fig. 3C and Materials and Methods;
see also (30)]. We measured this distinguishability with respect to
two ensembles of programs: the entire set of good programs and the
subset of structurally Bayesian programs. We used the first measure-
ment to select programs whose behavior was sufficiently unique so
as to make them globally distinguishable within the ensemble of
good programs; we used the second measurement to select pro-
grams whose behavior was sufficiently non-Bayesian so as to distin-
guish them within the ensemble of structurally Bayesian programs
(Materials and Methods). We found that a majority of programs
were not globally distinguishable based on their behavioral reper-
toire (Fig. 3D; gray and light pink points). However, a large subset
(12.5%) of programs was both globally distinguishable and non-
Bayesian in behavior (Fig. 3D; brightly colored points).

To understand how this behavioral diversity could arise through
mutations in program structure, we designed a second tree embed-
ding algorithm that preferentially assigns a child program to the
smallest and most behaviorally similar parent program, again pro-
vided that they are within a single mutation of one another (figs. S3
and S4B; to construct a fully connected tree, note that we included a
small number of “connection” programs with subthreshold perfor-
mance; see Materials and Methods for details). This algorithm at-
tempts to create a behaviorally smooth embedding, in which small
variations in the structure of a program lead to small variations in
behavioral repertoire. Enforcing such smoothness ensures that any

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

4 of 14

01 5
7

152
131

133129

ABC

Maximum
size of
space

Total
number of
programs

Fraction of all
programs with

good performance

Fraction of good
programs that are

structurally Bayesian

5 20% (1 of 5) 100% (1 of 1)

129 3.1% (4 of 129) 100% (4 of 4)

5108 2.1% (108 of 5108) 24% (26 of 108)

268,536 1.6% (4230 of 268,536) 1.4% (58 of 4230)

205

G

C

A B D

E

All programs (268,536)

Poor (264,306)

Good programs (4230)

Structurally non-Bayesian

Structurally Bayesian

Random
performance

Highest
performance

Lowest
performance

Relocating one transition

Mutation

Relabeling one state

0 1 A B C

7655

152

205

129

5108

ID

ID

Program

5

0
(WSLG)

Mutation

Maximum
size of
space

Fraction of
entire space
explored

Fraction of
good programs
discovered

11% 50%

5% 52%

10% 70%

Good (4230)
Non-Bayesian (4172)

StructurePerformance

Strategy BStrategy A

Bayesian (58)

98.4% 98.6%1.6% 1.4%

Reward rate

Program ID

StrategyBayesian
0.316 (100%)

Top 2-state program
0.278 (88%)

Top 5-state program
0.304 (96%)0.264

Random policy
0.25 0.2290.2230.176

205

1527

5

133

131

129

01ABC

F

5108

Patchy
relationship

Rearrange

Smooth
relationship

How do changes in structure affect performance?

Structural change
(“mutation”)

7403

?

Fig. 2. The space of behavioral programs is highly structured. (A) There exist 268,536 unique programs with up to M = 5 internal states; these can be grouped accord-
ing to performance (left) and structure (right). Note that the optimal Bayesian strategy, with M → ∞, is not included in this ensemble. (B) Structurally Bayesian programs
have two clear directions of integration that can be interpreted as increasing confidence about a particular option (see Fig. 1H); in contrast, no matter how one orders the
program states, structurally non-Bayesian programs do not have such clear integration or interpretation. (C) Decomposition of program space for increasingly large pro-
grams. As the maximum program size increases, structurally Bayesian programs comprise an exponentially small proportion of all good programs. (D) Depending on the
underlying organization of the program space, changes in structure could lead to patchier or smoother changes in performance. (E) Sorting the set of two-state programs
by performance reveals that each neighboring pair of programs is related by a single algorithmic mutation (top; colored arrows), defined as a relabeling of a single state
or a relocation of a single transition (bottom). The “win-go, lose-stay” program (program C) suffers from the worst performance; it requires three mutations for this pro-
gram to exceed chance performance and four mutations to match WSLG (program 0). (F) We designed a tree embedding algorithm to extract relationships between
program structure and performance, shown for all programs with up to M = 4 states (note that program 5108 is not in this embedding; see fig. S5 for a full visualization
up to M = 5 states). In this embedding, each node corresponds to a single program, each edge corresponds to a single mutation, and colors indicate performance. (G) An
evolutionary algorithm discovers a large fraction of all good programs by searching a small fraction of the entire program space.

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

5 of 14

Low-performing
connection progams (27)

Behaviorally non-Bayesian
& globally distinguishable (561)

Structurally Bayesian (65)
Behaviorally Bayesian (1452)
Behaviorally non-Bayesian
& globally indistinguishable (2387)

B

C

D
Lose

S
ta
y

G
o

Win

Lose-stay Win-stayLose-go

Indistinguishable

Example
sequences

Distinguishable

U
ni
qu
e
to
 p
ro
gr
am

S
ha
re
d
ac
ro
ss
 p
ro
gr
am

s

53.1%

32.3%

12.5%A
ct
io
n

Outcome Example behavioral sequence:

1.4%

0.6%

Program 0 Program 5 Program 7

Win-go

<0.01

0.11

0.21

0.13

0.09 0.12

<0.01 <0.001 <0.001

Distinguishability within the ensemble
of all good programs

D
is
tin
gu
is
ha
bi
lit
y
w
ith
in
 th
e
en
se
m
bl
e

of
 s
tru

ct
ur
al
ly
 B
ay
es
ia
n
pr
og
ra
m
s

Globally distinguishableGlobally indistinguishable

10−3 10−2 10−1

0.2

0.4

0.6

0.8

Behaviorally
Bayesian

Behaviorally
non-Bayesian

Distinct behavioral signatures

Non-BayesianBayesian

No diversity
(“sloppy” mutations
preserve behavior)

High diversity
(“key” mutations
alter behavior)

A How do changes in structure
affect behavior?

?

E
Key mutations (28)
Sloppy mutations (4492)

C
on
fu
sa
bi
lit
y

0
0.
00
35

0 5

7403

7

9
24

Single key mutation
alters behavior

9 24

5 6 successive sloppy mutations
preserve Bayesian-like behavior
Single key mutation
alters behavior

7403

7

2 3 4 6 7 8 9

2

3

4

6

7

8

9

0.32

Fig. 3. Behaviorally distinct programs emerge from a handful of key mutations. (A) Structural mutations could have differing impact on behavior depending on
whether they create behavioral diversity. (B) Example behavioral sequence expressed in terms of actions (“stay” and repeat an action versus “go” and select a different
action) conditioned on past outcomes (“win” versus “lose”). (C) Some behavioral sequences are unique to each program (top rows), and some are shared (bottom rows;
circle sizes denote the relative probability of observing sequences within each category, computed across all sequences produced by the set of three programs). Program
7 is distinguishable because many of its most probable sequences are not shared. (D) We measure how easily each program can be distinguished among the ensembles
of good programs and structurally Bayesian programs (M ≤ 5), and we use thresholds to select globally distinguishable and behaviorally non-Bayesian programs (colored
points; Materials and Methods). We use 262 connection programs to embed good programs in a single connected subtree; 27 of these exhibit lower-than-random perfor-
mance (low-performing; Materials and Methods). (E) A behavioral tree embedding relates program structure and behavior, shown for all programs in (D). As in Fig. 2D,
nodes and edges correspond to programs and mutations, respectively. Node sizes denote global distinguishability; colors denote groupings in (D). The confusion matrix
inset clusters globally distinguishable programs into nine behavioral subgroups; for visualization, the heatmap saturates at one SD above the mean. By traversing from
the root node (WSLG; program 0) toward leaf nodes, a small number of key mutations can generate behavioral diversity, indicated by colored points (e.g., a single key
mutation to program 9 alters the behavior of its descendant, program 24). Programs can also undergo sloppy mutations that do not substantially change behavior (e.g.,
several sloppy mutations to program 5 preserve the behavior of its descendant, program 7403).

