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Context, such as behavioral state, is known to modulate memory formation and retrieval, but is usually ignored in associative
memory models. Here, we propose several types of contextual modulation for associative memory networks that greatly
increase their performance. In these networks, context inactivates specific neurons and connections, which modulates the
effective connectivity of the network. Memories are stored only by the active components, thereby reducing interference
from memories acquired in other contexts. Such networks exhibit several beneficial characteristics, including enhanced
memory capacity, high robustness to noise, increased robustness to memory overloading, and better memory retention during
continual learning. Furthermore, memories can be biased to have different relative strengths, or even gated on or off, according
to contextual cues, providing a candidate model for cognitive control of memory and efficient memory search. An external
context-encoding network can dynamically switch the memory network to a desired state, which we liken to experimentally
observed contextual signals in prefrontal cortex and hippocampus. Overall, our work illustrates the benefits of organizing
memory around context, and provides an important link between behavioral studies of memory and mechanistic details of
neural circuits.

SIGNIFICANCE

Memory is context dependent — both encoding and recall vary in effectiveness and speed depending on factors like location
and brain state during a task. We apply this idea to a simple computational model of associative memory through contextual
gating of neurons and synaptic connections. Intriguingly, this results in several advantages, including vastly enhanced memory
capacity, better robustness, and flexible memory gating. Our model helps to explain (i) how gating and inhibition contribute
to memory processes, (ii) how memory access dynamically changes over time, and (iii) how context representations, such as
those observed in hippocampus and prefrontal cortex, may interact with and control memory processes.
Keywords: associative memory, context-dependent gating, recall, continual learning, cognitive control.

Context may refer to a variety of internal or external vari-
ables that an organism has access to1 — e.g., background

sensory information, spatial location, and emotional or behavi-
oral states — that can affect neural processing and cognition2–4.
Memory is no exception to this phenomenon — behavioral
studies have long demonstrated the effects of context on
memory acquisition and retrieval for Pavlovian conditioning5

and free recall6, and there exists several algorithmic models of
context-dependent memory7–9. The underlying neural circuits
that enable context-dependent processing are just beginning
to be explored, with evidence for inhibitory gating10–13 and
contributions from the hippocampus, prefrontal cortex, and
amygdala, which dynamically interact1.

Contextual signals are likely relayed to many brain areas
through top-down signals14–16. Recent evidence suggests a role
for excitation17, but also for different inhibitory cell types in
controlling top-down modulation18,19. Such modulation may
place the network into different states for storage and retrieval
of memory20,21 — e.g., through modulation22, or changes in
the balance of excitation and inhibition23,24. Despite the clear
evidence for such context-dependent state changes, and their
proposed use in models of other cognitive functions25,26, to our
best knowledge they have not yet been included in models of
(auto-)associative memory.

Associative memory is typically modelled using abstract re-
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current networks27, in which each memory is represented by
the co-activation of a set of neurons, forming a cell assembly. In
these models, memory patterns are stored as attractors of the
network dynamics via, e.g., a Hebbian-like learning rule28,29,
in which the connections between neurons with correlated
activity are strengthened. Though the substrate and learning
mechanisms behind memory formation have yet to be fully
uncovered, substantial experimental evidence exists support-
ing the emergence of cell assemblies during learning and for
correlation-based Hebbian plasticity30.

For many associative network models, the number of
stable memories that can be stored scales with the network
size27,31. A standard Hopfield model holds approximately
0.138N memories32 (where N is the number of neurons in the
network), and several extensions and variants have been pro-
posed to account for higher memory capacity or biological
realism27. Among these variants, introduction of more general
learning rules can lead to an increase in the number of stable
memories up to a limit of 2N for memory patterns that activ-
ate half of the neurons33. The introduction of sparsity through
low-activity patterns can further increase this number to more
than 10N for a sparsity of 1% or less34.

However, even these improved models come with caveats,
such as unrealistic assumptions (e.g., non-local learning rules)
or other undesired properties (e.g., blackout catastrophic
interference31,35 — all memories lose stability if the maximum
capacity is surpassed), suggesting that our understanding of
associative memory is still incomplete. Considering sequen-
tial memory storage (continual learning), blackout interference
can be made more gradual by imposing weight bounds, caus-
ing memories to be slowly forgotten27,31 (so-called palimsest
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memories). However, memory capacity is limited in this case,
as old memories are quickly overwritten with new ones36.
Various remedies have been proposed to alleviate forgetting
in artificial neural networks during continual learning, in-
cluding context-dependence and architectural modularity37,38,
but it is unclear how these methods might operate in a more
biologically-realistic setting.

Finally, how accessible each memory is (during recall) may
limit the theoretically achievable storage capacity39,40, which is
often ignored in mechanistic memory models. For example, it
has been posited that some cases of memory forgetting, such
as amnesia, may be partially due to deficits in memory access-
ibility rather than decay of the memories themselves41–43. Here
too, context dependence may control memory expression and
search8,10, for example, by directing retrieval towards particu-
lar memories, through gating or biasing of memory strength44.

In this work, we propose a new class of context-dependent
associative memory models, which we call context-modular
memory networks, inspired by previous theoretical studies37,45

and experimental findings10,12,13,21,39,46. In our model, memor-
ies are assigned to different contexts, defined by a set of active
neurons and connections. We show that this modular architec-
ture results in enhanced memory capacity, as well as robustness
to overloading and continual learning, thereby providing a dir-
ect benefit for organizing memories in contextual categories.
Furthermore, we propose that a separate “context-encoding”
network interacts with the associative memory network, lead-
ing to a model which dynamically gates memory expression.
Our model provides strong evidence for the benefits of context-
dependent memory and draws links between mechanistic cir-
cuit details and memory function which can be tested experi-
mentally.

Results
Inspired by classic models of associative memory27,29,34 we in-
troduce a context-dependent, i.e., context-modular, memory
network (Fig. 1). It consists of a recurrent network of N neurons
which exhibit elevated or suppressed activity levels (taking val-
ues of 1 or 0, respectively; see Methods for details). We define a
set of s contextual states that control the network in the follow-
ing two ways: first, each context may define a corresponding
subset of available neurons (Ncxt of the total N neurons, with
activity level a = Ncxt/N). All other neurons are kept inactive.
We will refer to this type of contextual control as neuron-specific
gating. Second, each context can also define a subset of avail-
able synaptic inputs per neuron (K of the total Ncxt inputs on
average, with connectivity sparseness b = K/Ncxt). All other
inputs are transiently gated off. We call this type of contextual
control synapse-specific gating. A contextual subnetwork may be
defined by neuron-specific gating, synapse-specific gating, or
both. In a given network realization, each context can host a set
of p distinct memories, i.e., patterns in which half of the neur-
ons in the corresponding subnetwork exhibit elevated activity,
chosen randomly. The total number of patterns in the network
is thus P = sp memories. The synaptic connectivity between
neurons is defined using a Hebbian learning rule29 (Methods).
For the majority of this study, we consider networks in which
only one context is active at any given time. The contextual
state is imposed on the memory network by a separate context-
encoding network that dynamically interacts with the memory
network (Fig. 1B).

The gating schemes defined above can be interpreted as tem-
porarily modifying the network such that there is a different
effective connectivity matrix (and energy landscape) for each
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FIG. 1. Schematic of the context-modular memory network. A, Asso-
ciative memory is defined hierarchically through a set of contexts (c1 to
c5) and memory patterns (m1 to m15) assigned to each one. B, Network
implementation: neurons are arranged into contextual configurations
(subnetworks) in two ways: neuron-specific gating, where context is
defined as a proportion of available neurons (colored rings; defined
randomly, spatial localization is illustrative), and synapse-specific gat-
ing, where context is defined as a proportion of gated synapses (red
cross, bottom right inset). Context is controlled by an external context-
encoding network, such that one context is active at a time (black
ring), and memories outside of the active context remain dormant.
C, Contextual configurations change the effective connectivity matrix
of the associative memory network: neuron-specific gating removes
particular columns and rows (left), synapse-specific gating removes
individual elements (center), and together, they will implement both
effects (right).

contextual state. Neuron-specific gating effectively removes
specific rows and columns from the connectivity (Fig. 1C, left),
whereas synapse-specific gating removes individual entries in
the connectivity matrix, thereby making it more diluted, or
sparse (Fig. 1C, middle). The combination of the two produces
a smaller and sparser connectivity matrix (Fig. 1C, right), with
a potentially large number of synaptic connections remaining
hidden, to be used in other contexts. In the following, we
study the properties of these context-modular memory net-
works, and make comparisons with classic associative memory
models29,34.

Neuron-specific gating vastly improves memory capacity.
Starting with the model of neuron-specific gating (Fig. 1C,
left; a ≤ 1, b = 1), we studied memory capacity using estab-
lished signal-to-noise and heuristic mean-field methods27,32.
Memory capacity denotes the maximum number of stable pat-
terns stored in the network, divided by the network size (Meth-
ods). Here, we have two notions of capacity. The subnetwork
capacity is defined as

αcxt = p/Ncxt. (1)
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Thus, αcxt is the number of patterns stored in each subnetwork
(context), p, divided by the number of active neurons in the sub-
network, Ncxt. For simplicity, we impose that all subnetworks
have the same size and store the same number of patterns. The
total network capacity is thus

α = P/N = sp/N = αcxtsa, (2)

which is the total number of patterns, P = sp, divided by the
full network size, N, or equivalently, the subnetwork capacity,
αcxt, times the number of contexts, s, times the subnet ratio,
a = Ncxt/N.

The stability of a memory pattern ν (of context k) can be eval-
uated by estimating the total input that a particular neuron i
receives when this memory is being recalled, denoted as hkν

i .
For large networks storing a random set of patterns, the input
to a neuron in an elevated state is well approximated by

hkν
i ≈ 1 + N

(
0, p/Ncxt

)
+ N

(
0, (s − 1)pa/N

)
≈ 1 + N(0, αcxt) + N(0, αa), (3)

whereN(µ, σ2) is a normally-distributed random variable with
mean µ and variance σ2.

The two normally-distributed terms of Eq. 3 represent two
different sources of noise (crosstalk) in the network connectivity
that interfere with the stability of pattern ν of subnetwork k.
The first term is the noise from the other p−1 patterns of context
k, which scales with the number of patterns per context, p. The
second term represents the noise coming from all of the (s−1)p
other patterns in the other contexts. This term scales with
the total number of other patterns, but also with the relative
amount of shared active neurons, i.e., the subnet ratio, a. If
the memory is stable, then the probability that this neuron will
inactivate should be low (i.e., hkν

i > 0 with high probability).
From this assumption, we arrive at an estimate of the maximum
subnet capacity of

αcxt =
αH

1 + (s − 1)a2 , (4)

with αH ≈ 0.138 being the standard Hopfield network
capacity32 (Hopfield limit).

The intuition gained from the signal-to-noise analysis was
confirmed by a more accurate mean field approach27,32 and
simulations (Methods), shown in Fig. 2A-C. The denominator
in Eq. 4 is always greater than or equal to 1, and so αcxt ≤

αH. Thus, the subnetwork capacity is upper bounded by the
Hopfield limit (Fig. 2A-C, green line & arrow), and decreases as
the number of subnetworks or the subnet ratio increases. This
is because each subnetwork intuitively acts as a standalone
Hopfield network of size Ncxt with p patterns, but with more
noise in the weights due to the influence of the other (s − 1)p
memories. The second term in the denominator of Eq. 4, (s −
1)a2, functions as a measure of the amount of overlap between
subnetworks (explicitly, it is the expected number of additional
contexts that each synapse will participate in).

From Eq. 2 and Eq. 4, we arrive at an expression for the
maximum full network capacity,

α =
αHsa

1 + (s − 1)a2 . (5)

Taking the limit of large s (such that s− 1 ≈ s), the full network
capacity approaches α = αH

√
s ≈ αH/a. It follows that the high

capacity emerges due to the sparsity in the subnetwork repres-
entation, growing sublinearly as a function of the number of
contexts. Furthermore, the optimal subnetwork size for a fixed
number of contexts is a∗ = 1/

√
s − 1.

Mean field results support this analysis: although subnet-
work capacity remains below the Hopfield limit, the total net-
work capacity grows well above αH for many parameter val-
ues (Fig. 2D-F). For example, the capacity of a network with
200 distinct contexts is α ≈ 1.2, almost an order of magnitude
higher than the Hopfield limit. We thus see that the network
as a whole has substantially increased memory capacity, due
to reduced interference between memories found in different
contexts. Importantly, this reduced interference depends upon
the fact that the majority of memories are not retrievable in
each context.

Neuron-specific gating takes advantage of reduced inter-
ference by having low-activity memory patterns, known to in-
crease memory capacity dramatically34. The capacity of the
low-activity Hopfield network is comparable to our network
(Fig. 2E, dashed green line), but only for very low activity
levels with low information content per pattern47. In contrast,
neuron-specific gating enables both high memory capacity and
high information content (Fig. S1).

