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Abstract

Neuroscience research has made immense progress over the last decade, but our
understanding of the brain remains fragmented and piecemeal: the dream of probing
an arbitrary brain region and automatically reading out the information encoded
in its neural activity remains out of reach. In this work, we build towards a first
foundation model for neural spiking data that can solve a diverse set of tasks across
multiple brain areas. We introduce a novel self-supervised modeling approach
for population activity in which the model alternates between masking out and
reconstructing neural activity across different time steps, neurons, and brain regions.
To evaluate our approach, we design unsupervised and supervised prediction
tasks using the International Brain Laboratory repeated site dataset, which is
comprised of Neuropixels recordings targeting the same brain locations across 48
animals and experimental sessions. The prediction tasks include single-neuron and
region-level activity prediction, forward prediction, and behavior decoding. We
demonstrate that our multi-task-masking (MtM) approach significantly improves
the performance of current state-of-the-art population models and enables multi-
task learning. We also show that by training on multiple animals, we can improve
the generalization ability of the model to unseen animals, paving the way for a
foundation model of the brain at single-cell, single-spike resolution. Project page
and code: https://ibl-mtm.github.io/

1 Introduction

Recent studies in experimental neuroscience suggest that neural computation is highly distributed
across the brain and sparse in nature [33, 23]. Much of our current understanding of the brain, however,
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originates from studying small circuits of neurons in hand-selected brain areas during stereotyped
behaviors. This has resulted in the development of neural population models that are often brain
region-specific and narrowly crafted for particular experimental contexts, limiting their broader
applicability and insights into distributed brain function [37]. The arrival of multi-animal neural
datasets that span hundreds of interconnected brain regions [18, 17] necessitates the development of
a more general approach for building neural population models.

To address these challenges, recent efforts have been directed towards building models that can be
trained on neural data collected across multiple sessions and animals [3, 41]. These models are
pre-trained on large corpuses of neural population data and then fine-tuned for downstream tasks
such as behavior decoding and brain-computer interface (BCI) control [41], leading to improved
performance and generalization to novel sessions and animals. While these models are a promising
step in the right direction, two crucial elements are currently missing. First, the pre-training is
only performed on neural data from the sensorimotor network (M1, PMd, S1) which limits the
applicability of these approaches to whole-brain analyses. Second, these models do not explicitly
model the underlying brain regions, instead treating the population as a homogenous set of neurons.
We argue that a foundation model for neural spiking data must be able to seamlessly translate across
all spatial scales, including population-level, region-level, and single-neuron-level dynamics.

In this work, we build towards a first foundation model for neural spiking data which can solve
a diverse set of predictive tasks across diverse brain areas. Similar to [40, 41], we utilize masked
modeling where parts of the input are masked and then reconstructed using the unmasked inputs.
To explicitly capture neural dynamics across all spatial scales, we introduce a multi-task-masking
(MtM) approach where the model alternates between masking then reconstructing neural activity in
masked time steps, neurons, and brain regions. We learn a “prompt” token which allows the model to
seamlessly switch between different masking objectives during training [34]. During evaluation, this
prompt token can be utilized to perform “mode switching” where downstream tasks are associated
with specific masking schemes.

We evaluate our approach using the International Brain Laboratory (IBL) repeated site dataset [18]
which consists of multi-region Neuropixels recordings that target the same brain regions (secondary
visual areas, hippocampus, and thalamus) across multiple animals. We design a number of unsuper-
vised and supervised prediction tasks which include single-neuron and region-level activity prediction,
forward prediction, and behavior decoding. We benchmark our MtM approach against the temporal
masking scheme used by Neural Data Transformer (NDT) [40] and the random token masking scheme
used by Neural Data Transformer 2 (NDT2) [41]. We show that even with the same architecture,
our MtM approach significantly outperforms the temporal masking baselines and enables multi-task
learning. To demonstrate that our MtM approach is a viable recipe for large-scale pre-training, we
train across 34 animals and fine-tune on 5 held-out animals. The performance of our MtM approach
continuously scales with more training sessions, indicating its potential as a “universal translator” of
neural dynamics at single-cell, single-spike resolution.

The contributions of this work include:

• A novel multi-task-masking (MtM) approach which can be applied to multi-region datasets
to successfully learn representations that lead to better downstream task performance.

• A prompt-based approach for test-time adaptation which improves performance on a variety
of downstream tasks during inference.

• Scaling results that demonstrate that having data from more animals provides benefits on
held-out animals and sessions as well as on unseen tasks.