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

6 of 14

behavioral discontinuities arising from single mutations cannot be
removed through alternate embeddings; consistent with this, our
performance-based embedding that does not impose behavioral
similarity results in far more discontinuities (fig. S10). These muta-
tions, which we refer to as “key” mutations, substantially alter the
behavioral repertoire of a program; we distinguish these from “sloppy”
mutations that largely preserve the behavioral repertoire of a pro-
gram (Materials and Methods). Figure 3E shows this behavioral tree
embedding performed on the ensemble of good programs, with
nodes colored according to the classifications shown in Fig. 3D, and
with key and sloppy mutations marked in black and gray, respec-
tively. We find that the set of behaviorally Bayesian programs are
clustered around the root of the tree; this root corresponds to WSLG,
which is Bayesian in both its structure and behavior. In contrast,
programs that produce distinct, non-Bayesian behaviors tend to
occupy regions near the leaves of the tree, and they typically emerge
following a small number of key mutations from the root. These
behaviors can be further separated through a simple clustering algo-
rithm (Fig. 3E, inset), which reveals that behaviorally similar sub-
groups tend to occupy different local regions of the tree. Together,
this shows how structural and behavioral diversity across the entire
space of programs emerges through an accumulation of mutations
to a single root program: Near the root, sloppy mutations introduce
structural diversity while preserving Bayesian-like behavior; mov-
ing away from the root, key mutations introduce behavioral diver-
sity and endow the program space with non-Bayesian behavior,
which is then preserved through subsequent sloppy mutations.

Behavioral sequences provide a holistic description of each pro-
gram that is directly linked to performance. However, this descrip-
tion requires specifying the probability of observing each of hundreds
of thousands of sequences. We thus asked whether we could extract
an interpretable functional logic that describes behavior through the
addition and subtraction of a compact set of functional elements
rather than through changes in a large set of sequence probabilities
(Fig. 4A). To this end, we identified a minimal set of subsequences
that capture the behavioral repertoire of each program. We refer to
the elements in this minimal set as functional “motifs.” Each motif is
a specific subsequence that can be visualized by traversing an action-
outcome path through a program; when repeated in succession, we
require that each motif must be able to generate a stable action-
outcome loop (Fig. 4B). An individual program can then be de-
scribed by the combination of motifs that it uses to generate a
majority of its behavioral sequences (Materials and Methods).

We use these motifs to understand the emergence of behavioral
diversity across the entire behavioral tree and to study the “heritable”
elements of behavior that are passed through successive genera-
tions of programs within local branches of the behavioral tree
(Fig. 4C). At the root of the tree, the ensemble of structurally Bayes-
ian programs can be described by a compact set of 22 motifs; at the
leaves of the tree, we require an additional 166 motifs to capture the
behavior of globally distinguishable, behaviorally non-Bayesian
programs (Fig. 4D). While a large fraction of these motifs are
shared with the ensemble of globally indistinguishable programs,
more than one-third of the motifs are specific to the ensemble of
behaviorally non-Bayesian programs. These non-Bayesian motifs
emerge at a much higher rate compared to the set of globally indis-
tinguishable motifs (inset of Fig. 4D), and they are responsible for
the distinct behavioral signatures that differentiate behavioral sub-
groups (Fig. 4E and fig. S11).

To illustrate how non-Bayesian motifs can arise through muta-
tions in program structure, we focused on a local region of the be-
havioral tree that is anchored to a single key mutation (Fig. 4C).
Figure 4F highlights one program (program 9) before a key muta-
tion; all but one of its descendants produce a similar set of motifs
after a sloppy mutation (Fig. 4F, left histogram). One of its descen-
dants, program 24, differs from program 9 by a single key mutation
that endows the program with a new set of non-Bayesian motifs
(starred bars in the right histogram of Fig. 4F). These new motifs
again persist within the descendants of program 24 and are among
the motifs that define the behavioral subgroup to which program 24
belongs. Figure 4G illustrates how a single motif is inherited by
structurally distinct descendants of each program, and how a single
key mutation can introduce a new and heritable motif. The persis-
tence of the same combinations of motifs within multiple structur-
ally distinct programs ensures that these programs generate similar
distributions of sequences despite variability in underlying structure
(Fig. 4H). However, we also observe that the same distribution of
sequences can be generated by different combinations of motifs
(Fig. 4I). Both properties give rise to similarity in behavior across
distance regions of program space (Fig. 4C).

Together, these results highlight how diversity within an ensem-
ble of effective behavioral strategies arises at multiple different levels
(Fig. 4J): through the structural mutations that give rise to different
functional motifs; through the combinations of those motifs that
give rise to a set of behavioral sequences; and through the different
sets of behavioral sequences that underlie good performance.

DISCUSSION
There are, in principle, many possible ways that the brain can lever-
age knowledge about an animal’s surroundings to guide behavior
(31, 32), depending on resource constraints and performance de-
mands. Here, we used a well-studied dynamic foraging task (18–26)
to illustrate the power of enumerating and studying relationships
between a complete ensemble of compact strategies that achieve
“good enough” performance. The focus on efficiency and robustness
(33–35), rather than strict optimality, is conceptually similar to ear-
lier artificial intelligence (AI) approaches that explored heuristics
for efficiently solving particular tasks (16, 36, 37); the focus on the
enumeration and discovery, rather than the construction, of candi-
date behavioral strategies bears similarity to the enumeration of
structure-function relationships in neural networks (38, 39) and to
the deduction of models from animal behavior (40, 41); the focus on
a spectrum of good solutions, rather than a single optimum, is con-
ceptually related to work that formalizes the degree of optimality of
a system (42). By combining these distinct axes, we discovered a vast
array of strategies that are structurally and behaviorally distinct
from those typically derived from first principles or through the re-
verse engineering of optimized black-box models.

Our results highlight that the behavioral repertoire for a task can
be large, and individual strategies can deviate substantially from the
norm without appreciably compromising performance. We charac-
terized these deviations relative to strategies that approximate the
Bayesian optimum. Previous studies have identified heuristic strate-
gies that closely approximate this optimum (43, 44); here, we chose to
define this optimum using a broad ensemble of strategies whose
structure or behavior was indistinguishable from an approximate
Bayesian strategy. This broad definition enabled us to identify highly

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

7 of 14

is a
candidate motif

is not a
candidate motif

104
(3840)(64)(561)

72

94

22

Motifs

Rate of
emergence

72(# programs)

Globally
indistinguishable

Structurally Bayesian

Behaviorally non-
Bayesian & globally

distinguishable

Global viewC

Key mutation
Sloppy mutations

82616118

*
*
*

Motifs

Program 9 Program 24

Behavioral
sequences

Minimal set of composable subsequences (“motifs”)

M
ot
ifs

Programs# Programs
0 10 20 30 0 2 4 6

B

F G

H I

9

24

7655
277

6592

8261

218
Local view

24

7655 277

246592

9

218

5982 6592

A

D E

P
er
fo
rm

an
ce

B
eh
av
io
r

S
tru

ct
ur
e

p(
se
q)

Coarse addition/deletion
of functional “motifs”

Fine-grained adjustment
of sequence probabilities

Can we extract a
compact logic to link
structure & behavior?

Functional

Compact behavioral strategies can
vary in structure, function, and behavior
while still achieving good performance

J

motifs

Program 9 ()
& descendants

(excl. program 24)

Program 24 ()
& descendants

Many programs
generate similar

sequences
by combining
different motifs

Many behavioral
sequences

generate similar
performance

Key mutation
Sloppy mutations

61185982

Structurally Bayesian

1

2

6

4 5

3

9

7

8

5

1

2

6

4

53

7 9

8

?