Synapse-specific gating can further improve capacity. We
next studied networks with synapse-specific gating (Fig. 1C,
middle; a = 1, b ≤ 1), in which each subnetwork contains the
full set of N neurons, but shares only a proportion of weights
with the other contexts. Initially, we chose a random subset
of synaptic weights to be removed for each context. Thus,
each subnetwork can be seen as a diluted Hopfield network27.
Repeating the same analysis as before, the total input coming
into a particular neuron i (of pattern ν in context k) is

hkν
i ≈ 1 + N

(
0, 1

b p/Ncxt

)
+ N

(
0, (s − 1)p/N

)
= 1 + N(0, αcxt/b) + N(0, α), (6)

which again contains two crosstalk (noise) terms. The fact that
the parameter b appears in the first noise term and not in the
second reflects the fact that each individual pattern becomes
less stable with increasing sparsity48, with no benefit across
contexts either. From Eq. 6, we arrive at a capacity per context
of

αcxt =
αHb

1 + (s − 1)b
. (7)

The factor b in the numerator reflects the fact that, even without
multiple contexts, memory capacity degrades roughly linearly
with network dilution27,48. The total network capacity is

α =
αHbs

1 + (s − 1)b
. (8)

In this case, the optimal ratio of inputs per neuron is b∗ = 1,
which is independent of the number of contexts s, and thus
the overall network capacity is bounded from above by αH. In
other words, while synapse-specific gating does enable contex-
tual grouping, the number of stable memories is restricted by
the Hopfield limit. Mean-field results confirmed this intuition
(Fig. S2).

While random synapse-specific gating proves ineffective, we
instead devise a more selective way of imposing synaptic con-
trol. We note here that the Hebbian learning rule (Methods)
sets the synaptic weight between each pair of neurons accord-
ing to the correlation in their activity across all patterns, which
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FIG. 2. Memory capacity of the context-modular memory network with neuron-specific gating. A-C, Mean-field capacity estimation (solid
lines) and numerical simulations (dots) for subnet capacity (αcxt = p/Ncxt), as a function of the number of subnetworks, s (A) for fixed subnet ratio,
a = Ncxt/N, and vice-versa (B), and over the full range of parameters (C; mean field only). Lines plotted in A,B are slices through C indicated
by the colored triangles. Comparison is made with the standard Hopfield network (green). D-F, Same as A-C but for overall network capacity
(full net capacity; α = sp/N = αcxtsa). Memory capacity of the low-activity Hopfield network34 is plotted in E with same activity level aLA = a/2
(turquoise, dashed). N = 10000 for all simulations.

acts to stabilize the majority of patterns27. However, the set
of memories in the active context may produce substantially
different correlations, rendering some synaptic weights inef-
fective at stabilizing the majority of memories in this active set.
Such synaptic weights have a net harmful effect on memory
recall, and performance would improve for some contexts if
these weights were set to zero. We thus propose and test the
following gating scheme: if there is a mismatch between the
sign of the synaptic weight serving to stabilize all memories
versus serving to stabilize memories belonging to a specific
context, then this synapse is turned off for this context (Fig. 3A,
middle). We refer to this scheme as targeted synapse-specific
(TaSS) gating.

Interestingly, TaSS gating bears a resemblance to networks
with binary synaptic weights49, in which the standard Hebbian
learning rule is passed through a sign-function, and weights
are set to +1 or −1. Previous work has shown that such binary
synapse networks maintain a memory capacity of αB ≈ 0.149,
close to the standard Hopfield model (αH ≈ 0.138). We de-
vised a rough estimate of the memory capacity of networks
with TaSS gating (combined with neuron-specific gating) us-
ing this binary synapse capacity combined with an estimate of
the proportion of gated connections (Fig. 3A, right; Methods).

For parameter ranges with high overlap between contexts
(large a and s), we observe that the network connectivity de-
creases to 50% (Fig. 3B-D) – this is because, when enough
“noise” has been added to the weight matrix, each element
will have the desired sign approximately half of the time. In
these parameter ranges, the subnetwork capacity approaches
αcxt ≈

1
2αB ≈ 0.05 (Fig. 3E-G), with the factor 1/2 reflecting

the fact that sparse connectivity degrades capacity roughly
linearly48. The full network memory capacity therefore scales
linearly with the number of contexts (α ≈ 1

2αBsa), growing to
a very large value (α ≈ 8 — up to 60 times that of the stand-
ard Hopfield network for s = 200 contexts, and much higher

than the low-activity variant over similar activity levels, Fig.
3H-J). Furthermore, we also see that the optimal subnetwork
size is a∗ = 1, and so the addition of neuron-specific gating to
TaSS gating does not further increase memory capacity. This
does not, however, render neuron-specific gating useless – for
example, the two schemes have substantial differences in im-
plementational complexity, as discussed next.

Implementational complexity of neuron-specific vs. synapse-
specific gating. Up to this point, we have considered the capa-
city of context-modular memory networks assuming that the
desired active context has already been imposed externally.
However, setting a particular contextual state requires addi-
tional control neurons which synapse onto the memory net-
work in order to gate neurons and synapses. We now investig-
ate how many additional neurons and connections are needed
to implement each contextual gating scheme to determine if
they are feasible. We consider the capacity of a memory net-
work of N = 10,000 neurons with additional “control” neurons,
denoted M, each with on the order of N postsynaptic connec-
tions (Fig. 4).

Neuron-specific control could in principle be implemen-
ted with a strategically-placed inhibitory synapse onto each
neuron of the memory network (Fig. 4A, left; see Discussion
for biological implications). Typically, to realistically code for
s random configurations, the number of control neurons scales
with s27 — e.g., a winner-take-all architecture with a group of
m control neurons per context would require a total of M = ms
control neurons (Fig. 4, light blue), and in the perceptron case
M = s/2 (not shown). However, given the complex and non-
linear nature of real, biological neurons (e.g., single neurons
may behave more like multi-layer neural networks50), there
may be more efficient algorithms for single neuron control. If
we assume the most compressed code for context (requiring
that each context has a unique representation, and 2M activity

Podlaski, Agnes, Vogels (2020) 4 Context-dependent associative memory

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2020. ; https://doi.org/10.1101/2020.01.08.898528doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.898528
http://creativecommons.org/licenses/by/4.0/


Network
architecture

Neuron-
specific
gating

Targeted
synapse-
specific gating

Synaptic weight
distribution

0

50

100

C
on

ne
ct

iv
ity

(%
)

0.0

0.04

0.08

0.12

Su
bn

et
C

ap
ac

ity

0 100 200
0.0

5.0

10.0

Fu
ll

N
et

C
ap

ac
ity

Number of Subnetworks
0.0 0.5 1.0

Subnet Ratio

0

0.5

1.0

0.0

0.04

0.08

0.12

Su
bn

et
C

ap
ac

ity

Su
bn

et
 R

at
io

0 100 200
0

0.5

1.0

0.0

5.0

10.0

Fu
ll

N
et

C
ap

ac
ity

Su
bn

et
 R

at
io

Number of Subnetworks

0

0.5

1.0

0.0

0.5

1.0

C
on

ne
ct

iv
ity

(%
)

Su
bn

et
 R

at
io

B

A

C D

E F G

H I J

0.05
0.1

0.3
0.5

0.7
0.9

Subnet
ratio:

10
50

100
200

Number of
subnets:

x

+

+

sign switch
= gated

0
+-

*

*

context 1 inactive
contexts

Standard Hopfield
Low-activity net 

Pattern
configurations

c1 c2 c3 cscs-1

... ... ... ... ...

...

= 1

= 0
(active)

(inactive)

patterns

gated?

all c1 c2 c3 cs-1...

yes no no

+ - + +

cs

sign of       :

...

FIG. 3. Targeted synapse-specific (TaSS) gating further enhances memory capacity. A, Schematic of TaSS gating (left). The sign of the synaptic
weight for a given pair of neurons (i, j) is compared with the sign of the hypothetical weight considering pattern configurations of each individual
context (middle). Connections are gated if the sign changes. The proportion of gated weights (network connectivity) is estimated analytically
(right, Methods). B-D, Resulting network connectivity following TaSS gating, as a function of number of contexts, s, over fixed subnetwork size, a
(B), and vice versa (C), and over all parameters (D). Lines plotted in B,C are slices through D indicated by the colored triangles. E-J, Numerical and
theoretical capacity estimation for combined subnetwork and targeted synapse-specific gating for a single contextual configuration (αcxt = p/Ncxt;
E-G) and for the full network (α = sp/N = αcxtsa; H-J), plotted as in B-D. Comparison is made with standard Hopfield network (green), and
low-activity variant (dashed turquoise, I).

patterns can be generated with M neurons), a total of s different
contextual subnetworks would require input from a network
of M = log2(s) neurons at minimum (lower bound, Fig. 4, dark
blue; see Methods). For finite-sized networks, neuron-specific
gating requires a non-negligible amount of extra control neur-
ons — a network with N = 10,000 neurons and s = 200 contexts
requires 8, 100, or 4000 control neurons, considering the lower
bound, perceptron-case and winner-take-all (m = 20) repres-
entations, respectively (Fig. 4B-G). Therefore, even assuming
the worst case of our assumptions (4000 extra control neur-
ons), the overall memory capacity (now at α ≈ 0.86 instead of
α ≈ 1.2) is still over six times larger than the Hopfield limit,
and can feasibly be implemented given the known structure of
cortical circuits.

Synapse-specific gating operates on the level of individual

synapses (Fig. 4A, middle), and requires that each of the ap-
proximately N2 synapses in the memory network has a cor-
responding contextual gating synapse for each of the s con-
texts, adding N2s synapses to the network. Assuming that
each neuron can synapse onto at most N other neurons, this
would require M = Ns additional control neurons if imple-
mented naively (Fig. 4, dark orange). As a slightly more ef-
ficient solution modelling each synaptic gate as a perceptron,
we arrive at a limit of Ns/2 (Fig. 4, light orange), meaning
that 2,000,000 control neurons are needed for a network of size
N = 10,000 with 200 contexts. These two scenarios thus require
more context-encoding neurons than memory neurons (Fig. 4B-
G), and diminish the capacity to levels below the Hopfield limit.
Therefore, implementing synapse-specific gating with full and
independent control of each synapse is likely both ineffective
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with standard Hopfield network (green solid lines) and low-activity network with same activity level (aLA = a/2; turquoise dashed lines).

and infeasible. For completeness, we also posit that each syn-
apse is capable of implementing an arbitrary nonlinear gating
procedure, thereby reducing the number of control neurons to
a theoretical limit of log2(Ns) (Fig. 4, lower bound, red). Such a
scheme would retain high memory capacity with relatively few
control neurons — e.g., a network of 10,000 memory neurons
and 200 contexts requires approximately 20 control neurons —
but requires millions of post-synaptic connections per control
neuron.

The complexity of synapse-specific gating can be simplified
considering the extended morphology of the typical pyram-
idal cell, enabling control on a dendritic subunit level (Fig.
4A, right). Recent theoretical work has estimated that cortical
pyramidal cells may have up to 30 dendritic subunits which
can function as quasi-independent electrical compartments51.
Therefore, if synapses are distributed across these different
subunits, it is plausible that synapse-specific gating can be
controlled with on the order of 30 contextual synapses, with
one on each branch. Considering s contextual states, the net-
work would then require approximately 30s control neurons.
Such a gating implementation keeps the required neurons con-
sistently below the network size, and so the memory capacity,

though reduced, still peaks far above the Hopfield limit (now
at α ≈ 6.25 instead of α ≈ 10.0; Fig. 4B-G, purple). However,
in order for branch-specific gating to scale to many contexts,
synapses may need to be clustered (see Discussion). Neverthe-
less, even if the complexity of such context-modular architec-
tures reduce the capacity gains, they have additional benefits
for memory organization in stability, retrieval and continual
learning, as discussed below.

Memory stability is modulated by context. For the valid-
ity of the results presented thus far, it is crucial that as recall
occurs in the active context, memories belonging to inactive
contexts remain gated. We used an established measure of
stability in order to obtain an estimate of the size of each pat-
tern’s basin of attraction, i.e., the area of neural activity space
around a memory pattern for which the activity will converge
to the memory52 (Fig. 5A; Methods). Memories in the act-
ive context exhibit only a modest decrease in average basin
of attraction size compared with the standard Hopfield model
for most parameter ranges of neuron-specific gating (Fig. 5B;
similar for TaSS gating, not shown). For comparison, the low-
activity Hopfield network exhibits a substantial reduction in
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stability as the activity level decreases (Fig. 5B, turquoise).
The average stability of “irrelevant” patterns (memories be-

longing to inactive contexts) increases with the ratio of sub-
network size, but is always lower than that of active patterns
(Fig. 5C). For large subnetwork ratios, TaSS gating improves
performance by making irrelevant patterns less stable (Fig.
5C, dashed lines). Interestingly, for small subnetwork ratios
(a ≈ 0.4 or less), neuron-specific gating without TaSS gating
suppresses irrelevant memories more effectively (Fig. 5C), and
even goes to negative values, suggesting that the network is
actively repelling these memory states. Therefore, the relative
stability of neuron-specific gating alone versus TaSS gating de-
pends upon the subnetwork ratio. Notably, each gating scheme
is more stable than the other in high-capacity parameter ranges
(cf. Fig. 2E and Fig. 3I). This modulation of stability biases the
network dynamics depending on the background context, such
that even for the same initial condition the activity state can be
pushed towards or away from stored patterns (Fig. 5D).