• A new multi-task, multi-region benchmark for evaluating foundation models of neural
population activity.

2 Related Work

2.1 Foundation models for neuroscience

The advent of large-scale, self-supervised foundation models has marked a paradigm shift across
various domains of machine learning. These models, diverging from traditional annotation-reliant
supervised models, exhibit an impressive ability to generalize across a spectrum of tasks. These
models have transformed natural language processing [26, 27, 39], vision [28, 16], and robotics [29],

2



and are beginning to reshape the landscape of life sciences [5, 1]. The application of foundation
models to neuroscience is of significant interest. While there has been considerable progress in
building large-scale models for EEG, [6], fMRI [35], and sEMG [19], which have ample data
availability, no large-scale model exists for neural data at single-neuron, single-spike resolution. To
address this gap, two new methods, a supervised method, POYO [3], and a self-supervised method,
NDT2 [41], were trained on a large corpus of spiking data from ∼12 monkeys. While promising, the
datasets used for training are from just a few animals and brain regions, and therefore lack scale and
diversity, limiting their applicability to other brain areas and behavioral contexts.

2.2 Transformer architectures for neural population activity

Transformers [38] have recently been applied to neural population activity in both supervised [3, 20]
and self-supervised [40, 41] settings. POYO [3] is a supervised multi-session model for predicting
behavior from neural activity. The POYO architecture utilizes learnable unit embeddings for each
neuron and a novel approach for tokenizing individual spike events with relative position encodings
to incorporate precise spike timings [3]. For self-supervised learning, NDT1 [40] and NDT2 [3]
are two existing transformer-based methods. Both utilize masked modeling and assume a Poisson
emission model. For NDT1, each time bin is a token with dimensionality equal to the number of
neurons. NDT1 uses a simple encoder-only transformer to reconstruct masked time bins during
training. To incorporate information across many sessions spanning different sets of neurons and
across individuals, NDT2 [41] was introduced. This model is ViT-style [7] time-series transformer
architecture that uses spatiotemporal patches as tokens and a learned session-level context embedding.
A token is defined as a single time step of neural activity for a subset of neurons and is masked and
reconstructed during training. By performing patching of the neurons, NDT2 can easily be applied to
multiple sessions.

2.3 Multi-region models

How information is encoded within and across different brain areas is an important question that
underlies the study of brain organization [12], the evolution of brain development [2], and the
diagnosis of different network-level brain diseases [4]. Recent advances in electrophysiological
techniques now allow for recording neural activity across many interconnected regions simultaneously
[13, 32, 42, 36]. This has inspired recent efforts to build more fine-grained estimates of multi-region
communication [25, 31, 12] and to investigate neuron-level information processing across multiple
brain areas [17]. To analyze these multi-region datasets, generative models have been developed that
aim to identify low-dimensional latent variables representing shared activity among recorded areas
[11, 30, 14, 8, 9]. Recently, dCSFA [11] and DLAG [9] were introduced to model temporal delays
between two brain areas. mDLAG [10] further extends this approach to an arbitrary number of brain
areas. While these approaches are interpretable solutions to understanding intra- and inter-region
neural dynamics, they also make limiting assumptions on the structure of the communication signals
and cannot be easily scaled to many brain regions and sessions.

3 Methods

A foundation model for neural activity must be able to seamlessly “translate” across all spatial scales
of the brain, including population-level, region-level, and single-neuron-level dynamics. To this end,
we introduce a multi-task-masking (MtM) approach for self-supervised learning of neural activity.
During training, we alternate between masking and then reconstructing neural activity across masked
time steps, neurons, and brain regions. We utilize a learnable "prompt" token which provides the
model with context about which masking scheme is being applied during training. This prompt token
can be passed to the model at test time to adapt the model to the associated downstream task [34].

3.1 Masking schemes

Masked modeling for neural activity is typically performed by masking and then reconstructing
activity in random time steps [40, 41]. While this masking scheme allows for learning temporal
dynamics, it can ignore important spatiotemporal structure present in neural activity. To address this
limitation, we propose four masking schemes designed to capture diverse patterns in neural data (see
Figure 1 for a visualization of these masking schemes).
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Figure 1: Schematic illustration of our Multi-task-Masking (MtM) approach: (A) We introduce four metrics for
evaluating foundation models of neural population activity: neuron co-smoothing, causal prediction, inter-region
prediction, and intra-region prediction. For each masking scheme, the colored area indicates what is masked and
then reconstructed for evaluation. For intra-region prediction, the colored areas with hatched lines indicate areas
which are masked, but not reconstructed for evaluation. Each metric can be associated with a specific masking
scheme during training (T1, T2, etc.). (B) We alternate between different masking schemes during training along
with a learnable "prompt" token which provides context to the model about the associated task [34]. During
evaluation, we provide the associated prompt token for the downstream task to perform test-time adaptation
of the model. Our MtM approach is architecture-agnostic as masking is performed on the input data (not the
tokens). For a full discussion of MtM, see Section 3.