Strategy BStrategy A

Strategy BStrategy A

0

0.15

0.075

561

104
3840

Key mutations
Sloppy mutations

Fig. 4. Functional motifs combine to generate diverse behavior. (A) We sought an interpretable functional logic to capture the high-dimensional distribution of sequence
probabilities (top) using a small number of functional elements (bottom). (B) For each program, we extract a minimal set of behavioral subsequences, or functional motifs,
that capture a majority of its behavioral sequences (Materials and Methods). Each motif can be visualized by traversing an action-outcome path through a program and
must form a stable loop when repeated in succession (red box). (C) In (D) to (I), we use motifs to study behavioral features that are inherited along different lineages of the
behavioral tree in Fig. 3E. (D) Distribution of motifs across different behavioral subgroups. Inset shows the rate at which new non-Bayesian motifs are generated by struc-
turally non-Bayesian programs. (E) Top five non-Bayesian motifs shared by a majority of programs within each behavioral subgroup (note that subgroup 7 only expresses
four non-Bayesian motifs). See fig. S11 for full characterization. (F) A key mutation to program 9 creates new non-Bayesian motifs within program 24 (starred bars; e.g.,
lw) that distinguish the descendants of programs 9 and 24 (left and right histograms, respectively). (G) Example program lineage. Motif LWll is inherited by the descen-
dants of program 9 through sloppy mutations. Program 24 inherits this motif and creates a new motif, lw, via a key mutation; this is inherited by its descendants through
sloppy mutations. (H and I) Two examples of functional convergence between a descendant of program 9 and a program on a distant lineage (C), where structurally dis-
tinct programs use the same (H) or different (I) combinations of motifs to generate the same sequences. (J) Good performance can be achieved through different behavior,
which can be generated by different combinations of functional motifs that are themselves expressed by many structurally distinct programs.

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

8 of 14

non-Bayesian strategies that could not be explained by approximat-
ing the Bayesian optimum. To understand these diverse strategies,
we did not attempt to average away variability among them; instead,
we chose to study relationships between structure, function, behav-
ior, and performance observed across the entire strategy space. A tree
embedding algorithm revealed that this space is largely “smooth” in
nature, with iterative mutations in structure often leading to small
and consistent changes in behavior and performance. This enabled
us to devise an efficient evolutionary search algorithm that could be
used to build and study larger strategy spaces for more complex
tasks, where full enumeration would be prohibitive. However, this
tree embedding also revealed that not all regions of the space are
smooth; as a result, we could describe the diversification of strategies
in terms of key mutations that alter the behavioral repertoire among
different lineages of programs and sloppy mutations that preserve
this repertoire within individual lineages.

Together, our findings suggest an alternative methodology for
studying individual variability in animal behavior, where rather
than summarizing the consistent patterns observed across multiple
animals, it is possible to study the entire ensemble of strategies that
would be consistent with the behavior of any individual animal. The
finding that a myriad of distinct strategies can explain the same be-
havioral patterns is similar to the concept of sloppiness observed in
multiparameter models of other biological systems, where many dif-
ferent parameter combinations can achieve the same model output
(45–47). How these algorithmic strategies might be implemented
mechanistically, for example, in recurrent networks of neurons, will
likely yield an additional level of sloppiness in which many different
mechanistic implementations can generate the same algorithmic
strategy. Because we found that structural relationships between
strategies contain information about their behavioral differences, we
were able to understand how non-Bayesian strategies can emerge
through an accumulation of mutations away from a Bayesian strat-
egy, with a small number of key mutations introducing new behav-
ioral diversity and a large number of sloppy mutations preserving
that diversity across strategies. This raises an intriguing possibility
for studying animal learning in terms of an evolution through pro-
gram space, where key mutations to an internal strategy could alter
the behavioral repertoire of an animal in a manner that is discon-
tinuous in time and appears as abrupt “aha” moments (48, 49).

Moving forward, the approaches adopted here could be used to
identify the minimal algorithmic components that enable strategies
to generalize across different task domains, something that is not
possible when studying single strategies in isolation (50, 51). Ob-
served suboptimalities in animal behavior could reflect a misunder-
standing of the task that animals are trying to solve, just as our good
but suboptimal strategies might in fact be optimal for tasks not con-
sidered here. As a result, deviations from optimality on a single task,
which could negatively affect overall performance when accumu-
lated over long timescales, could be offset when balanced across
multiple tasks. By constructing and studying relationships in a joint
task-strategy space, it might be possible to understand the many
sources of robustness that enable different behavioral strategies to
remain effective in the face of changing task demands.

MATERIALS AND METHODS
Here, we briefly summarize key aspects of our methods, and we refer
the reader to the Supplementary Materials for further details. In the

Supplementary Text, we provide a discussion of alternative method-
ologies related to embeddings (section S1), sloppiness (section S2),
compositionality (section S3), and efficient search (section S4). We
also provide a comprehensive discussion of our specific methodolo-
gies (sections S5 to S10); we briefly describe these methodologies
below, and we refer the reader to the associated Supplementary
Materials sections for further details. Last, a description of the code
base can be found in Supplementary Text, section S11.

Behavioral task
We considered a dynamic foraging task (also called a nonstationary
two-armed bandit task) in which an animal samples from two dif-
ferent ports to gather rewards (fig. S1A). On each time step, the ani-
mal selects one of two binary actions, a ∈ {a−, a+} (corresponding to
sampling a left and right port, respectively) and can receive one of
two binary outcomes, o ∈ {o−, o+} (unrewarding and rewarding, re-
spectively). A hidden binary world state s ∈ {s−, s+} determines the
probability that a given action will produce a given observation; we
assume that s switches states at a fixed probability h ∈ [0.05, .5]
per time step, such that each port yields rewards with a high prob-
ability phigh ≡ p(o+∣s±, a±) when a and s are aligned, and a low re-
ward probability plow ≡ p(o+∣s±, a∓) when they are misaligned. In
other words, when the world is in state s+, taking the action a+ will
yield reward with higher probability; conversely, when the world
is in state s−, taking the action a− will yield reward with higher
probability. This task can be fully specified by the baseline reward
rate of the two arms p = (phigh + plow)∕2 (or, alternatively, the reward
gain Δp = 2p − 1 ), the reward contrast between the two arms Δp =
phigh − plow, and the hazard rate h. The dynamics of the task are then
governed by the following two parameterized conditional probability
distributions

Ideal Bayesian observer
To choose the best action at any point in time, the optimal strategy
involves inferring the hidden world state from the outcomes of past
actions. To perform this inference, we construct an ideal Bayesian
observer that has knowledge of p , Δp, and h but does not know the
current world state st (i.e., it does not know the identity of the more
rewarding port). The observer maintains a belief ut ≡ p(st = s+ ∣ …) −
p(st = s− ∣ …) about the current world state, where ut ∈ [−1,1]. Upon
selecting an action a and observing an outcome o, the observer can
iteratively update its belief according to the following equation
(Fig. 1G and fig. S1B)

Optimal Bayesian strategy
Our task is an example of a partially observable Markov decision
process (POMDP). Using Bayesian reinforcement learning (RL),
we can factorize this POMDP into the two separate problems of
(i) deriving the optimal inference to update a belief about the hidden
world state and (ii) finding the optimal behavioral policy (also
referred to in the text as optimal action selection) to select actions

p(st ∣ st−1)=

(
1−h h

h 1−h

)
world dynamics

p(o ∣ s, a)=
1

2

[
1+o (s aΔp+Δp)

]
reward delivery

(1)

ut+1 = (1 − 2h) ⋅
at ot Δp + (1 + otΔp) ut
at ot Δp ut + (1 + otΔp)

≡ U(ut , at , ot) (2)

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

9 of 14

based on the current belief (27–29). The former can be done using
Bayesian formalism, as discussed above. The latter is equivalent to a
standard RL problem with a fully observable MDP defined over be-
lief states. With this equivalence, standard RL algorithms such as value
iteration can be used to efficiently find the optimal policy π(a∣u) that
maximizes cumulative reward 〈o = o+〉. To derive the optimal policy,
we discretize the belief space into 200 non-overlapping, equally
sized bins, and we use value iteration to optimize the value func-
tion v(u, t):

where r(o) = 1 if o = o+ and 0 otherwise. Note that, here, we modify
standard value iteration (29) with a built-in running average of
reward over an infinite horizon. The optimal policy is then a* =
argmaxa q(u, a) = sgn u. This corresponds to a deterministic greedy
policy in which the optimal action is always to sample from the re-
ward port that aligns with the observer’s current belief (i.e., it selects
a = a+ if ut > 0 and a = a− if ut < 0).