Controlling memory expression via dynamic context switch-
ing. Though it may be beneficial that some memories be inac-

cessible at any given time, we hypothesized that a strong input
corresponding to a memory in an inactive context could cause a
switch to that context. We thus consider the complete memory
architecture by including an additional context-encoding net-
work which dynamically interacts with the memory network
(Fig. 5E). Substantial evidence exists for a representation of
context in the brain1,46, providing experimental support for
such an architecture.

For the purposes of simplicity, we model the context-
encoding network with winner-take-all dynamics. Import-
antly, this network has reciprocal connections with the asso-
ciative memory network – the active context unit provides
inhibition to neurons outside of its corresponding contextual
subnetwork (Methods). Correspondingly, this unit then re-
ceives excitation from neurons inside of the active subnetwork.
This loop keeps the current context and memory active, and
prevents other areas of the network from being activated (Fig.
5E).

We tested the functionality of this network in an example
simulation using neuron-specific gating (Fig. 5F). Here, two
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FIG. 6. Memory overloading and continual learning. A, In memory
overloading (left), extra memory patterns are stored in a subset of con-
texts. In continual learning (right), contexts are learned sequentially,
and synaptic weights are bounded to induce forgetting (Methods).
B, Robustness to memory overloading. Average recall performance,
as measured numerically by the average overlap across patterns and
contexts (Methods) as a function of overload amount (povld/N, where
povld is additional patterns stored after maximum capacity has been
reached). Only a fraction of contexts are overloaded: 10% (top, left),
20% (top, right), 50% (bottom, left), and 100% (bottom, right). Average
recall is plotted separately for overloaded contexts (gray), unaffected
contexts (black), and averaged over all contexts (dashed gray), along
with comparisons to the standard Hopfield network (green) and low-
activity variant (dotted turquoise) with activity level a/2. Parameters:
N = 10,000, a = 0.1, s = 100 (left). C,Continual learning with context-
modular memory networks. Contexts are created sequentially after
every 40 patterns (p = 40, s = 10 total, N = 1000; αcxt = 0.04; vertical
gray dashed lines). Weights are clipped every time a new memory is
added to the network (wi j ∈ [−A,A]; A is indicated in the legends un-
der Weight bounds; Methods). Memory recall is shown for each pattern
in sequential order for neuron-specific (NS) gating (top) and targeted
synapse-specific (TaSS) gating (bottom) versus the standard Hopfield
network.

memories from one context were stimulated sequentially, and
read out from the network. When a memory from a different
context was probed, the context-encoding network suppressed
recall. Only when a stronger input is given does the context
switch, and the corresponding memory was successfully ac-
tivated. Thus, this network architecture allows for dynamic
memory gating, in which memory expression depends on con-
text. We also explored the effects of context deficits in retrieval
by inhibiting the representation of one context, and repeating
the same experiment (Fig. 5G). In this case, the memories of
the inhibited context became virtually inaccessible, despite the
fact that the recurrent weights storing the memories were in-
tact. This provides a potential model of cognitive control of
memory access, as well as deficiencies in memory accessibility,
such as has been hypothesized in some forms of amnesia41,43

(see Discussion).

Memory overloading and continual learning. Associative
memory networks are normally catastrophically affected by
overloading the network with patterns beyond its capacity
(Fig. 6A, left) – so-called blackout interference35 (Fig. 6B, green).
To probe this in context-modular networks, we first loaded
networks with memories up to the maximum storage capa-
city. Then we chose a subset of contexts (10%, 20%, 50%,
or 100%; Fig. 6B) and added additional memories to these
configurations, leaving the others at their maximum capacity.
When simulating recall, we observe that the architecture of
the context-modular memory network makes it resistant to
overloading when applied to a subset of contexts – synaptic
weights are protected from interference when inactive. The
extent of this effect depends upon the number of contexts and
subnetwork ratio.

Despite the improved robustness to memory overloading,
recall performance still declines as more memories are stored.
During continual learning, when memories are added sequen-
tially over time (Fig. 6A, right), catastrophic forgetting can be
attenuated by preferentially remembering the most recently
acquired memories through weight bounds (strong connec-
tions are clipped after each new memory is learned), which is
also more biologically plausible36. In this scheme, more recent
memories will have a large basin of attraction, with a gentle
decay of recall performance for older memories27,31. We im-
plemented sequential memory acquisition in context-modular
memory networks with neuron-specific gating alone (Fig. 6C,
top) and TaSS gating alone (Fig. 6C, bottom), over different
bound sizes (Methods). Memory recall over time is substan-
tially improved for both schemes, suggesting that contextual
gating can also be used to enhance memory retention in con-
tinual learning. Our results thus illustrate the potential be-
nefits of organizing memories around context for storage and
retrieval over long timescales.

Arbitrary and shared context allocation. In reality, it is de-
sirable that memory patterns be accessible in more than one
context (Fig. 7A, top), but in our model thus far, each context
contained a separate, non-overlapping set of memories (Fig.
1A). While neuron-specific gating creates fundamentally dis-
tinct representations for different contexts TaSS gating defines
contexts at the level of active synapses rather than active neur-
ons, and therefore can stabilize identical neuronal activity pat-
terns in different contexts. To test this, we first trained a net-
work with a large number of memory patterns (up to 16N) in
a single context in which all neurons and connections are util-
ized. Next, we assigned arbitrary (and overlapping) subsets of
these memories to be part of new contexts, and determined the
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appropriate contextual configurations, i.e., which connections
should be gated to enable successful memory recall (Meth-
ods; Fig. 1C, middle). This was possible, because all neurons
remained available in each context, even if individual connec-
tions were turned off.

We observed that arbitrary sets of overlapping memory pat-
terns can be reliably retrieved (Fig. 7B), provided that the num-
ber of patterns stored in each context is sufficiently small (0.03N
or less) – performance begins to degrade when the number of
patterns per subnetwork approaches the subnetwork capacity
(see Fig. 3E,F). As before, connectivity decreases as the total
memory load is increased (Fig. 7C). Remarkably, even a net-
work with a random weight matrix (see Methods) can success-
fully be used to represent stable context-dependent memories
(Fig. 7B,C, dotted gray line), provided that the correct TaSS
gating structure is imposed. This is because a random weight
matrix will have, on average, half of its elements with the cor-
rect sign according to the correlation structure of the desired
subset of patterns. This means that TaSS gating can be used to
impose any activity pattern as a stable attractor independent
of the weight matrix – i.e., groups of memories are stored in the
TaSS gating structure. This also suggests that synaptic weights
can be corrupted substantially without affecting performance,
as long as the synapse-specific gating structure remains intact.
Thus, TaSS gating not only allows the network to impose arbit-
rary and overlapping contextual states, but also produces high
robustness to noisy synaptic weights.

Distributions of strengths over memories. Lastly, we ex-
tended the context-modular memory network to allow for
memories to have different strengths in each context, defined
by the memory stability, i.e., basin of attraction size. In other
words, we changed the relative ease of recalling each memory
without gating it completely on or off. Imposing distributions
of memory strengths enables more flexible control. An in-
terpretation of this scheme is to consider that the stability of
a memory in a given context corresponds to how often this
memory is recalled in that context. From this perspective,
memory strength reflects the statistics of the external world,
thereby enabling the brain to optimize memory access in order
to affect behavior, e.g., making decisions more efficiently.

We use TaSS gating in a modified form, in which each par-
ticular pattern’s stability (i.e., its basin of attraction, Fig. 5A)
is manipulated to have a distinct size for each context (Fig.
8A; Methods). As before, we start with a standard Hop-
field network whose weights are defined with the standard
Hebbian learning rule (Methods), which generates memories
with similar stability (Fig. 8B, black lines). Next, in contrast

to normal TaSS gating in which a binary choice of (on and off)
patterns is used to determine the targets of synaptic gating,
patterns are multiplied by an analogue value representing rel-
ative strengths. Following this gating, we can impose arbitrary
distributions of strengths over the set of memory patterns (Fig.
8B; colored lines, for four examples in top and middle). Note
that no explicit learning of synaptic weights is needed to do so.

Such distributions of memory strengths can be used to cre-
ate new contexts as combinations of previously-defined con-
textual states (Fig. 8A,B, bottom). This not only increases the
flexibility of defining contextual states, but also opens the door
towards multi-level hierarchical contextual control with con-
texts at different levels of specificity. For example, let’s say you
are deciding which food to eat on a trip to New York – you can
bias your memory recall by first selecting memories related to
New York, and then selecting memories related to food, thus
leading to a new context with food-related memories in New
York. As a simple test of network functionality with distribu-
tions of strengths, we probed the pattern completion ability
of the network in response to noisy patterns (Fig. 8C, bottom
left). Noise tolerance closely matches the level of stability of the
memories (Fig. 8C, cf. Fig. 8B, bottom), provided the strength
is above a certain baseline. For weak memory strengths, noise
tolerance decreases to zero, as the memories themselves are
in fact no longer stable (Fig. 8C, bottom right). Thus context-
modular associative memory may serve as a powerful archi-
tecture to combine and distinguish groups of memories from
one another.

Discussion
Memory and context are deeply intertwined1,5,6. To understand
the properties and potential benefits of having context mod-
ularity in the brain, we have proposed a novel model of how
context and associative memory interact, called the context-
modular memory network (Fig. 1). The model provides a
mechanistic hypothesis for the basis of context-dependence in
recurrent neural circuits through neuron-specific and synapse-
specific gating.

Relation to other models of associative memory and context
dependence. Context-modular memory networks exhibit en-
hanced memory capacity (Fig. 2, Fig. 3 and Fig. 4) through the
optimized use of sparsity, modularity and hierarchical organ-
ization – principles which have been used in previous asso-
ciative memory models27,34. Modularity has been utilized to
mimic the architecture of the cortex – dense local connectivity
with sparse long-ranged connectivity53–55 – and several other
models have explored a hierarchical organization of memor-
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FIG. 8. Imposing distributions of memory stability. A, Stability
levels of memories within the active context are set with a modified
form of targeted synapse-specific (TaSS) gating (Methods). Contexts
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stability levels in individual contexts (right). Diamond shaped points
represent memory patterns. B, Distributions of memory strength and
context combination for two example networks, with memory stability
measured numerically (N = 1000; p = 80; Methods). Left: each context
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Noise tolerance of combined contexts in panel B measured numerically
(top) by initializing the network in a noisy memory state and running
the dynamics (schematic, bottom left). Noise tolerance is also plotted
as a function of memory stability (bottom right).

ies, in which patterns with common features are stored in a
common representation27,45. Our model bears a resemblance
to these previous models, but is unique in considering context
as the main determinant of memory groupings (and therefore
sparsity), as well as modelling context as an external signal
imposed on the memory network (in contrast to previous hier-
archical models). In addition to the evidence for independent
context representations in the brain1, we chose to separate con-
text because it facilitated the analytical estimation of memory
capacity, and enabled memories to be shared by different con-
texts (as in Fig. 7). Furthermore, while we only considered

a single hierarchical level between context and memory pat-
terns, we speculate that additional levels could be added in
a feedforward or looped architecture. Other models have in-
cluded context-dependence into associative memory (e.g., Do-
boli et al. 56 ), but with different architectures and motivations.

While context-modular networks display high memory ca-
pacity, more recent models also achieve similar capacity27,31,
albeit with differences in learning rules, activity, or architec-
ture. Thus, the context-modular architecture should not be
interpreted solely as a capacity booster — several other prop-
erties of these networks makes them more interesting, e.g.,
robustness to noise, robustness to memory overloading, and
flexible memory access. Additionally, extensions to associat-
ive memory networks that improve memory capacity, such as
low activity patterns34, alternative learning rules33, or com-
plex synapses57 may be incorporated into the context-modular
memory network architecture (e.g., each subnetwork stores
low-activity patterns), thus potentially combining their bene-
fits.