• Causal masking. Similar to a GPT-like model [27], we mask future time steps and then
predict them using past time steps. While we learn next time step prediction, this masking
scheme can be extended to multiple future time steps prediction as well.

• Neuron masking. We randomly mask neurons and reconstruct their activity using the
unmasked neurons as context. This masking scheme allows the model to learn how indi-
vidual neurons relate to the activity of the full population. This is conceptually similar to
"coordinated dropout" introduced in [15].

• Intra-region masking. We randomly mask neurons in a randomly chosen brain region and
then reconstruct them using only unmasked neurons from the same region as context. This
masking scheme allows the model to learn intra-area dynamics.

• Inter-region masking. We randomly mask neurons in a randomly chosen brain region and
then reconstruct them using unmasked neurons in other regions as context. This masking
scheme allows the model to learn about cross-region interactions.

Each of these masking schemes teaches the model about different structure in neural populations. We
hypothesize that a model trained with all these diverse masking schemes will be able to solve many
different tasks at inference time.

3.2 Multi-task-masking (MtM)

To train using MtM, we randomly sample a masking scheme M for each batch of neural data. We
mask the input data according to the sampled masking scheme and then pass this to a tokenizer and
transformer-based architecture. To provide context to the model about the masking scheme that was
sampled, we prepend a learnable “prompt” token P to the neural data tokens Z. This prompt token is
a D-dimensional learnable embedding which the model can use to adapt its behavior during training
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or evaluation. For a batch of neural data X , our training scheme is as follows:

M ∼ U(causal, neuron, intra-region, inter-region)
Z = Tokenizer(M ⊙X)

Zprompt = [P,Z]

r = Transformer(Zprompt)

X̂ ∼ Poisson(X | r)

(1)

where X̂ is the neural data reconstructed by the model, based on the time-varying rates inferred from
the transformer’s output, assuming a Poisson emission model. The MtM approach is agnostic to the
choice of tokenizer and transformer, allowing it to be utilized with any architecture. For this work,
we utilize the same tokenization scheme and transformer-based architecture as NDT1 and NDT2 for
all comparisons to these methods (see Section 2.2 for details).

3.3 Prompt-based test-time adaptation

Depending on the downstream task, the information learned using each masking scheme might be
more or less useful. We utilize a prompt-based “mode switching” [34] approach where the prompt
token that is best associated with the downstream task is prepended to the neural data tokens during
inference and fine-tuning.

4 Evaluation

4.1 Dataset

For training and evaluating our models, we use the International Brain Laboratory repeated sites
dataset [18]. This dataset consists of Neuropixels recordings collected from nine labs which utilize a
standardized experimental pipeline. The recordings target the same five brain regions across 48 adult
mice performing a complex decision-making task. The probe was localized after the experiments
using reconstructed histology and the brain regions were annotated. We utilize trial-aligned, spike-
sorted data from 39/48 mice for our analyses. From these recordings, we have a total of 26,376
neurons for training and evaluation (∼676 neurons per session on average). We bin the neural activity
using 20ms windows and we fix the trial-length to 2 seconds (200 time bins). For behavior decoding,
we exclude trials based on reaction time outliers as defined by the IBL brain-wide map [17].

4.2 Metrics

We utilize a number of unsupervised and supervised metrics to evaluate how well a neural population
model generalizes to different downstream predictive tasks.

• Co-smoothing. Predicting the activity of a held-out neuron using all other neurons [24].

• Forward prediction. Predicting future activity from past activity. We predict the last 10%
(20 ms) of the trial-aligned activity (2 seconds) for this metric.

• Intra-region co-smoothing. Predicting the activity of a held-out neuron using neurons in
the same brain region.

• Inter-region co-smoothing. Predicting the activity of a held-out neuron using neurons in
other brain regions. This is similar to the leave-one-out region validation from [10].

• Choice decoding. Predicting the choice the mouse makes using trial-aligned neural activity.

• Motion energy decoding. Predicting motion energy of the mouse’s whiskers using trial-
aligned neural activity. The motion energy is extracted from simultaneous video data.