Discretizing the optimal Bayesian strategy
To construct discretized Bayesian strategies (referred to in the text
as structurally Bayesian programs; Figs. 1, G to I, and 2B), we dis-
cretized the belief space into M ∈ {2,3,4,5} equal non-overlapping
bins spanning u ∈[− αuub, αuub]. Here, uub is the fixed-point belief
value achieved upon continual winning (see section S5.5 for deriva-
tion), and α ∈ (0,1] is a parameter used to control the range of dis-
cretization. Given a set of discrete bins labeled by states m = 0, …, M − 1,
we derived the transition matrix p(m′∣m, o) by finding, for each ini-
tial state m (corresponding to initial belief u), the final state m′ that
is closest to the updated belief value u′ upon taking the optimal ac-
tion a* = sgn u and observing an outcome o. Because the transi-
tioned belief value can fall between two neighboring discrete states,
we additionally considered transition matrices that include all com-
binations of nearest and next-nearest state transitions. For each
transition matrix p(m′∣m, o), we assigned a deterministic action to
each state as specified by the optimal policy [i.e., we constructed the
discrete-state policy π(a∣m) from the optimal policy π(a∣u) = sgn u].
This process generates a set of discrete Bayesian programs that we
then filter using a set of “rule-out rules” to eliminate invalid pro-
grams (discussed in the next section). Note that this approach is
guaranteed to generate programs that have ordered state transitions
consistent with Bayesian belief integration. For more details regard-
ing the Bayesian formalism described above, see Supplementary
Text, section S5.

Selecting task parameters
All results were generated using the following parameter setting:
p = 0.3 , Δp = −0.5, and h = 0.05. These parameters were chosen
by first examining the behavioral difference between the optimal
Bayesian strategy and the smallest and best-performing resource-
constrained program, the WSLG program. The behavioral differ-
ence between these programs serves as a proxy for the number of
small programs that can achieve good performance; in certain
parameter regimes (e.g., large hazard rates; fig. S1D), the optimal

Bayesian strategy converges to WSLG, and the space of good pro-
grams collapses. We thus chose task parameters that generate a large
behavioral difference between these two programs. For more details
regarding the collapse of the good program space, see Supplemen-
tary Text, section S6.

Enumerating a complete ensemble of unique programs
Our behavioral programs are deterministic Markov chains, which
are graphs without any inherent notion of node ordering. However,
to enumerate over graphs, one has to impose a labeling over nodes.
This, together with other sources of symmetry, leads to multiple re-
peated programs. We eliminate these repeated programs through
the following set of rule-out rules:

1) Remove identical programs under node permutation.
2) Remove reducible programs that contain sinks (a subset of

nodes that absorb all occupancy during a random walk) and drains
(the subset of remaining nodes).

3) Remove periodic programs whose node occupancy distribu-
tion does not converge over time.

4) Remove identical programs under node inversion (this corre-
sponds to exchanging a+ and a−, which generates identical behavior
under the symmetric task that we consider).

5) Remove programs that contain sets of nodes that, when com-
bined, do not alter the behavior of a program (we refer to these
nodes as “merger nodes” and the corresponding programs as “merger
programs”).

The first three rules are task independent and relate only to ge-
neric features of Markov chains. Rules 2 and 3, which eliminate ill-
behaved Markov chains, can be checked using an open python
library: QuantEcon (52). The last two rules are specific to the task
we consider here and eliminate redundant programs that generate
identical action-outcome sequences to other programs in the en-
semble. Note that rule 5, when applied in reverse, can be used to
generate equivalent programs of different sizes (discussed in more
detail below).

To optimize the enumeration of unique programs, we apply these
rule-out rules in a particular order. We first enumerate the action
labels for a fixed node ordering. For programs of size M = 2 to M =
5, this constrains the unique action labels to the following set: [(−, +),
(−, +, +), (−, +, +, +), (−, −, +, +), (−, +, +, +, +), and (−, −, +, +, +)]
(note that, using rule 4, we do not include the symmetric set of ac-
tion labels). For any given program size M, we enumerate the M2M
possible ways of assigning outcome-dependent transitions to the set
of nodes, and we remove all transition matrices that have individual
sinks and drains (rule 2; this step is fast, does not depend on the
node labels, and eliminates a majority of invalid programs). We then
include node labels and remove those programs that have merger
nodes (rule 5). From this reduced set of programs, we remove pro-
grams that are repeated under node permutations; this step is slow,
because it requires checking a single program against a list of valid
programs. Last, we remove programs that generate periodic behavior
or that have coupled sinks and drains (rules 2 and 3). We leave this
step for last because it is the slowest in this process.

This enumeration reduces the set of 2M node labelings and M2M
node transitions to a much smaller set of valid programs (see Table 1).
We can easily enumerate all programs for M ≤ 5; this becomes dif-
ficult for M ≤ 6 and infeasible for M ≤ 7. This highlights the impor-
tance of constraining an enumeration either through an evolutionary
algorithm (discussed below) or by leveraging additional aspects of

v(u, t+1) =max
a

∑

u� ,o

p[u�, r(o) ∣u, a]

[
r(o)

t+1
+

t

t+1
v(u�, t)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

q(u,a)
(3)

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

10 of 14

task structure. For more details regarding program enumeration,
see Supplementary Text, section S7.

Evaluating program performance
The most common way to evaluate the performance of a Markov
chain is to use Monte Carlo simulations, which necessitates long
behavioral trajectories for reliable convergence. We circumvent this
by propagating an entire belief distribution over time, which ensures
orders-of-magnitude faster convergence at the cost of storing a full
belief distribution in memory and allows us to account for the prob-
abilistic nature of world-state transitions. Note that the initial pro-
gram state transiently affects the belief distribution, but this impact
dissipates after ∼1/h = 20 time steps. Here, we consider the steady-
state belief distribution that stabilizes after these initial transients.
We refer to this algorithm as belief distribution propagation (BDP).

To compute the steady-state belief distribution for the optimal
Bayesian strategy (fig. S1C), we first initialize the distribution of
belief values using a uniform distribution across u ∈ [−1,1], dis-
cretized into 200 bins. We then propagate the probability of each
belief value upon taking each action and receiving each outcome
(i.e., we propagate across all four action-outcome pairs); this then
generates four new belief values at t = 1 with corresponding proba-
bilities. For a given belief value indexed by i, the updated belief value
at time t + 1 is found by summing across all actions, outcomes, and
previous belief values that could have led to the given belief

This update takes an analogous form for small programs, with
the program state m exchanged with the belief state u in Eq. 4. Given
the steady-state belief distribution p(u, s) [or analogously, p(m, s)],
it is straightforward to compute the corresponding steady-state
reward rate

We defined good performance as having a steady-state reward
rate that exceeded that of the WSLG program, and we referred to set
of programs that meet this criterion as “good programs.” We used
sequence distribution propagation (an extended version of BDP)
to compute the steady-state probabilities of observing different
behavioral sequences. As with BDP, we consider the steady-state

distribution of behavioral sequences that stabilizes after initial tran-
sients. We computed this distribution for sequences of length lmax =
10, which corresponds to 410 = 1,048,576 distinct sequences. Note
that the belief distribution derived through our BDP algorithm is
equivalent to computing the leading eigenvector of the transition
matrix T with joint distribution p(s, m, a, o). While the eigenvector
approach is faster than BDP, it is more difficult to scale up to the
larger joint distributions that we encounter when computing se-
quence probabilities. For more details regarding program evalua-
tion, see Supplementary Text, section S8.