We applied our model of context dependence to associative
memory, but this architecture may be extended or adapted to
other tasks such as context-dependent sensory processing (or
multisensory integration26), decision making, or motor con-
trol, with non-attractor-like dynamics. For example, by apply-
ing a similar neuron-specific gating architecture, recent work
has shown that problems with continual learning in deep ar-
tificial neural networks can be alleviated37. Our model also
bears a resemblance to several behavioral models of temporal
context7,9, supported by experimental evidence for context as a
slowly-drifting process over time58,59. Intriguingly, such mod-
els include a consistent means of introducing new contexts over
time, which could be implemented at the mechanistic level in
our model.

Circuit motifs and cell types involved in gating. There is
substantial evidence for an input gating motif in the brain60,
implemented through detailed inhibitory control of network
state21,61, which has been linked to contextual processing and
learning18,60. The diversity of inhibitory cell types and their
post-synaptic targets provides a rich basis for such gating, with
e.g., parvalbumin-positive interneurons preferentially target-
ing perisomatic regions and somatostatin-positive interneur-
ons targeting dendritic regions62. Alternatively, neuron-
specific gating could be implemented through excitatory con-
trol – e.g., neurons may be in a suppressed state by default, and
only participate in recall if they receive extra contextual excit-
ation – supported by recent work showing that baseline shifts
modulate free recall17. Finally, recent evidence suggests that
gain or excitability changes in individual neurons may play
a role in memory allocation63–66, and computational work has
applied this idea to motor learning22 and sequence learning67.
Experimental evidence suggests that around 10− 30% of neur-
ons are allocated for a given engram in the amygdala and
hippocampus65, which would correspond to an area of high
capacity in our model of neuron-specific gating.

Neuron-specific versus synapse-specific gating. Neuron-
specific and synapse-specific gating have their advantages and
limitations in terms of memory capacity, complexity, and flex-
ibility. Synapse-specific gating is inherently more flexible, with
many more degrees of freedom (neuronal gating can be seen
as a special case of synaptic control, in which all synapses of a
given neuron are gated), which is reflected in the larger gains
in memory capacity (Fig. 3). However, such a scheme suf-
fers from an expansion in complexity of control, as reflected in
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the fact that “harmful” synapses need to be precisely targeted.
Targeted synapse-specific gating thus requires many more (ex-
ternal) neurons to implement contextual control (Fig. 4), and
it is unfeasible if each synapse is required to be fully and in-
dependently controlled (though some experimental evidence
exists for individual inhibitory control of dendritic spines68).

Subunit (dendritic branch) specific control represents a more
realistic option, lying somewhere on the continuum between
neuron-specific and synapse-specific control. Recent theoret-
ical work suggests that cortical pyramidal neurons may have
around 30 independent subunits51, which could be targeted
according to contextual states. However, we note that having
only 30 subunits compared to single-synapse control may limit
the maximum number of achievable contexts. We speculate
that the most efficient scheme may require taking advantage
of multiple connections per pair of neurons69 as well as clus-
tering of synaptic inputs70 based upon context. An additional
benefit of synapse-specific gating is that it enables arbitrary
context allocation (Fig. 7) and control of memory strength (Fig.
8). This flexibility may enable learning of a particular statistical
distribution in the memory patterns, thus reflecting relation-
ships between memory items in the world, or their relative
values44,71. While we did not explore more flexible versions
of subnetwork gating here, a more clever choice of subnet-
work assignments could result in larger capacity or additional
flexibility (e.g., shared memories by including more overlap
between particular subnetworks).

The learning problem. Due to the complexity differences in
subnetwork gating and targeted synapse-specific gating, these
schemes will also likely require very different learning pro-
cedures. Learning the memory patterns themselves should
be feasible considering the local, correlation-based Hebbian
learning rule. Furthermore, random subnetwork gating could
be imposed before learning the memory patterns, or indeed
after memory patterns have been learned by removing neur-
ons from the representation. Targeted synapse-specific gating
relies upon a comparison between the overall synaptic weight
of a pair of neurons and the hypothetical weight considering
only a single context (Fig. 3), thus making it more complex.
However, context may be a slow-changing process in time72

with discrete shifts73. Therefore, the pair of neurons may be
able to sample enough patterns to estimate their correlation
within the currently active context and compare it with the
anatomical weight value.

We found that synapse-specific gating endows a network
with a tremendous amount of noise tolerance (Fig. 6), to the
point where a random connectivity matrix can be used to re-
trieve memories provided the contextual configurations are
maintained (Fig. 7). These results predict that local recurrent
connections may vary quite substantially over time as learning
occurs with little detriment to memory performance, consistent
with recent data on the volitility of synaptic spines74. Given
that contextual modulation is likely transmitted through in-
hibitory neurons, this idea resembles recent theoretical work
proposing that inhibitory connectivity is responsible for main-
taining information over time in the cortex75.

In addition to short timescale learning dynamics, context-
dependence may also vary over development. A previous ex-
perimental study suggested that infantile amnesia arises due
to a retrieval failure43. In relation to our model, this may imply
that a contextualization of memories may be learned and im-
posed only later on in life, resulting in early memories becom-
ing inaccessible. However, other work suggests that contextual

binding of memories decays over time76, suggesting that some
types of memories may also become more general over time.

Capacity vs. accessibility. Our model displays an inverse rela-
tionship between capacity and accessibility, as large increases
in capacity are achievable provided that the vast majority of
memories are not accessible at the same time. This trade-off
may be viewed as a limitation of the model However, restrict-
ing memory access may also be seen as a benefit, considering
that the main purpose of storing memories can be understood
as to influence decision making8,77–79. We hypothesize that
dynamic control of memory availability may act as an efficient
means of tree searching through memories, enabling the brain to
select which memories are currently relevant in order to make
faster decisions. In this light, the incorporation of additional
layers to such a contextual memory hierarchy may add further
benefits. Overall, the integration of associative memory mod-
els with retrieval processes and decision making is a promising
area of future research.

Furthermore, our model provides a direct mechanistic basis
for memory failure due to loss of accessibility rather than
forgetting39. Such a hypothesis has been put forth in the context
of different types of amnesia39,42,43. Therefore, our model may
have specific implications for the understanding of memory
access in healthy and disease states.

Hippocampus, prefrontal cortex, and context representa-
tions. While we present the context-modular memory network
as a generic architecture without explicit mention to brain areas
and circuits, evidence suggests that contextual signals interact
with cortical memories through the hippocampus, prefrontal
cortex, and amygdala1,13,80–84. For example, a recent study finds
evidence of inhibitory control of cortical memories through the
hippocampus13, providing direct support for a neuron-specific
(Fig. 2) or synapse-specific (Fig. 3) gating motif in the cortex.
Some work indicates that hippocampus and prefrontal cortex
may play similar and complementary roles in memory retrieval
– either that the hippocampus control recent memories and the
prefrontal cortex more remote memories85, or that prefrontal
cortex handles active retrieval through executive control, and
hippocampus handles more automatic retrieval86. Both hypo-
theses suggest that there may be multiple context-encoder-like
networks in the brain. Alternatively, the modularization intro-
duced here is a natural candidate mechanism for pattern separ-
ation, which is commonly attributed to the dentate gyrus in the
hippocampus87, and could act to control contextual memories
in CA388 similar to previous models56. For each of these cases,
our work functions as a useful conceptual model for how to
begin studying the underlying circuits of each of these systems.

Materials and Methods

Detailed methods can be found below (after references).

Software and code availability

Code will be made available upon publication.
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Methods of

Context-modular memory networks support high-capacity, flexible, and robust
associative memories

William F. Podlaski, Everton J. Agnes, and Tim P. Vogels

Materials and Methods

Model formulation. The context-modular memory network model is a fully connected recurrent network of N binary neurons
denoted Vi for neuron i, and taking values {0, 1}. The modular architecture defines s contextual states, each with a corresponding
set of active neurons Ncxt ≤ N, chosen uniformly at random. We use Sk to denote the set of active neurons in contextual state k.
We also define a = Ncxt/N as the ratio of subnetwork to full network size, which is also the probability that each unit takes part in
any given context.

Furthermore, each contextual state also determines a particular set of active inputs per neuron. We explore two variants of
this type of contextual control – one random and one algorithmically targeted (see section on Targeted synapse-specific gating). In
the first case, active inputs are chosen randomly with probability b = K/Ncxt, such that each neuron receives K ≤ Ncxt inputs on
average. We define a symmetric matrix Ck with elements ck

i j = ck
ji = 1 if connections i j and ji are present in contextual state k, i.e.,

Pr(ck
i j = 1) = b and Pr(ck

i j = 0) = (1−b). Given the symmetry of the standard Hopfield model, we only consider input configurations
which are also symmetric.

Importantly, at any given time, only one contextual state is “active”. Considering contextual state k is active, the dynamics of
each unit in the network are defined as

Vi = H(hi) =

H
(∑

j ck
i jwi jV j − θk

i

)
if i ∈ Sk,

0 otherwise,
(9)

where H(·) is the heaviside step function, hi is the total input to unit i, wi j is the synaptic weight between neurons i and j
(symmetric), and θk

i is the threshold for neuron i when contextual state k is active (defined below).
The network stores p memory patterns per contextual state, making P = sp total memories. Memory patterns are denoted ησµi

as the configuration of neuron i for memory µ of state σ, taking values {0, 1}with equal probability provided unit i is in Sσ, and 0
otherwise. The connectivity matrix is defined using a variant of a “Hebbian” learning rule29,34

wi j =
8

bNcxt

s∑
σ=1

p∑
µ=1

cσi jη̃
σµ
i η̃

σµ
j , (10)

where

η̃σµi =

ησµi −
1
2 if i ∈ Sσ,

0 otherwise.
(11)

Note that the factor 1/bNcxt in Eq. 10 ensures that the average total synaptic input to each neuron is around unity regardless of the
choice of b48 (see Signal-to-noise analysis below). The threshold is defined as

θk
i =

1
2

∑
j∈Sk

ck
i jwi j. (12)

This choice of threshold, along with the factor 8 outside of the sum in Eq. 10, ensures that this model is equivalent to the standard
Hopfield model with {±1} units (see Supplementary methods for further elaboration). Note that this threshold is different for each
neuron and also changes with the contextual state of the network, whereas the connectivity matrix remains constant, with some
weights being effectively set to zero through the ck

i j terms in Eq. 9.
The activity level, or coding level, of the patterns denotes the fraction of active neurons for any given pattern. We define two

measures of activity level – per individual context, and for the network as a whole. The activity level per individual context is set
to 1/2, since each pattern unit is chosen to be 0 or 1 with uniform probability. The activity level as defined from the perspective
of the entire network is aLA = a/2 (“LA” for low-activity, see the following section), where a is the relative subnetwork size. We
note that for the sake of analysis, we impose that all subnetworks contain the same number of active neurons and store the same
number of memory patterns, though this is not necessary in practice.

Comparison with standard Hopfield network and low-activity network. We compare the results obtained in this study with
that of the standard Hopfield model29,32, as well as a standard variant with low-activity patterns34. For these models, we consider
a fully connected network of N neurons which store a set of P memory patterns. Again, units in these networks are binary and
take on values {0, 1} (see Supplementary Methods for a comparison of {0, 1} and {±1} formulations). Patterns are denoted ηµi ∈ {0, 1}
with Pr(ηµi = 1) = aLA and Pr(ηµi = 0) = (1 − aLA), where aLA is the activity level.
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Dynamics of both models are as follows

Vi = H

 N∑
j=1

wi jV j − θi − θ0

 , (13)

where wi j is the connectivity matrix defined using the “Hebbian” rule34

wi j =
1
N

N∑
µ=1

(
ηµi − aLA

) (
ηµj − aLA

)
, (14)

θi is a neuron-specific threshold, defined as
θi = aLA

∑
j

wi j, (15)

and θ0 is a constant threshold defined as
θ0 = aLA(1 − aLA)2

− a2
LA(1 − aLA). (16)

The standard Hopfield model is obtained by setting aLA = 1/2, which then makes θ0 = 0.

Several previous works have studied the theoretical memory capacity limits of these networks32,34. For the standard Hopfield
model with a Hebbian learning rule, this is approximately αH = P/N ≈ 0.138 (in the zero temperature limit). For the low-activity
model, capacity scales with the activity level as:

αTF(aLA) =
1

2aLA| ln aLA|
, (17)

for aLA � 1 (“TF” stands for Tsodyks-Feigelman34). The comparison with the context-modular memory network is only relevant
at intermediate activity levels, where this estimate does not hold. We thus use numerical simulations to obtain a more accurate
estimate of memory capacity (Fig. S3).

Analytical capacity estimation. In the following, we adapt a signal-to-noise analysis and a heuristic mean-field theory of memory
capacity for the standard Hopfield network27,35,89 to the case of the context-modular memory network.

Wald’s equation. We will make use of a result in statistics known as Wald’s equation90, which we summarize here. Consider a
Binomial random variable K ∼ B(NK, pK). Let Y be the sum of a sequence of independent identically distributed random variables
Xi of length K, i.e., Y =

∑K
i=1 Xi. Assuming that each Xi is independent of K, then the mean and variance of Y can then be written as

E[Y] = E[K]E[X] (18)

and
Var[Y] = E[K]Var[X] + (E[X])2Var[K], (19)

where we have dropped the index on X because each random variable Xi comes from an identical distribution.

Signal-to-noise analysis. We aim to estimate the stability of an arbitrary neuron i with respect to a particular pattern ν of context k,
ηkν

i , which generalizes to ensuring that H(hkν
i ) = ηkν

i , where hkν
i is the total input to neuron i when the network’s state is exactly at

pattern ν of context k (i.e., this neuron will not change activity, given the input it receives at the stored pattern state). Plugging
Eqs. 10 and 12 into Eq. 9, we obtain

hkν
i =

N∑
j=1

ck
i jwi jη

kν
j − θ

k
i =

N∑
j=1

ck
i jwi j(ηkν

j −
1
2 ) (20)

=
8

bNcxt

N∑
j=1

ck
i j

∑
σ

∑
µ

cσi jη̃
σµ
i η̃

σµ
j

 η̃kν
j (21)

= 2η̃kν
i +

8
bNcxt

N∑
j=1

∑
µ,ν

ck
i jη̃

kµ
i η̃

kµ
j η̃

kν
j +

8
bNcxt

N∑
j=1

∑
σ,k

N∑
µ=1

ck
i jc
σ
i jη̃

σµ
i η̃

σµ
j η̃

kν
j (22)

The right two terms in Eq. 22 are two different “crosstalk” terms that may disrupt the stability of memories. The first one is
analogous to the standard Hopfield crosstalk term27, and accounts for other patterns stored in the same context. The second term
accounts for patterns stored in different contexts. We expect patterns stored in the same versus different subnetworks to affect
stability differently, which will become apparent in the next section. As shown in Eq. 3 and Eq. 6, if the desired state of neuron i
is 1 (2η̃kν

i = 1), then we see that this state will be stable providing that the sum of the two crosstalk terms are greater than −1.

The input described in Eq. 22 depends upon the actual value of η̃kν
i , which complicates the analysis. In order to generalize to

the case in which the desired state of the neuron can be either 0 or 1, we follow Hertz et al. 27 and multiply Eq. 22 by −2η̃kν
i , turning
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the first term into −1. We now study the effect of the two crosstalk terms by considering the quantity

Ckν
i , −

16η̃kν
i

bNcxt

N∑
j=1

∑
µ,ν

ck
i jη̃

kµ
i η̃

kµ
j η̃

kν
j −

16η̃kν
i

bNcxt

N∑
j=1

∑
σ,k

N∑
µ=1

ck
i jc
σ
i jη̃

σµ
i η̃

σµ
j η̃

kν
j (23)

which is the two crosstalk terms from Eq. 22 multiplied by −2η̃kν
i . We can now define the probability that any given bit will flip as

Perr = Pr
(
Ckν

i > 1
)
. (24)

The aim is now to approximate the two terms in Eq. 23 with Gaussian random variables.
Let’s start with the first term. We first notice that ck

i j ∈ {0, 1} will set some terms in the sum to zero. The four pattern variables,

η̃kν
i η̃

kµ
i η̃

kµ
j η̃

kν
j , combined with the total factor of 16 outside of the sum, act as a shifted and scaled Bernoulli random variable that

takes on values ±1 with equal probability. This sum can be interpreted as a random sum of random variables of the form
Y = 1

bNcxt

∑K
i=1(2Xi − 1), with K ∼ B(Ncxt(p− 1), b) and Xi ∼ Bern( 1

2 ). Since this is a sum of Bernoulli random variables, we know that
it will take the form of a Binomial distribution. We can then use Wald’s equation (see above section) to determine the statistics of
this distribution. Given the symmetry of the Bernoulli random variables (±1), it is easy to see that E[X] = 0 and thus E[Y] = 0. We
use Eq. 19 to estimate the variance of Y, first ignoring the factor 1

bNcxt
, to obtain Var[Y] = E[K]Var[(2X− 1)] = Ncxt(p− 1)b. Dividing

by bNcxt, we obtain Var[Y] =
p

bNcxt
= αcxt

b .

The second term can now be approximated analogously to the first. It again takes the form Z = 1
bNcxt

∑K
i=1(2Xi − 1), but now

with K ∼ B(Ncxt(s − 1)p, b2a2) and Xi ∼ Bern( 1
2 ). The reason for the form of K in this term is that now we have both ck

i j and cσi j,
independent and each with non-zero probability b, as well as η̃σµi and η̃σµi , each with non-zero probability a (see Eq. 11). The mean
of the resulting distribution is again zero, but now the variance is Var[Z] =

(s−1)p
N a = αa.

Since the two Binomial distributions Y and Z are symmetric and feature a large number of trials, they are well approximated
by Gaussian distributions. Plugging these two approximations into Eq. 23 gives us

Ckν
i ≈ N

(
0,

p
bNcxt

)
+N

(
0,

(s − 1)p
N

a
)

= N
(
0,
αcxt

b

)
+N (0, αa) (25)

= N
(
0,
αcxt

b
+ αa

)
(26)

We can now obtain a rough estimate of the memory capacity by ensuring that Perr remains low27. Alternatively, we can also
fomulate the memory capacity in terms of the standard Hopfield model, in which the crosstalk takes the form of a single Gaussian
centered around zero with variance αH ≈ 0.138 (see Appendix). We thus set the variance of Eq. 26 equal to that of the standard
Hopfield model

αcxt

b
+ αa = αH. (27)

Rearranging terms, and using the relationship α = αcxtsa, we arrive at the relationship

αcxt =
αH

1
b + (s − 1)a2

. (28)

This equation applies generally for cases of arbitrary numbers of contexts s, relative subnetwork size a and relative input size b.
To obtain the expression for context modulation by neuron-specific gating only (Eq. 4), we set b = 1, and for context modulation
by synapse-specific gating only (Eq. 7), we set a = 1. Finally, to obtain an expression for the full network capacity α, we need to
multiply Eq. 28 by sa (Eq. 5 and Eq. 8).

Information content. The information content of the standard Hopfield model can be calculated as the total entropy (average
Shannon information) across all patterns in the following way33. Considering that each neuron of each pattern is randomly chosen
to be 0 or 1 with probability 1

2 , the entropy of each bit of each pattern is equal to the binary entropy function evaluated at 1
2 , which

we will denote HB( 1
2 ). Multiplying this by the number of neurons in each pattern, and the number of patterns, we arrive at the

total entropy across all patterns
IH = NpHB

(
1
2

)
= N2αH. (29)

This can be extended to the low-activity variant of the Hopfield network simply by replacing αH in the equation above with
the corresponding low-activity capacity for a particular activity level aLA: αTF(aLA) (see section Comparison with standard Hopfield
network and low-activity network), and evaluating the binary entropy function at the activity level aLA. Together, this means that the
information content of the low-activity Hopfield network for activity level aLA is

ITF = NpHB(aLA) = N2αTF(aLA)HB(aLA). (30)
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For the context-modular network with neuron-specific gating, we consider the following. For each subnetwork with Ncxt
neurons, there are 2Ncxt possible patterns, each equally likely, leading to an information content of

Iµ = − log2

(
1/2Ncxt

)
= Ncxt log2(2) (31)

for each pattern. Multiplying this by the number of patterns, we obtain

I = spIµ = spNcxt log2(2) = spNcxtN2/N2 = N2αa. (32)

We can write this as a ratio with the information content of the standard Hopfield network to obtain

I
IH

=
N2αa
N2αH

=
αa
αH
. (33)

Note that this equation for information content also holds for targeted synapse-specific (TaSS) gating, with the only difference
being that the memory capacity α is different with and without TaSS gating.

Mean-field theory. The memory capacity of the context-modular memory network was calculated using established mean-field
methods27,32,89. See supplementary methods for details.

Targeted synapse-specific gating. Targeted synapse-specific (TaSS) gating was implemented algorithmically in the following way.
Given a context-modular memory network with parameters N, s, a, and p, we define the full weight matrix W from Eq. 10. We also
define the hypothetical isolated weight matrix for each individual context k considering only patterns assigned to that subnetwork
as W̃k. The resulting weight matrix for each context after applying TaSS gating is

Wk = Dk
�W, (34)

where Dk is a binary matrix of zeros and ones (with elements dk
i j), defined as

dk
i j =

0 if
(
wi jw̃k

i j

)
< 0

1 otherwise
(35)

and � is the Hadamard product (element-wise product). This algorithm ensures that for each context k, the sign of each weight
wk

i j will reflect the correlation between neurons i and j over patterns in context k, but not over all other patterns.

This selective input gating substantially complicates the analytical methods for memory capacity estimation. Considering Eq.
23, it is now the case that the two crosstalk terms are no longer independent. We instead propose a means of obtaining a rough
estimate of the memory capacity with TaSS gating by comparing the network to results from Hopfield networks with binary
weights27,49 (see main text). Essentially, when overlap is low (a < 0.1 and s < 10), no connections are gated (full connectivity), and
each subnetwork has a capacity close to the standard Hopfield network (αH ≈ 0.138). However, when there is a large amount of
overlap between contexts (e.g., a > 0.5 and s > 100), connectivity drops to 50%, and each subnetwork is well approximated by a
Hopfield network with binary synapses (αB ≈ 0.127), scaled linearly by the sparsity (Eq. ??). Therefore, to a first approximation, we
can estimate the capacity in between these extremes by linearly interpolating between αH and αB as a function of network sparsity,
f (s, a), which denotes the estimated network connectivity following synapse-specific gating. This capacity estimate can be written
as αcxt ≈ cHαH + (1 − cH)αB, where cH = 2 f (s, a) − 1 indicates how much the network behaves like a standard Hopfield network,
and (1 − cH) = 2(1 − f (s, a)) denotes how much the network behaves as the network with binary weights. This interpolation then
can be linearly scaled by the sparsity, f (s, a) to obtain

αcxt ≈ f (s, a)
(
[2 f (s, a) − 1]αH + 2[1 − f (s, a)]αB

)
, (36)

The expected amount of sparsity, f (s, a), for each contextual configuration can be estimated assuming that the weight distri-
butions for a single context and across all contexts are Gaussian with zero mean and variances proportional to the amount of
crosstalk that they contribute. Given this, the probability that a particular weight will be removed can be approximated as:

Pr(wi j ← 0) =

∫
∞

0

1√
2πσ2

1

exp
(
−

x2

2σ2
1

) ∫
∞

x

1√
2πσ2

A

exp
(
−

y2

2σ2
A

)
dydx (37)

=
1

2π
arctan (σA/σ1) , (38)

where σ2
1 is the variance of the weight distribution for a single context, and σ2

A is the variance of the weight distribution across all
contexts. Based on the mean field results described below (see Eq. 105), we can approximate σ2

1 and σ2
A as αcxtr and 1

2αrn(a +α+ a2),
respectively. We compare this estimate with numerical simulations in Fig. 3B,C, where f (s, a) = 1 − Pr(wi j ← 0).

Inclusion of complexity factors in capacity estimation. We consider the addition of context-encoding neurons in the estimation of
memory capacity in order to make a fairer comparison with other networks. To do so, we simply multiply the original capacity
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equations (Eq. 1 and Eq. 2) by a factor N/(N + M), where M is the number of context neurons. This converts the subnet capacity to

α̃cxt = αcxt
N

N + M
=

p
Ncxt + aM

(39)

and the full network capacity to

α̃ = α
N

N + M
=

sp
N + M

. (40)

Importantly, we assume that each neuron should have on the order of N pre- and post-synaptic connections, with an absolute
maximum of N for both cases. We refer to the main text as discussed in the results for more details about each individual case for
M.

Numerical simulations. We briefly describe the details of all numerical simulations here. More information can be found in the
supplementary methods. Code was written in C++ with the help of Armadillo, a linear algebra library91.

Memory capacity was estimated numerically by building finite-sized networks (N = 10000) initialized with a set of random
patterns, connectivity and thresholds as defined above in section Model formulation. Dynamics were run synchronously according
to Eq. 9, i.e., all units were updated simultaneously. Synchronous dynamics were chosen for efficiency reasons despite potential
convergence issues. To test stability of the patterns, we initialized the network in each memory state and simulated the dynamics
until they either reached a steady-state or they reached the maximum number of allowed time steps (100). We then calculated the
overlap of the network state with the original pattern state as:

mσµ =
4

Ncxt

∑
i

η̃σµi

(
Vi −

1
2

)
, (41)

where mσµ
∈ [−1, 1] (mσµ = 1 when the state is sitting exactly at the pattern, and mσµ = 0 when it is uncorrelated with the pattern).

This was done for all patterns in a particular subnetwork to obtain an average overlap m̄σ = N−1
cxt

∑
µ mσµ. A small amount of noise

was allowed in the overlap, such that memory retrieval was deemed successful as long as m̄σ
≥ 0.9792.