Mutating between programs
When two programs are of the same size, we define the structural
distance between them as the minimal number of algorithmic op-
erations, or “mutations,” that are needed to permute one program
into the other, assuming symmetry to the inversion of actions.
Here, we define a single mutation as either the reassignment of one
transition or the relabeling of one node. When two programs differ
in size, we first compute all merger programs (discussed above)
that are behaviorally equivalent to the smaller program but are
identical in size to the larger program, and then we identify the
merger program with the smallest structural distance to the larger
program (fig. S2).

Tree embedding algorithm
To capture relationships between the structure and performance
of behavioral programs, we designed a tree embedding algorithm
(fig. S4A). Given an ensemble of small programs, we began by first
sorting programs according to size (small to large) and then sorting
according to performance (high to low). This sorting places WSLG
at the top of the program list; this program defines the root of the
tree. We then proceeded through the ordered list of programs, as-
signing each successive child program i in the list to a single parent
program that is within a single mutation. If there are multiple candi-
date programs within a single mutation, we select the smallest and
highest-performing program to be the parent of program i.

When we applied this tree embedding algorithm to the entire
ensemble of small programs with M ≤ 5 (Fig. 2F and figs. S5 and S8),
we found that nearly all good programs were closely connected to
form a single subtree, with a small number of disconnected pro-
grams. To construct a single connected subtree of good programs,
we included an additional 262 connection programs whose perfor-
mance was below the threshold performance of WSLG. This set of
4492 programs comprise what we call the “good program network”
(GPN) (Fig. 3 considers the behavioral properties of this network).

We visualized this tree using Gephi (53), with the Y. Hu layout
(54). To briefly summarize this layout, all pairs of nodes are assigned
a repulsive force, and connected pairs of nodes are assigned an
attractive (spring) force. The layout algorithm tries to (i) find a 2D
embedding that minimizes the energy from attractive and repulsive
force between all pairs of nodes; (ii) partition the 2D space into
hierarchical regions, so that the forces from many distant nodes can
be quickly computed in a coarse-grained manner; and (iii) adap-
tively cool the layout using a faster initial rearrangement and a slower
final refinement. For the tree-like network structures considered
here, this layout will try to find a spatial embedding in which the
more densely connected root of the tree is displayed near the center
of the layout, and the more sparsely connected leaves of the tree are
displayed near the edges of the layout.

p
[
u(i)
t+1

, s
(j)

t+1

]
=
∑

i� ,j�

p
[
u(i

�)
t , s

(j�)

t

]
p
[
s
(j)

t+1
∣ s

(j�)

t

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

world dynamics (Eq. 1)

∑

k,l

p
[
o(k)t ∣ s

(j�)

t , a(k)t

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

reward delivery (Eq. 1)

δ
{
u(i)
t+1

−U
[
u(i

�)
t , a(k)t , o(l)t

]}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Bayesian inference (Eq. 2)

π
[
a
(j)

t ∣u(i
�)

t

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟

optimal policy (Eq. 3)
(4)

⟨R ⟩ =
�

u,s,a

p(o+ ∣ s, a) π(a ∣u) p(u, s) (5)

Table 1. Number of unique labelings versus unique programs.

M # Unique labelings (2MM2M) # Unique programs

2 64 5

3 5832 124

4 1,048,576 4979

5 312,500,000 263,428

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

11 of 14

Comparing tree embeddings
To quantify the smoothness of a tree embedding, we computed a
variant of the z-score, measured with respect to a given embedding
attribute a observed between parent and child programs

where std(a) measures the SD in the attribute across the entire en-
semble of programs. Note that the numerator of Eq. 6 depends on
the embedding, but the denominator does not. In fig. S6D, we com-
pared the distribution of z-scores for two different attributes: the
performance and the wiring length of individual programs. Both
histograms were computed across the ensemble of programs
with M ≤ 5.

To compute the wiring length of individual programs, we as-
signed a distance D ∈ {0,1,2,3,4} to each transition in the program,
where D = 0 denotes a self-loop. This distance depends on the or-
dering of nodes in the program; we thus identified the node order-
ing that minimizes the net summed transition distance, measured
across all transitions in the program. We refer to this net distance as
the wiring length of the program. To demonstrate that the tree em-
bedding algorithm is sensitive to different program attributes, we
performed a tree embedding that links a child program to the parent
program with minimal wiring length (rather than maximal perfor-
mance; this is shown in fig. S6).

Efficient search via an evolutionary algorithm
We designed an evolutionary algorithm for efficiently discovering
a space of good programs (fig. S9). This algorithm has three key
features that distinguish it from generic evolutionary algorithms
(discussed in more detail below): (i) At each generation, we con-
sider all possible mutations from a given set of programs; (ii) we
use a flexible performance threshold to retain good mutants; and
(iii) we “hibernate” unselected mutants to be reconsidered at a
later generation.

This algorithm operates on a reservoir of programs that are each
labeled with one of three status labels: (i) “morph” (programs that
are ready to be mutated); (ii) “frozen” (programs that have previ-
ously been mutated); and (iii) “idle” (programs in hibernation). In a
given generation, we first select all programs with the label morph.
For each program in this set, we generate all programs that are with-
in a single mutation; for a program of size M, this includes all merg-
er programs of size M + 1 that are within a single mutation. We then
filter these mutants using the rule-out rules described above, re-
move any mutants that are redundant with existing programs in the
reservoir, and set the status of all remaining mutants to idle; the sta-
tus of their parent programs is set to frozen. We then select the top-
performing ∼ log (Nidle) programs with label idle and update their
status to morph to be mutated in the next generation. All other idle
programs remain in the reservoir to be considered at a later genera-
tion. After a fixed number of generation, we count the total number
of programs in the reservoir (including morphed, frozen, and idle
programs), and we measure the fraction of these whose perfor-
mance exceeds that of WSLG. Figure 2G reports the fraction of good
programs that were discovered after 16 generations, beginning with
an initial program reservoir that consisted of programs 0 and 1. For
more details regarding the tree embedding and evolutionary search
algorithms, see Supplementary Text, section S9.

Behavioral tree embedding algorithm
To quantify the behavioral similarity between programs, we first
define a confusion matrix C�

ij
({}) ≡ p{}(prog i ∣prog j) that speci-

fies how likely it is to mistake program j for program i within a given
ensemble of programs {}, given the distribution of length-ℓ outcome-
action sequences that each program generates

where p[(o, a)ℓ∣prog i] specifies the distribution of outcome-action se-
quences of length ℓ produced by program i. Note that the entries of this
matrix are always normalized with respect to a particular ensemble of
programs {}, specified by the normalization factor in the denomina-
tor. We use C�

ij
({}) to define the behavioral similarity between all

pairs of programs within a given ensemble {}. For a given program i,
we identify the top n�

i
= round

[
1∕C�

ii
({})

]
 programs that are most

easily confused with program i. These programs then specify binary en-
tries in a behavioral similarity matrix B�

ij
({}) . We define the total

behavioral similarity Bij({}) =
∑10

�=1
B�

ij
({}) ∈ [1, 10] by account-

ing for all sequences up to a maximum length ℓ = 10.
We used Bij({}) to perform a behavioral tree embedding of all

programs in the GPN (see fig. S4B for a visual summary of this algo-
rithm). Here, {} is the ensemble of 4230 good programs and 262
connection programs. Analogous to the tree embedding algorithm,
we first constructed a list of program pairs that are separated by a
structural distance of 1 (dij = 1, Mi ≤ Mj). We then sorted these pairs
first according to their behavioral similarity (high to low) and then
according to their performance (high to low). We then proceeded
through this list by selecting, for each child program j, the most be-
haviorally similar and highest-performing parent program i from
the list of candidate child-parent pairs. This algorithm successfully
finds a smooth embedding in which 4464 program pairs are maxi-
mally similar (Bij({}) = Bmax = 10) and 28 pairs are dissimilar
(Bij({}) < Bmax). The mutations that link these pairs of programs
define the sets of sloppy and key mutations, respectively (Fig. 3E).