Binomial test of proportions. Due to the finite network size, random choices of patterns may have non-zero correlations, which affects
recall performance (weight correlations scale as 1/

√
N). This may lead to networks which are able to store a larger or smaller

number of patterns (relative to network size) stably compared to a network storing patterns with absolutely zero correlations.
We thus ran several trials for each configuration and treated the average overlap from each trial as an estimate of the parameter
pm from a Binomial distribution. The average overlap was corrected to fall between 0 and 1, such that the estimate of pm was
formulated as: p̂m = N−1

tr

∑
n

1
2 (m̄n + 1), where Ntr is the total number of trials. To determine the maximum number of patterns, we

used a Binomial test of proportions with test statistic

T =
p0 − p̂m√

p0(1 − p0)/Ntr

, (42)

where p0 = 0.97 is the cutoff value. The p-value for this test was set to 10%, such that the overlap was considered too low if
T > 1.281. This allowed us to obtain a more accurate estimate of the average overlap with fewer trials. For all simulations shown
here, Ntr = 10.

Estimating capacity from a single subnetwork. To further speed up numerical simulations, we also took advantage of the fact that
all contextual configurations in the context-modular Hopfield network should be identical in memory storage properties. We
therefore constructed a single contextual configuration and then mimicked the effect of the other contexts by adding noise to the
weight matrix in the following way

wi j =
1

Ncxt

Ncxt∑
µ=1

ci jη̃
µ
i η̃

µ
j + 1

Ncxt

(
δ − p

2

)
, (43)

with

δ =

B
(
p, 0.5

)
with Pr = a

0 otherwise,
(44)

where B(nB, pB) is a binomial distribution with parameters nB and pB.

We confirmed the equivalence of this method with the simulation of all contextual configurations, and the two methods
correspond well for most parameter ranges (not shown).

Robustness to noise. Robustness to noise was measured using so-called stability parameters52. We adapt this notion here, and
write the stability parameter of a particular pattern ν of a context k, for neuron i as

κkν
i =

2hkν
i η̃

kν
i

|W|i
, (45)
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where

|W|i =

 N∑
j=1

W2
i j


1/2

(46)

We average this across all neurons and patterns to obtain the average stability parameter κ.

Dynamic gating model. The dynamic memory gating model (Fig. 5E,F) featured an associative memory network with N = 1000
units (again denoted Vi). The network was composed of s = 10 contexts, each defined by a subnetwork of Ncxt = 200 neurons,
storing p = 10 random patterns each. Note that we do not consider sparse connectivity (and so b = 1), and targeted synapse-specific
gating was not applied to the network.

The memory network was connected to a second network of s context-encoding units, denoted ck for unit k, corresponding to
context k. Units in both networks are binary, taking on values of 0 and 1. Finally, we found it necessary to add a third component,
which was a global inhibitory neuron, denoted by y, which provides inhibition proportional to the population activity in the
memory network (similar to Brunel 93 ). We also defined a linear readout for each memory of each context, denoted zkν for the
readout for pattern ν of context k.

The connectivity matrix for the memory network, denoted wMM
ij (for units i and j; M for memory), was defined according to the

Hebbian rule in Eq. 10.
Connectivity from the memory network to the context-encoding network was defined as:

wCM
kj =

1.5/Ncxt if j ∈ Sk,

0 otherwise,
(47)

which means that memory units that belong to context k will excite context unit k. The connectivity from the context-encoding
network back to the memory network was defined as

wMC
ik =

4max
ν

(∑
j wMM

ij ηkν
j

)
if i < Sk,

0 otherwise.
(48)

Context units will inhibit memory neurons outside of their corresponding subnetwork proportional to the maximum activation
that these memory units receive across all patterns in that context (the factor of 4 was added for stability purposes). This ensures
that these neurons remain in the suppressed state.

The recurrent connectivity of the context-encoding network was implemented as

wCC
kl =

0.4 if k = l,
−maxν

∑N
i=1 wCM

ki η
lν
i otherwise,

(49)

which means that a particular context unit l will inhibit other context units proportional to the maximum input they receive across
all patterns in context l. This ensures that the dynamics in the context-encoding network are approximately winner-take-all. The
global inhibitory neuron, y, has a synaptic weight of wMG = 0.05 for all memory units.

Finally, output connectivity was defined as
wOM

kνi = ηkν
i (50)

Dynamics for the memory network were defined as:

Vi(t + 1) = H

 N∑
j=1

wMM
ij V j(t) −

s∑
j=1

wMC
ij c j(t) − wMG y(t) + Ii(t)

 , (51)

where H(·) denotes the heaviside step function, Ii(t) is the time-dependent input to unit i, and t denotes the time step. For the
context-encoding network, dynamics were implemented as:

ci(t + 1) = H

 s∑
j=1

wCC
ij c j(t) +

N∑
j=1

wCM
ij V j(t) − θc

 , (52)

where θc is a threshold set to 0.5. Finally, the global inhibitory neuron, y, was implemented as a linear neuron, defined as:

y(t + 1) =
1

Ncxt

N∑
j=1

V j(t). (53)

Memory overloading and continual learning. Memory overloading experiments were carried out numerically for networks of
size N = 10000. Networks were trained at maximum capacity, as determined numerically. Then, a subset of contexts, denoted
as “overloaded” contexts, were allocated additional memories, divided equally among the overloaded contexts, and making
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up 10%, 20%, 50% or 100% of the total number of contexts. Performance was assessed numerically by measuring the average
memory recall, as described above. In Fig. 6B, performance is plotted as a function of “overload amount”, which is the number
of additional overloaded memories divided by the network size, such that an overload amount of 1 indicates that N additional
memories past the maximum capacity were stored in the network. Comparisons are made with the standard Hopfield network
and low-activity Hopfield network, in which additional memories were stored in the standard way.

Continual learning experiments were also done numerically, for networks of size N = 1000. In this setting, memories were
trained sequentially (following Eq. 10, but with the sum over patterns only including a single pattern), with an additional clipping
step (threshold parameter A) following the storage of each new pattern. The clipping step is described as follows:

wi j =


A if wi j > A
−A if wi j < −A
wi j otherwise

(54)

Additionally, contexts were defined sequentially, and changed more slowly than the memory patterns themselves. Importantly,
it was assumed that contexts were noiseless and did not deteriorate as new memories were added. Memory performance was
again measured as above, and averaged over 20 independent trials.

Arbitrary context allocation. A context-modular memory network with TaSS gating and no neuron-specific gating (a = 1) was
trained with an overall number of memory patterns, i.e., as a single context (Fig. 7). Following this, contexts were assigned by
choosing an arbitrary group of memory patterns (with replacement), and the appropriated targeted gating configuration was
determined as defined above (as in Eqs. 34 and 35). This was done for various numbers of memory patterns per context, and
memory recall performance was measured numerically. Importantly, this means that a single memory pattern could be found in
multiple contexts.

Distributions of memory strengths and noise tolerance. A modified TaSS gating scheme was devised in order to assign memory
strengths for each pattern (Fig. 8). In a standard Hopfield network, all stored patterns have roughly equal stabilities (Fig. 8B,
black lines). We then define a set of strong memories, whose stabilities are larger than the standard Hopfield network, and a set of
weak memories, who stabilities are less than the standard Hopfield network. In the examples shown, one quarter of the memory
patterns is strong, one quarter is weak, and one half remains close to the standard Hopfield network.

As a proof of concept, we generated two classes of distributions of strengths for the strong and weak memory patterns: one
class with sequential strengths (contexts “A” and “B” in Fig. 7B,C, left) and another with discrete values (contexts “C” and “D” in
Fig. 7B,C, right). The set of strong and weak memories in context k are denoted T S

k and TW
k , respectively. Memories in the strong

and weak groups were then assigned particular stability values, through the auxiliary variables xS
µ and xW

µ , respectively. These
were then combined with the pattern values to obtain weight matrices S̃k and W̃k with elements

s̃k
i j =

∑
µ∈T S

k

(xS
µη̃

kµ
i )(xS

µη̃
kµ
j ) (55)

and
w̃k

i j =
∑
µ∈TW

k

(xW
µ η̃

kµ
i )(xW

µ η̃
kµ
j ). (56)

Finally, to obtain the mask for each context (as in Eq. 35), we compared these weight matrices with an overall weight matrix, W,
obtained with the standard Hebbian learning rule applied to all memory patterns (Eq. 14):

dk
i j =

0 if
(
s̃k

i jw̃
k
i j

)
< 0 &

(
wi js̃k

i j

)
< 0

1 otherwise.
(57)

In other words, a given synapse is gated (dk
i j = 0) if sign(s̃i j) , sign(wi j), sign(w̃i j) = sign(wi j), and sign(s̃i j) , sign(w̃i j).

To obtain the distributions found in Fig. 8B, the following auxiliary values, xS and xW , were used. In Context “A”, memories 1
to 20 were assigned to be weak, and memories 21 to 40 were assigned to be strong, with the remaining 40 memories being neutral.
The stability values were set to

xW
µ =

1 − exp[−3µ/20] for µ = 1, ..., 20.
0 otherwise

(58)

and

xS
µ =

1 − exp[−3(µ − 20)/20] for µ = 21, ..., 40.
0 otherwise.

(59)

Context “B” featured the same memory stability values, but applied to different sets of memories: memories 41 to 60 were
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assigned to be strong, and memories 61 to 80 were assigned to be weak:

xS
µ =

1 − exp[−3(µ − 20)/20] for µ = 41, ..., 60.
0 otherwise

(60)

and

xW
µ =

1 − exp[−3µ/20] for µ = 61, ..., 80.
0 otherwise.

(61)

Next, for context “C”, memories 21 to 40 were assigned to be strong (xS
µ = 1), and memories 11 to 20 and 41 to 50 were assigned

to be weak (xW
µ = 1). Finally, for context “D”, memories 11 to 15, 21 to 25, 31 to 35 and 41 to 45 were assigned to be strong (xS

µ = 1),
and memories 15 to 20, 25 to 30, 35 to 40 and 45 to 50 were assigned to be weak (xW

µ = 1).
Memory strength was measured using a stability parameter (Eq. 45). Noise tolerance was measured numerically by assessing

memory recall performance for each pattern when the network is initialized in a noisy version the pattern. This noisy version was
initialized by flipping each bit (neuron’s activity) of the pattern with a probability f . The noise tolerance (as plotted in Fig. 8C) was
defined as the maximum value of f for which the recall (averaged over 20 trials with random noisy pattern initializations) for a
particular pattern became significantly less than 0.97 (as measured by binomial test of proportions; see Binomial test of proportions).
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Supplementary methods of
Context-modular memory networks support high-capacity, flexible, and robust

associative memories
William F. Podlaski, Everton J. Agnes, and Tim P. Vogels

Equivalence of {-1,+1} and {0,1} formulations. The {0, 1} formulation for the networks used in this study was designed such that
it is equivalent to the standard {±1} formulation of the original Hopfield network29. To see this, it is sufficient to show that the
dynamics in either case are equivalent. We consider the context-modular memory network as defined in section Model formulation,
but with units Si ∈ {±1}, and patterns ξσµi ∈ {±1} within the active context (Si = 0 and ξσµi = 0 for any unit i not contained within
the subnetwork). The synaptic weights are defined as

Ji j =
1

bNcxt

∑
σ

∑
µ

ck
i jξ

σµ
i ξ

σµ
j (62)

and the dynamics of this network are described by the following equation (assuming context k is active)

Si =

sgn
(∑

j ck
i j Ji jS j

)
if i ∈ Sk,

0 otherwise.
(63)

Now, starting from the dynamics of the {0, 1} network, it is simple to show the equivalence to Eq. 63 using the relationships
between the two formulations: 2Vi − 1 = Si, η̃µ = 1

2ξ
µ
i , and 2H(x) − 1 = sgn(x) for all x. Assuming that context k is active, the

dynamics of the {0, 1} fomulation for a particular unit i within subnetwork k follow