Classifying program behavior
We categorized programs based on their behavior using two differ-
ent thresholds on the “distinguishability” of individual programs
(Fig. 3D). These thresholds were used to describe and visualize the
features of the good program space and were not used to perform
any tree embeddings or to extract functional motifs.

To define the distinguishability of each program, we used the di-
agonal entries of the confusion matrix C�=10

ii
({}) (Fig. 3C). To de-

fine the set of “globally distinguishable” programs, we measured the
distinguishability of each program within the “GPN” (i.e., we de-
fined {} = GPN to be the ensemble of 4230 good programs and
262 connection programs). We defined the total summed distin-
guishability of this ensemble to be Ctot

GPN
=

∑
i
C
�=10
ii

(GPN) ; we then
defined a threshold value of distinguishability C∗

GPN
 as

z(prog i) =
aprog i − aparent(prog i)

std(a) (6)
C
�

ij
({})≡p{}(prog i ∣prog j)=

�

(o,a)�

p
�
(o, a)� ∣prog i

�
p
�
(o, a)l ∣prog j

�

∑
i�∈{}

p
�
(o, a)� ∣prog i�

� (7)

∑

{i∣C�=10
ii

(GPN)<C
∗
GPN

}

C
�=10
ii

(GPN) =
C
tot
GPN

2 (8)

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

12 of 14

where C�=10
ii

 is sorted in descending order. In other words, C∗
GPN

 dif-
ferentiates two sets of programs that each account for half of the total
summed distinguishability across the entire ensemble: a minimal set
of globally distinguishable programs [ C�=10

ii
(GPN) ≥ C

∗
GPN

 ] and a max-
imal set of “globally indistinguishable” programs [ C�=10

ii
(GPN) < C

∗
GPN

 ].
Note that in computing Ctot

GPN
 and C∗

GPN
 , we excluded the set of 27

“low-performing” connection programs whose performance is lower
than random but whose distinguishability is among the highest.
This threshold ( C∗

GPN
= 0.0156 ) is displayed as the red vertical

dashed line in Fig. 3D.
To define the set of “behaviorally Bayesian” programs, we mea-

sured the distinguishability of each program within the GPN with
respect to the subset of structurally Bayesian (“SB”) programs; i.e.,
we defined {} = SB to be the ensemble of 65 structurally Bayesian
programs within the GPN. We defined a threshold value of distin-
guishability C∗

SB
 as the maximum value of C�=10

ii
(SB) observed within

the set of structurally Bayesian programs. This threshold selects the
set of programs that are no more distinguishable from the ensemble
of structurally Bayesian programs than the structurally Bayesian
programs were from themselves. In defining this threshold, we ex-
cluded two outlier programs; one outlier (program 236) has a much
higher value of C�=10

ii
(GPN) than all other structurally Bayesian pro-

grams; the second outlier (program 11) has a much higher value of
C
�=10
ii

(SB) than all other structurally Bayesian programs. We there-
fore used the remaining 63 structurally Bayesian programs to define
C∗
SB

 . All programs that fell below this threshold were labeled behav-
iorally Bayesian [ C�=10

ii
(SB) < C

∗
SB

 ], and the remaining programs
were labeled “behaviorally non-Bayesian” [ C�=10

ii
(SB) ≥ C

∗
SB

 ]. This
threshold value ( C∗

SB
= 0.202 ) is displayed as the black horizontal

dashed line in Fig. 3D. Among the group of programs that are both
globally distinguishable and behaviorally non-Bayesian, we further
clustered the behavioral sequences of these programs using the Py-
thon package community_louvain (Fig. 3E, inset).

Decomposing behavioral sequences into motifs
We highlighted how a minimal set of functional motifs could be
used to understand behavioral diversity among the ensemble of
good programs (Fig. 4). We capture this behavioral diversity using
the distributions of distinguishable behavioral sequences produced
by different programs. Analogous to our definition of program dis-
tinguishability, we define sequence distinguishability as

As with program distinguishability, we define sequence distin-
guishability with respect to a particular ensemble of programs {}.
To select the subset of distinguishable sequences, we rank-ordered
sequences according to this distinguishability, and we selected the
set of top-ranking sequences that together accounted for half of the
distinguishability across the ensemble of sequences. We represent
each of these sequences in terms of the variables L (lose-stay), W
(win-stay), l (lose-go), and w (win-go).

We next extracted a minimal set of subsequences that could be
combined to generate distinguishable behavioral sequences pro-
duced by a given program. We use the term “motif ” to refer to each
subsequence within this minimal set. To extract a set of motifs, we

began by first considering all subsequences of length ℓ < 10. For each
subsequence, we used all cyclic permutations of the subsequence to
generate length-10 sequences. For example, for a subsequence Wlw
(with permutations Wlw, lwW, and wWl), the corresponding length-
10 sequences are WlwWlwWlw, lwWlwWlwW, and wWlwWlwWl. If
all of these sequences exist with nonzero probability within the top
95% of distinguishable sequences for a given program, then the sub-
sequence Wlw becomes a candidate motif for that program.

Given an ensemble of candidate motifs for a program, we selected
the minimum number of shortest motifs that could account for all
elements of a given sequence. For example, consider decomposing a
sequence lLWllwlLl in terms of the candidate motifs {W, Lll, LWll,
LlWl, Lllwl, Wlw, lw}. We first sorted these motifs by length and then
iteratively checked the additional fraction of the entire sequence that
can be explained by each successive motif. With this approach, the
sequence lLWllwlLl can be generated by four motifs (W, lw, Lll, and
LWll), which each contributes additional explanatory power beyond
the previous motifs. That is, W explains one of nine of the sequence
(the underlined snippet lLWllwlLl), lw another three of nine (the un-
derlined snippet lLWllwlLl), Lll another two of nine (the underlined
snippet lLWllwlLl, where one of three of this snippet has already been
explained by previous motifs, as indicated in gray), and lastly LWll
another three of nine (three of four of the underlined snippet lLWll-
wlLl). We used this approach to extract the smallest set of motifs that
could account for the set of most distinguishable sequences for a
given program (i.e., those sequences that together account for half of
the total distinguishability of the program). A given combination of
motifs can be used to generate multiple distinct behavioral sequences.