Vi = H

∑
j

ck
i jwi jV j − θ

k
i

 ,
2Vi − 1 = 2H

∑
j

ck
i jwi jV j −

1
2

∑
j

ck
i jwi j

 − 1,

Si = sgn

∑
j

ck
i jwi j

(
V j −

1
2

) ,
Si = sgn

 8
bNcxt

∑
j

ck
i j

∑
σ

∑
µ

η̃σµi η̃
σµ
j

(
V j −

1
2

) ,
Si = sgn

 1
bNcxt

∑
j

ck
i j

∑
σ

∑
µ

ξσµi ξ
σµ
j Si

 ,
Si = sgn

∑
j

ck
i j Ji jS j

 .
Thus, the deterministic dynamics of the two formulations are exactly the same. We note that this holds also for the stochastic

version of the dynamics, in which Vi = σ(hi) and Si = tanh(hi), due to the identity tanh(x) = 2σ(x)− 1. This is used in the following
section.
Heuristic mean field analysis. In this section, we follow the heuristic mean-field analysis as described previously27,89 and apply
it to the context-modular memory network. We derive this here for the case of ±1 units, as defined above (Equivalence of {−1,+1}
and {0, 1} formulations). Due to the equivalence with the {0, 1} formulation, this result holds for both cases.
Incorporating context-dependence into the mean-field theory. In order to consider context-dependence through neuron-specific gating
and synapse-specific gating, we must appropriately incorporate them into the mean-field theory. For neuron-specific gating, as
described in the main text, we can take the perspective of a single subnetwork k, and assume that the effect of the other contexts
is just to add noise to the connectivity matrix relative to the subnetwork size a = Ncxt/N and the number of contexts s. Thus, we
do not need to do anything in addition to using the full weight matrix formulation as described in equation Eq. 62, which we
separate into two terms here since we are taking the perspective of context k:

Ji j =
1

bNcxt

∑
µ

ck
i jξ

kµ
i ξ

kµ
j +

1
bNcxt

∑
σ,k

∑
µ

cσi jξ
kµ
i ξ

kµ
j (64)

As for dendritic input gating, this is a bit trickier. Essentially, this creates a so-called diluted Hopfield network, with connection
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sparsity controlled by the parameter b = K/N, the average number of inputs per neuron. It turns out that for a standard Hopfield
network, symmetric dilution of synapses can be approximated by a fully-connected weight matrix with independent Gaussian
noise added to each element with variance N−1αcxt(1 − c)/c, where N is the network size, αcxt = p/N is the memory capacity, and c
is the connection probability48. In this case, we can approximate the dilution in the first term in this way, to obtain

Ji j =
1

Ncxt

∑
µ

ξkµ
i ξ

kµ
j +

1
bNcxt

∑
σ,k

∑
µ

cσi jξ
kµ
i ξ

kµ
j + δi j (65)

where δi j is the independent symmetric Gaussian noise with zero mean and variance N−1
cxtαcxt(1 − b)/b. The dilution in the second

term should be treated differently. Since the second term only concerns patterns that we are not interested in recalling, the dilution
does not add extra noise to the weights, but instead reduces the crosstalk effects. Thus we can treat this term as undiluted, but
scaled by the amount of dilution b, since on average bN connections will be present. Thus we are left with:

Ji j =
1

Ncxt

∑
µ

ξkµ
i ξ

kµ
j +

b
Ncxt

∑
σ,k

∑
µ

ξkµ
i ξ

kµ
j + δi j, (66)

Setup. We consider a stochastic version of the Hopfield network, with updates to the units Si taking the form:

Pr (Si = ±1) = σβ (±hi) =
1

1 + exp
(
∓2βhi

) , (67)

where hi is the input to neuron i, β is the inverse temperature parameter, which effectively controls the amount of noise in the
updates, and σβ is a variant of a sigmoid function, parameterized by β.

In mean field theory, we replace the true fluctuating input hi by its average value 〈hi〉 =
∑

j wi j〈S j〉, which allows us to compute
the average activation of each neuron as

〈Si〉 =
∑

Si={±1}

Si Pr(Si) = σ(−2βhi) − σ(2βhi) = tanh(βhi) (68)

We can then combine these two equations to get an expression for the average activation of each neuron as a function of the
average activity of the rest of the network:

〈Si〉 = tanh(β〈hi〉) = tanh

β∑
j

Ji j〈S j〉

 . (69)

This allows us to describe the dynamics of the system using so-called order parameters. First of all, we use the two measures
of capacity as defined in the main text, which are repeated here for convenience:

αcxt =
p

Ncxt

α =
sp
N

= αcxtsa

(single context capacity)
(overall capacity)

(70)

where p is the number of patterns stored per context, N is the total network size, Ncxt is the number of active neurons per context,
s is the number of contexts, and a = Ncxt/N is the relative subnetwork size. Throughout the analysis, it is important to determine
the nearness of the current network state to the different memory patterns, both in the current context, as well as across contexts.
Consider that the currently active context is k. We use mk

ν and nσµ to denote the overlap between the average network state 〈Si〉 and
a particular pattern ν of context k (ξkν

i ), or a pattern µ of context σ (ξσµi ), respectively, when k is active:

mk
ν =

1
Ncxt

∑
i∈Sk

ξkν
i 〈Si〉 (71)

nσµ =
1

Ncxt

∑
i∈Sk

ξσµi 〈Si〉 (72)

where Sk is the set of active neurons in context k (as defined in the section Model formulation). Note that both mk
ν and nσµ are

sums of Ncxt terms and are normalized by 1/Ncxt. However, the ξσµi terms of Eq. 72 may be zero depending upon the subnetwork
size, so we expect Eq. 71 and Eq. 72 to have different variances. Importantly, we suppose that the network is close to one of the
patterns, say pattern 1 of context k. Thus mk

1 will be of order unity, and the rest of mk
ν’s for ν , 1 are small, of order 1/

√
Ncxt. To see

this, consider the fact that mk
ν is a sum of Ncxt terms, each of which will be ±1 with equal probability. This can be approximated

by a zero-mean Gaussian with variance Ncxt. The normalizer 1/Ncxt makes the variance 1/Ncxt, and thus the standard deviation
1/
√

Ncxt. As for nσµ, it is a sum of Ncxt terms, each of which will be non-zero with probability a, due to ξσµi . The non-zero terms will
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then be ±1 with equal probability. This can be approximated by a Gaussian with variance N2
cxt/N, which, divided by Ncxt, yields

1/N. Thus the standard deviation is 1/
√

N.

We next introduce r and rn to denote the mean square overlap of the system configuration with the nonretrieved patterns in
subnetwork k, and all other subnetworks, respectively:

r =
1
αcxt

∑
ν,1

(
mk
ν

)2
(73)

rn =
1
α

∑
σ,k

∑
µ

(
nσµ

)2
. (74)

Both of these quantities should be approximately of order unity. For the case of r, we have a sum of p terms, each with variance
1/Ncxt, and normalized by 1/αcxt = Ncxt/p. For rn, we have a sum of (s − 1)p terms, each with variance of approximately 1/N, and
normalized by 1/α = N/sp. Our task is now to get a self-consistent calculation of r, rn, and m1.

Derivation Part A: finding an expression for r. We begin by plugging the mean field equations for 〈Si〉 from Eq. 69 into equation Eq.
71, and expanding the weight matrix using the expression in Eq. 66:

mk
ν =

1
Ncxt

∑
i

ξkν
i tanh

 β

Ncxt

∑
j∈Tk

∑
µ

ξkµ
i ξ

kµ
j 〈S j〉 +

βb
Ncxt

∑
j∈Tk

∑
σ,k

∑
µ

ξσµi ξ
σµ
j 〈S j〉 + β

∑
j∈Tk

δi j〈S j〉

 (75)

We then rearrange terms and substitute the other mk
µ and nσµ terms into the equation:

mk
ν =

1
Ncxt

∑
i

ξkν
i tanh

β∑
µ

ξkµ
i

1
Ncxt

∑
j∈Tk

ξkµ
j 〈S j〉 + βb

∑
σ,k

∑
µ

ξσµi
1

Ncxt

∑
j∈Tk

ξσµj 〈S j〉 + β
∑
j∈Tk

δi j〈S j〉

 (76)

=
1

Ncxt

∑
i

ξkν
i tanh

β∑
µ

ξkµ
i mk

µ + βb
∑
σ,k

∑
µ

ξσµi nσµ + β
∑
j∈Tk

δi j〈S j〉

 (77)

Next, we pull out the terms with mk
1 and mk

ν, and then use a trick to multiply the equation by ξk1
i ξ

k1
i = 1. We can put one of these

terms inside of the tanh due to the fact that tanh(−x) = − tanh(x):

mk
ν =

1
Ncxt

∑
i

ξkν
i tanh

β
ξk1

i mk
1 + ξkν

i mk
ν +

∑
µ,1,ν

ξkµ
i mk

µ + b
∑
σ,k

∑
µ

ξσµi nσµ +
∑
j∈Tk

δi j〈S j〉




=
1

Ncxt

∑
i

ξkν
i ξ

k1
i tanh

β
mk

1 + ξkν
i ξ

k1
i mk

ν +
∑
µ,1,ν

ξkµ
i ξ

k1
i mk

µ + b
∑
σ,k

∑
µ

ξσµi ξ
k1
i nσµ +

∑
j∈Tk

ξk1
i δi j〈S j〉


 (78)

We then use another trick, and replace the right-hand side of Eq. 78 with the first two terms of the Taylor expansion with respect
to mk

ν, i.e., f (mk
ν) = f (a) + f ′(a)(mk

ν − a), where f (mk
ν) is the right-hand side of Eq. 78. We assume that mk

ν is small, of order 1/
√

N,
and so we take a = 0. This expansion yields:

mk
ν ≈

1
Ncxt

∑
i

ξkν
i ξ

k1
i tanh

(
β(mk

1 + ci)
)

+ βmk
ν + βdmk

ν (79)

where we use ci to denote the crosstalk terms:

ci =
∑
µ,1

ξkµ
i ξ

k1
i mk

µ + b
∑
σ,k

∑
µ

ξσµi ξ
k1
i nσµ +

∑
j∈Tk

ξk1
i δi j〈S j〉 (80)

and
d =

1
Ncxt

∑
i

tanh2
(
β(mk

1 + ci)
)

(81)

Note that we write the crosstalk terms ci to include all patterns except for pattern 1 of context k (k1). Based on the expression in
Eq. 79, ci should also exclude the term ξkν

i ξ
k1
i mk

ν, but this will be a negligible addition assuming large N and p. This term is left
in for generality purposes, as the expression ci will reappear later in the derivation. We now approximate d as an average of a
function f (z) of a Gaussian random variable z. Since N is large (and therefore Ncxt too), we can replace the average 1

Ncxt

∑
i tanh2

with the integral over the distribution of z, which we will call q:

d ≈ q =

∫
dz
√

2πσ
exp

(
−(z − z̄)2

2σ2

)
f (z) (82)
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The mean and variance of this distribution will depend upon the architecture of the system, i.e., the choice of a, b, s, etc. There
may also be several ways of devising appropriate approximations for the terms inside. We thus remain agnostic to this for the
moment, and write the mean and variance as mk

1 + µ∗ and σ2
∗
, respectively. We are thus left with:

mk
ν =

1
Ncxt

∑
i

ξkν
i ξ

k1
i tanh

(
β(mk

1 + ci)
)

+ βmk
ν + βqmk

ν (83)

where

q =

∫
dz
√

2π
exp

(
−

1
2

z2
)

tanh2
(
β(m1 + µ∗ + σ∗z)

)
. (84)

Moving all terms with mk
ν to the left, this can be rewritten as:

mk
ν =

N−1
cxt

∑
i ξ

kν
i ξ

k1
i tanh

(
β(mk

1 + ci)
)

1 − β(1 − q)
(85)

Finally, we can obtain an expression for r by squaring and averaging Eq. 85 (since this is the definition of r, see Eq. 73). First,
squaring Eq. 85 yields

(
mk
ν

)2
=

(
1

1 − β(1 − q)

)2 1
N2

cxt

∑
i j

ξkν
i ξ

k1
i ξ

kν
j ξ

k1
j tanh

(
β(mk

1 + ci)
)

tanh
(
β(mk

1 + c j)
)

(86)

Then averaging, we get 〈(
mk
ν

)2
〉

=

(
1

1 − β(1 − q)

)2 1
N2

cxt

∑
i j

ξk1
i ξ

k1
j

〈
ξkν

i ξ
kν
j

〉
tanh

(
β(mk

1 + ci)
)

tanh
(
β(mk

1 + c j)
)

(87)

We see that the only terms that are affected by the averaging are ξkν
i and ξkν

j . It is easy to see that if i , j, these two terms are
independent and so the expected value will be zero, which removes most terms from the sum. For i = j, both ξkν

i ξ
kν
j and ξk1

i ξ
k1
j

will equal 1. This leaves us with 〈(
mk
ν

)2
〉

=

(
1

1 − β(1 − q)

)2 1
Ncxt

∑
i

tanh2
(
β(mk

1 + ci)
)
. (88)

Lastly, we can replace the sum of tanh2 functions with the same q variable defined in Eq. 84, to get an expression for r:

r =
〈(

mk
ν

)2
〉

=
q

[1 − β(1 − q)]2 . (89)

Note that this expression is equivalent to the expression for r in the standard Hopfield model, except that q has changed.