Assigning motifs to behavioral subgroups
In Fig. 4 (D and E), we used motif statistics to dissect non-Bayesian
behavior within the ensemble of globally distinguishable programs.
The structurally Bayesian programs, of which there are 64 (exclud-
ing program 11, which is behaviorally dissimilar to the rest of the
ensemble), together express 22 motifs. We refer to these as “Bayes-
ian motifs”; we refer to all other motifs as “non-Bayesian motifs.”
These motifs are shared with the other ensembles of programs high-
lighted in Fig. 3D. We divide these remaining ensembles into two
groups: the ensemble of 561 globally distinguishable programs
(which expresses a total of 188 motifs) and the remaining ensemble
of 3840 globally indistinguishable programs (which expresses a total
of 220 motifs). These two ensembles share 116 motifs, including all
22 Bayesian motifs, but they also each express sets of motifs that are
unique to each ensemble. The globally distinguishable programs
express 72 unique motifs, and the globally indistinguishable pro-
grams express 104 unique motifs. We used these to define the rate at
which programs generate new motifs, given by the number of motifs
that are unique to an ensemble, scaled by the number of programs in
that ensemble. The results are reported in Fig. 4D.

Given the set of unique motifs within the ensemble of globally
distinguishable programs, we assigned each motif i to a behavioral
subgroup k based on the fraction of programs within the subgroup
that express the motif [see Fig. 3 (D and E) for behavioral sub-
groups]. We refer to this as the prevalence of a motif i in a group k

C
seq k

ii
({}) =

p(seq k ∣prog i)2
∑

i� ∈ {}

p(seq k ∣prog i�) (9)

prevalence(motif i, group k)≡

number of programs in cluster k that express motif i

number of programs in cluster k (10)

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

13 of 14

We then assigned each motif to the behavioral subgroup with the
highest prevalence

In Fig. 4E and fig. S11, we used this procedure to assign the 166
non-Bayesian motifs produced by the ensemble of globally distin-
guishable programs to each of the nine behavioral subgroups shown
in Fig. 3 (D and E). In Fig. 4E, we displayed the top five motifs with the
highest prevalence within each subgroup. This fraction is displayed
for all motifs in fig. S11B and used to specify the size of markers in
fig. S11C.

To compute the specificity of a motif i, we normalized the preva-
lence in Eq. 10 to compute the categorical probability of each motif
across all behavioral subgroups, pmotif i, group k = prevalence(i, k)/∑k ‍
prevalence(i, k). We then used the categorical entropy of this prob-
ability to define the specificity of each motif

This specificity is shown by the radial distance and opacity of
markers in fig. S11C. For more details regarding the behavioral tree
embedding algorithm and behavioral classifications, see Supple-
mentary Text, section 10.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S19
Tables S1 to S21
References

REFERENCES AND NOTES
	 1.	 P. R. Montague, P. Dayan, C. Person, T. J. Sejnowski, Bee foraging in uncertain

environments using predictive hebbian learning. Nature 377, 725–728 (1995).
	 2.	 M. Vergassola, E. Villermaux, B. I. Shraiman, ‘Infotaxis’ as a strategy for searching without

gradients. Nature 445, 406–409 (2007).
	 3.	 S. D. Boie, E. G. Connor, M. McHugh, K. I. Nagel, G. B. Ermentrout, J. P. Crimaldi, J. D. Victor,

Information-theoretic analysis of realistic odor plumes: What cues are useful for
determining location? PLOS Comput. Biol. 14, e1006275 (2018).

	 4.	E . Fujioka, I. Aihara, M. Sumiya, K. Aihara, S. Hiryu, Echolocating bats use future-target
information for optimal foraging. Proc. Natl. Acad. Sci. U.S.A. 113, 4848–4852 (2016).

	 5.	 S. B. M. Yoo, J. C. Tu, S. T. Piantadosi, B. Y. Hayden, The neural basis of predictive pursuit.
Nat. Neurosci. 23, 252–259 (2020).

	 6.	 M. M. Botvinick, Hierarchical models of behavior and prefrontal function. Trends Cogn. Sci.
12, 201–208 (2008).

	 7.	 P. Shamash, S. F. Olesen, P. Iordanidou, D. Campagner, N. Banerjee, T. Branco, Mice learn
multi-step routes by memorizing subgoal locations. Nat. Neurosci. 24, 1270–1279 (2021).

	 8.	 A. Loisy, C. Eloy, Searching for a source without gradients: How good is infotaxis and how
to beat it. Proc R. Soc. A 478, 20220118 (2022).

	 9.	 J.-J. O. de Xivry, S. Coppe, G. Blohm, P. Lefevre, Kalman filtering naturally accounts for visually
guided and predictive smooth pursuit dynamics. J. Neurosci. 33, 17301–17313 (2013).

	 10.	 A. Solway, C. Diuk, N. Córdova, D. Yee, A. G. Barto, Y. Niv, M. M. Botvinick, Optimal
behavioral hierarchy. PLOS Comput. Biol. 10, e1003779 (2014).

	 11.	 F. Attneave, Some informational aspects of visual perception. Psychol. Rev. 61, 183–193
(1954).

	 12.	 H. B. Barlow, “Possible principles underlying the transformation of sensory messages” in
Sensory Communication, vol. 1, W. Rosenblith, Ed. (MIT, 1961), pp. 217–234.

	 13.	E . P. Simoncelli, B. A. Olshausen, Natural image statistics and neural representation. Annu.
Rev. Neurosci. 24, 1193–1216 (2001).

	 14.	E . Vul, N. Goodman, T. L. Griffiths, J. B. Tenenbaum, One and done? Optimal decisions
from very few samples. Cognit. Sci. 38, 599–637 (2014).

	 15.	N . Tishby, D. Polani, “Information theory of decisions and actions” in Perception-Action
Cycle: Models, Architectures, and Hardware (Springer, 2010), pp. 601–636.

	 16.	 G. Gigerenzer, W. Gaissmaier, Heuristic decision making. Annu. Rev. Psychol. 62, 451–482
(2011).

	 17.	 B. Sauce, L. D. Matzel, The causes of variation in learning and behavior: Why individual
differences matter. Front. Psychol. 4, 395 (2013).

	 18.	 J. O’Doherty, M. L. Kringelbach, E. T. Rolls, J. Hornak, C. Andrews, Abstract reward and
punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4, 95–102 (2001).

	 19.	 P. Vertechi, E. Lottem, D. Sarra, B. Godinho, I. Treves, T. Quendera, M. N. Oude Lohuis,
Z. F. Mainen, Inference-based decisions in a hidden state foraging task: Differential
contributions of prefrontal cortical areas. Neuron 106, 166–176.e6 (2020).

	 20.	L . P. Sugrue, G. S. Corrado, W. T. Newsome, Matching behavior and the representation of
value in the parietal cortex. Science 304, 1782–1787 (2004).

	 21.	V . D. Costa, V. L. Tran, J. Turchi, B. B. Averbeck, Reversal learning and dopamine: A bayesian
perspective. J. Neurosci. 35, 2407–2416 (2015).

	 22.	 B. A. Bari, C. D. Grossman, E. E. Lubin, A. E. Rajagopalan, J. I. Cressy, J. Y. Cohen, Stable
representations of decision variables for flexible behavior. Neuron 103, 922–933.e7
(2019).

	 23.	 M. P. Karlsson, D. G. Tervo, A. Y. Karpova, Network resets in medial prefrontal cortex mark
the onset of behavioral uncertainty. Science 338, 135–139 (2012).

	 24.	 Y. Liu, Y. Xin, N.-l. Xu, A cortical circuit mechanism for structural knowledge-based flexible
sensorimotor decision-making. Neuron 109, 2009–2024.e6 (2021).

	 25.	C . C. Beron, S. Q. Neufeld, S. W. Linderman, B. L. Sabatini, Mice exhibit stochastic and
efficient action switching during probabilistic decision making. Proc. Natl. Acad. Sci. U.S.A.
119, e2113961119 (2022).

	 26.	 A. Rajagopalan, R. Darshan, J. E. Fitzgerald, G. C. Turner, Expectation-based learning rules
underlie dynamic foraging in Drosophila. bioRxiv 2022.05.24.493252 (2022).

	 27.	 K. J. Ǻström, Optimal control of Markov processes with incomplete state information. J.
Math. Anal. Appl. 10, 174–205 (1965).

	 28.	L . P. Kaelbling, M. L. Littman, A. R. Cassandra, Planning and acting in partially observable
stochastic domains. Artif Intell 101, 99–134 (1998).

	 29.	 R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction (MIT Press, 2018).
	 30.	 R. L. Rivest, R. E. Schapire, Diversity-based inference of finite automata. J. ACM 41,

555–589 (1994).
	 31.	E . C. Tolman, Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).
	 32.	T . E. Behrens, T. H. Muller, J. C. Whittington, S. Mark, A. B. Baram, K. L. Stachenfeld,

Z. Kurth-Nelson, What is a cognitive map? organizing knowledge for flexible behavior.
Neuron 100, 490–509 (2018).

	 33.	 W. F. Młynarski, A. M. Hermundstad, Adaptive coding for dynamic sensory inference,” eLife
7, e32055 (2018).

	 34.	 M. Zacksenhouse, R. Bogacz, P. Holmes, Robust versus optimal strategies for two-
alternative forced choice tasks. J. Math. Psychol. 54, 230–246 (2010).

	 35.	 F. Lieder, T. L. Griffiths, Resource-rational analysis: Understanding human cognition as the
optimal use of limited computational resources. Behav. Brain Sci. 43, e1 (2020).

	 36.	 J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving (Addison-
Wesley Longman Publishing Co. Inc., 1984).

	 37.	 G. Gigerenzer, R. Selten, Bounded Rationality: The Adaptive Toolbox (MIT Press, 2002).
	 38.	E . Marder, A. L. Taylor, Multiple models to capture the variability in biological neurons and

networks. Nat. Neurosci. 14, 133–138 (2011).
	 39.	T . Biswas, J. E. Fitzgerald, Geometric framework to predict structure from function in

neural networks. Phys. Rev. Res. 4, 023255 (2022).
	 40.	 K. J. Miller, M. M. Botvinick, C. D. Brody, From predictive models to cognitive models:

Separable behavioral processes underlying reward learning in the rat. bioRxiv , 461129
(2021).

	 41.	 P. Krueger, F. Callaway, S. Gul, T. Griffiths, F. Lieder, Discovering rational heuristics for risky
choice. PsyArXiv [Preprint] (2022). https://doi.org/10.31234/osf.io/mg7dn.

	 42.	 W. Młynarski, M. Hledík, T. R. Sokolowski, G. Tkačik, Statistical analysis and optimality of
neural systems. Neuron 109, 1227–1241.e5, (2021).

	 43.	 J. Najemnik, W. S. Geisler, Optimal eye movement strategies in visual search. Nature 434,
387–391 (2005).

	 44.	 A. J. Calhoun, S. H. Chalasani, T. O. Sharpee, Maximally informative foraging by
caenorhabditis elegans. eLife 3, e04220 (2014).

	 45.	 K. S. Brown, J. P. Sethna, Statistical mechanical approaches to models with many poorly
known parameters. Phys. Rev. E 68, 021904 (2003).

	 46.	 A. A. Prinz, D. Bucher, E. Marder, Similar network activity from disparate circuit
parameters. Nat. Neurosci. 7, 1345–1352 (2004).

	 47.	 B. C. Daniels, Y.-J. Chen, J. P. Sethna, R. N. Gutenkunst, C. R. Myers, Sloppiness, robustness,
and evolvability in systems biology. Curr. Opin. Biotechnol. 19, 389–395 (2008).

	 48.	C . R. Gallistel, S. Fairhurst, P. Balsam, The learning curve: Implications of a quantitative
analysis. Proc. Natl. Acad. Sci. U.S.A. 101, 13124–13131 (2004).

	 49.	 M. Rosenberg, T. Zhang, P. Perona, M. Meister, Mice in a labyrinth show rapid learning,
sudden insight, and efficient exploration. eLife 10, e66175 (2021).

group (motif i)≡ argmax
group k

[
prevalence (motif i, group k)

]
(11)

specificity (motif i) ≡1−entropy (pi,k)

=1+
∑

group k

pi,klog pi,k

log ngroups

(12)

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

https://doi.org/10.31234/osf.io/mg7dn

Ma and Hermundstad﻿, Sci. Adv. 10, eadj4064 (2024) 21 June 2024

S c i e n c e A d v a n c e s | R e s e ar c h A r t i c l e

14 of 14

	 50.	 G. R. Yang, M. R. Joglekar, H. F. Song, W. T. Newsome, X.-J. Wang, Task representations in
neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).

	 51.	 S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-maron, M. Giménez,
Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess, Y. Chen,
R. Hadsell, O. Vinyals, M. Bordbar, N. de Freitas, A generalist agent. arXiv:2205.06175 [cs.AI] (2022).

	 52.	 QuantEcon, Quantecon: A high performance open source python code library for
economics (2021); https://github.com/QuantEcon/QuantEcon.py.

	 53.	 M. Bastian, S. Heymann, M. Jacomy, “Gephi: An open source software for exploring and
manipulating networks” in Third International AAAI Conference on Weblogs and Social
Media (Association for the Advancement of Artificial Intelligence, 2009).

	 54.	 Y. Hu, Efficient, high-quality force-directed graph drawing. Math. J. 10, 37–71 (2005).
	 55.	T . Aynaud, python-louvain x.y: Louvain algorithm for community detection (2020);

https://github.com/taynaud/python-louvain.
	 56.	 J. M. Whitacre, Biological robustness: Paradigms, mechanisms, and systems principles.

Front. Genet. 3, 67 (2012).
	 57.	I . Wolfram Research, Mathematica, version 12.3 (2022); https://wolfram.com/

mathematica.

Acknowledgments: We thank R. Mohanta, M. Natrajan, M. Manakov, H. Wang, J. Yan,
D. Deb, A. Stanoev, B. Mohar, S. A. Koay, F. Du, A. Yuan, X. Yang, M. Noorman, and Y. Guo
for valuable discussions, and we thank B. Hulse and V. Jayaraman for helpful feedback on
this manuscript. Funding: This work was supported by the Howard Hughes Medical
Institute. Author contributions: Conceptualization: T.M. and A.M.H. Methodology: T.M.
and A.M.H. Formal analysis: T.M. Software: T.M. Visualization: T.M. and A.M.H. Writing—
original draft: T.M. and A.M.H. Writing—review and editing: T.M. and A.M.H. Competing
interests: The authors declare that they have no competing interests. Data and
materials availability: All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Materials. All code was written in
Python and is available at https://doi.org/10.5281/zenodo.10696745 and https://github.
com/HermundstadLab/ProgEnum.

Submitted 28 June 2023
Accepted 15 May 2024
Published 21 June 2024
10.1126/sciadv.adj4064

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 04, 2024

https://arxiv.org/abs/2205.06175
https://github.com/QuantEcon/QuantEcon.py
https://github.com/taynaud/python-louvain
https://wolfram.com/mathematica
https://wolfram.com/mathematica
https://doi.org/10.5281/zenodo.10696745
https://github.com/HermundstadLab/ProgEnum
https://github.com/HermundstadLab/ProgEnum

	A vast space of compact strategies for effective decisions
	INTRODUCTION
	RESULTS
	DISCUSSION
	MATERIALS AND METHODS
	Behavioral task
	Ideal Bayesian observer
	Optimal Bayesian strategy
	Discretizing the optimal Bayesian strategy
	Selecting task parameters
	Enumerating a complete ensemble of unique programs
	Evaluating program performance
	Mutating between programs
	Tree embedding algorithm
	Comparing tree embeddings
	Efficient search via an evolutionary algorithm
	Behavioral tree embedding algorithm
	Classifying program behavior
	Decomposing behavioral sequences into motifs
	Assigning motifs to behavioral subgroups

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