Derivation Part B: finding an expression for rn. We again start by using the mean field equations Eq. 69, but now plug them in to Eq.
72 for a particular nφν . We again rearrange terms so as to plug mk

µ and nσµ into the equation:

nφν =
1

Ncxt

∑
i

ξ
φν
i tanh

 β

Ncxt

N∑
j=1

∑
µ

ξkµ
i ξ

kµ
j 〈S j〉 +

βb
Ncxt

∑
j∈Tk

∑
σ,k

∑
µ

ξσµi ξ
σµ
j 〈S j〉 + β

∑
j∈Tk

δi j〈S j〉

 (90)

=
1

Ncxt

∑
i

ξ
φν
i tanh

β∑
µ

ξkµ
i

1
Ncxt

∑
j∈Tk

ξkµ
j 〈S j〉 + βb

∑
σ,k

∑
µ

ξσµi
1

Ncxt

∑
j∈Tk

ξσµj 〈S j〉 + β
∑
j∈Tk

δi j〈S j〉

 (91)

=
1

Ncxt

∑
i

ξ
φν
i tanh

β∑
µ

ξkµ
i mk

µ + βb
∑
σ,k

∑
µ

ξσµi nσµ + β
∑
j∈Tk

δi j〈S j〉

 (92)

We then follow the same steps as the previous section, by pulling out the terms with mk
1 and nφν , multiplying the equation by

ξk1
i ξ

k1
i = 1, and finally taking the Taylor expansion with respect to nφν around zero, to get:

nφν ≈
1

Ncxt

∑
i

ξ
φν
i ξ

k1
i tanh

(
β(mk

1 + ci)
)

+ βnφν + βdnφν , (93)

where ci and d are as defined above in Eq. 80 and Eq. 81, respectively. The reason for the approximate equality is because ci in this
case does not include pattern φν. Again, because we are considering the case of large N and p, this change is negligible. We then
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approximate d using the very same method as before in Eq. 82 and Eq. 83. We can thus approximate Eq. 93 with the following:

nφν ≈
1

Ncxt

∑
i

ξφνi ξ
k1
i tanh

(
β(mk

1 + ci)
)

+ βnφν + βqnφν (94)

=
N−1 ∑

i ξ
φν
i ξ

k1
i tanh

(
β(mk

1 + ci)
)

1 − β(1 − q)
(95)

where q is defined as in Eq. 84. Finally, following Eq. 86 and Eq. 87, we can obtain an expression for rn by squaring and averaging
Eq. 95. This yields 〈(

nφν
)2
〉

=

(
1

1 − β(1 − q)

)2 1
N2

cxt

∑
i j

ξk1
i ξ

k1
j

〈
ξ
φν
i ξ

φν
j

〉
tanh

(
β(mk

1 + ci)
)

tanh
(
β(mk

1 + c j)
)

(96)

Again, only the terms with i = j will be non-zero (see description following Eq. 87). However, in this case the terms 〈ξφνi ξ
φν
j 〉 for

i = j do not equal 1, but equal a = Ncxt/N. This then leaves us with〈(
nφν

)2
〉

=
a

[1 − β(1 − q)]2

1
Ncxt

∑
i

tanh2
(
β(mk

1 + ci)
)

(97)

Lastly, we can replace the sum of tanh2 functions with the same q variable defined in Eq. 86, to get an expression for rn:

rn =
〈(

nφν
)2
〉

=
qb

[1 − β(1 − q)]2 . (98)

Derivation Part C: finding an expression for mk
1. We assume the network configuration is close to pattern 1 of subnetwork k, and so

mk
1 should be much larger than the other overlaps. We follow the steps from Part A up to Eq. 78, but now using mk

1 instead of an
arbitrary mk

ν to get:

mk
1 =

1
Ncxt

∑
i

tanh

β
mk

1 +
∑
µ,1

ξkµ
i ξ

k1
i mk

µ + b
∑
σ,k

∑
µ

ξσµi ξ
k1
i nσµ +

∑
j∈Tk

ξk1
i δi j〈S j〉


 (99)

=
1

Ncxt

∑
i

tanh
(
β(mk

1 + ci)
)

(100)

Finally, we use the same trick as in Eq. 82, and treat mk
1 as an average of a function f (z) over the Gaussian random variable z:

mk
1 ≈

∫
dz
√

2π
exp

(
−

1
2

z2
)

tanh
(
β(mk

1 + µ∗ + σ∗z)
)
, (101)

again remaining agnostic as to the exact form of the mean and variance of the distribution, which will be addressed in the next
section.

Derivation Part D: approximating the distributions of q and mk
1. We now focus on determining an appropriate approximating

distribution for q and mk
1. To do this, we will take a more in-depth look at the expression for ci in Eq. 80, which we repeat here for

convenience:
ci =

∑
µ,1

ξkµ
i ξ

k1
i mk

µ + b
∑
σ,k

∑
µ

ξσµi ξ
k1
i nσµ +

∑
j∈Tk

ξk1
i δi j〈S j〉 (102)

The first term of Eq. 102 is a sum over the product of three independent random variables ξkµ
i , ξk1

i and mk
µ. Based on Eq. 73,

we know that mk
µ should have zero mean and variance αcxtr/p. Due to the symmetry of mk

ν around zero, the other two variables

ξkµ
i ξ

k1
i = ±1 will not have any effect. We thus have the sum of p − 1 random variables, each with variance αcxtr/p, which leads to a

single random variable with zero mean and variance αcxtr.
Now we move on to the second term of Eq. 102, which is again a sum over the product of three random variables. From

Eq. 74, we know that nσµ should be zero mean with variance αrn/(s − 1)p. The term ξk1
i again does not have an effect due to the

symmetry of nσµ. However, the term ξσµi will be different – it will be nonzero with probability a, and ±1 otherwise. If we assume
that ξσµi and nσµ are independent, then we get a random sum of random variables of the form b

∑K
i=1 Xi, with K ∼ B((s − 1)p, a) and

Xi ∼ N(0, αrn/(s − 1)p). Using Wald’s equation, we arrive at a Gaussian distribution with zero mean and variance αrnab2.
However, it turns out that the assumption that ξσµi and nσµ are independent is not true. They are slightly correlated, which shifts

the mean to α (shown in Fig. S4A). Thus, as the total capacity increases, the mean-field approximation gets worse. In fact, we
even face this issue with the first term, as mk

µ and ξkµ
i are also correlated, which causes the mean to scale with αcxt. However, since

αcxt never goes above 0.138, this fact can be safely ignored. For the second term, we can solve this by setting µ∗ = α.
Adding a term to the mean turns out to complicate the solution quite a bit, so we propose an alternative method as well. This
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is based on two tricks. First of all, we can calculate the variance assuming zero mean by computing E[X2] = Var[X] + E[X]2.
Second of all, since each neuron has equal probability of being 1 and −1, we can split up the contribution to the variance from the
positive and negative components of the distribution, each having an effect half of the time. It turns out that we get the following
expression for the variance:

Var = 1
2E

[
X2

+

]
+ 1

2E
[
X2
−

]
(103)

= 1
2

(
αa + α2

)
b2rn + 1

2αa2b2rn (104)

= 1
2αb2rn

(
a + α + a2

)
(105)

This was confirmed empirically by simulating several networks over different realizations of a, b and s (Fig. S4B).

Finally, for the last term of Eq. 102, it can be shown that this will inject Gaussian noise with variance ∆2q, where ∆2 = αcxt(1−b)/b48.
To see this, we first note that all three terms in this sum are independent random variables with zero mean, which means that the
sum should also have zero mean. The term ξk1

i , being ±1, will also have no effect due to the symmetry of the sum. Now, we can
estimate the variance of this term, which we will call Z:

Var[Z] = E


∑

j∈Tk

δi j〈S j〉


2 (106)

= E

[ ∑
j,l∈Tk

δi jδil〈S j〉〈Sl〉

]
(107)

Note that for j , l, the expected value of this expression is zero because each item is idependent and has zero mean. We are thus
only left with terms for j = l:

Var[Z] = E

∑
j∈Tk

δ2
i j〈S j〉

2

 (108)

= E
[
δ2

]
E

∑
j∈Tk

〈S j〉
2

 (109)

=
αcxt(1 − b)

b
E

 1
Ncxt

∑
j∈Tk

〈S j〉
2

 (110)

= ∆2q. (111)

As a whole we thus have the following:

µ∗ = 0 (112)

σ2
∗

= αcxtr + 1
2αb2rn

(
a + α + a2

)
+ ∆2q (113)

Derivation Part E: solving for αcxt. We can now solve simultaneously for q, r, rn, and mk
1 (from here on, we will refer to mk

1 as m). We
list the four equations of interest [Eq. 84, Eq. 89, Eq. 98, and Eq. 101] here again for convenience:

q =

∫
dz
√

2π
exp

(
−

1
2

z2
)

tanh2
(
β(m + σ∗z)

)
(114)

r =
q

[1 − β(1 − q)]2 (115)

rn =
qb

[1 − β(1 − q)]2 (116)

m =

∫
dz
√

2π
exp

(
−

1
2

z2
)

tanh
(
β(m + σ∗z)

)
, (117)

where σ2
∗

= αcxtr + 1
2αb2rn(a + α + a2) + ∆2q. These equations resemble the resulting equations of the standard Hopfield network

very closely. The only difference is that the variance of z has changed in Eq. 114 and Eq. 115 and there is an extra equation for rn in
Eq. 116. We will take the same approach as for the standard Hopfield network, following Hertz et al. 27 , and solve the equations
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in the limit of β→∞. Given this limit, we can make use of the following two integral identities:∫
dz
√

2π
exp

(
−z2/2

) (
1 − tanh2

(
β(az + b)

))
≈

√
2
π

1
aβ

exp
(
−b2/2a2

)
(118)

∫
dz
√

2π
exp

(
−z2/2

)
tanh

(
β(az + b)

)
≈ erf

(
b
√

2a

)
(119)

This enables us to write the four equations as:

C , β(1 − q) =

√
2
πσ2
∗

exp
(
−

m2

2σ2
∗

)
(120)

r =
q

(1 − C)2 (121)

ra =
qb

(1 − C)2 (122)

m = erf

 m√
2σ2
∗

 (123)

We see that q→ 1 as β→∞, and the expression C , β(1 − q) is undetermined for β→∞. We can, however, express its limit with
respect to m and r. Given that q→ 1, we can rewrite equations Eq. 115 and Eq. 116 as:

r =
1

(1 − C)2 (124)

rn =
b

(1 − C)2 (125)

which can be rearranged to get C = 1 − 1
√

r , and therefore rn = rb. We can thus write the solution as two equations which can be
simultaneously solved for m and r, given a particular capacity αcxt as well as the other parameters of σ2

∗
:

1 −
1
√

r
=

√
2
πσ2
∗

exp
(
−

m2

2σ2
∗

)
(126)

m = erf

 m√
2σ2
∗

 (127)
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Supplementary figures of
Context-modular memory networks support high-capacity, flexible, and robust

associative memories
William F. Podlaski, Everton J. Agnes, and Tim P. Vogels

100 200

0.2

0.4

0.6

0.8

1

0
0 50 150

0

0.4

0.8

1.6

1.2

I

Number of Subnetworks

Su
bn

et
Ra

tio

s=100
s=50

s=200

s=10

0.2 0.4 0.6 0.8 1.00.0
0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

I

Subnet Ratio

FIG. S1. Relative information content of context-modular memory network with neuron-specific gating as compared to the standard Hopfield
network (green arrowhead; Methods). Vertical slices through the 2D plot are shown (lower right) and compared with full network memory
capacity (upper right).
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FIG. S2. Memory capacity of the context-modular memory network with random synapse-specific gating and with both neuron-specific and
synapse-specific gating. A,B, Analytical capacity estimation for random synapse-specific gating for a single contextual configuration, αcxt (A) and
for total network, α (B), plotted as a function of the number of subnetworks, s, and the relative input ratio, b. C,D, Analytical capacity estimation
for combined neuron-specific and synapse-specific gating (shown for fixed b = 0.5) for a single contextual configuration (αcxt; C) and for total
network (α; D), plotted as a function of the number of subnetworks, s, and the ratio of subnetwork size, a. Green arrowhead indicates the standard
Hopfield network capacity, αH.
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FIG. S3. Memory capacity of low-activity Hopfield network. A, Comparison of theoretical (dotted black) and numerical (red) estimations of
memory capacity for the low-activity Hopfield network with {0, 1} units as in34 as a function of activity level aLA. Standard Hopfield capacity
(0.138) is plotted as solid black line for reference. B, Numerical estimation of memory capacity as a function of network size, for different
activity levels aLA. Plot in A used N = 20000. C, Information content (relative to the standard Hopfield network) as determined from numerical
simulations (red curve in A). See methods section Analytical capacity estimation for details.
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FIG. S4. Noise distribution and variance estimation for mean-field method. A, Distributions of crosstalk noise for “irrelevant” memories over
different numbers of contexts (s) and relative subnetwork sizes (a). B, Due to non-zero mean, variance of the distribution was measured using the
second moment of all positive values of the distribution (E[X+]) and the second moment of all negative values of the distribution (E[X−]). See Eq.
105.
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