We evaluate each unsupervised activity prediction metric for all neurons in a session. To evaluate
activity prediction, we utilize the co-bps metric introduced in [24] which measures the performance
of a model using bits per spike. For behavior prediction, we train a linear classifier on the output rates
of each model and then use the R-squared metric to quantify the proportion of variance explained.
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4.3 Metrics and masking

By design, there is a correspondence between the metrics introduced in 4.2 and the novel masking
schemes introduced in 3.1. The correspondences are as follows: neuron masking and co-smoothing,
causal masking and forward prediction, intra-region masking and intra region co-smoothing, and
inter-region masking and inter-region co-smoothing. For each evaluation metric, we propose a
masking scheme that should lead to good downstream performance. By alternating between these
masking schemes during training and utilizing a learnable prompt token at inference time, MtM
should be able to generalize well to these different evaluation tasks.

For choice decoding and motion energy decoding, the correct prompt token at inference time is
unknown. For our experiments, we utilize the neuron masking prompt token for choice decoding and
causal masking for motion energy prediction. We found, however, that the choice of prompt token for
behavior decoding is not that important for good downstream performance (see Appendix A.2).

4.4 Test-time neural activity masking

Activity prediction benchmarking is traditionally performed using a pre-fixed set of held-out neurons
[24]. Models learn to predict the same held-out neurons using the held-in neurons during training.
While this evaluation scheme works for a fixed held-out dataset, evaluating activity prediction on all
neurons and on all brain regions would require training hundreds to thousands of individual models.
Since the goal of a foundation model is to have a single model perform well across all metrics, we
argue this evaluation method must be changed.

Therefore, we introduce a novel test-time evaluation scheme for benchmarking foundation models of
neural spiking activity. During training, all models are trained on the full neural population activity
with model-specific learning schemes. During evaluation, we mask different parts of the input data to
construct held-out subsets of data to evaluate the model. We utilize this test-time masking scheme to
compute all the activity prediction metrics introduced in Section 4.2.

5 Experiments

5.1 Architectures

For all of our experiments, we implemented two existing transformer architectures designed for
neural population activity. For single-session evaluation, we re-implemented NDT1 [40] and NDT2
[41]. For multi-session evaluation, we re-implemented NDT1-stitch and NDT2 (described in Section
2.2). NDT1-stitch learns, for each session, a linear projection layer for embedding the neural activity
vector. We also include a session-level context embedding for NDT1-stitch as we found it improved
multi-session training. NDT2 utilizes a ViT-style [7] transformer architecture and a learned session-
level context embedding. We set the patch size of NDT2 to be 128 neurons as, with ∼676 neurons on
average per session, smaller patch sizes were prohibitively slow to train. For more details about the
architectures and re-implementation details, see Appendix A.3.

5.2 Single-session Table 1: The performance of single-session NDT1
trained with various masking schemes on neural activity
reconstruction tasks. The metrics are in units of bits per
spike (bps), averaged across all neurons in one session.
A higher bps value indicates better performance.

Masking
Activity Reconstruction

Co-
Smooth

Forward
Prediction

Intra-
Region

Inter-
Region

Temporal (Baseline) 0.84 0.42 -0.20 0.57
Neuron 1.04 -0.21 -0.22 0.78
Causal 0.44 0.48 -0.36 0.23
Intra-Region -9.86 -2.97 0.32 -9.06
Inter-Region 0.92 0.01 -0.58 0.90
MtM (Not Prompted) 0.99 0.54 0.42 0.83
MtM (Prompted) 0.98 0.57 0.43 0.84

Masking scheme ablation. To understand the
importance of each masking scheme, we first
train and evaluate all architectures on a single
session using each individual masking scheme
introduced in Section 3.1. We also train and
evaluate a MtM model with and without prompt-
ing. As discussed in Section 4.3, each masking
scheme should perform best on the associated
metric and MtM should perform well across all
metrics.

MtM vs. temporal masking. For a compre-
hensive evaluation of the MtM approach in com-
parison to temporal masking, we then train the
single-session architectures with temporal mask-

6



C
A

1
C

A
1

Intra-Region Prediction

Inter-Region PredictionA

B

C

N
eu

ro
ns

 fr
om

 C
A

1
N

eu
ro

ns
 fr

om
 C

A
1

Figure 2: Comparison of the temporal masking baseline and our proposed MtM method on single-session data.
(A) and (B) show trial-averaged raster maps of CA1 for ground-truth data, MtM, and the temporal baseline. (A)
The predictions from MtM and the temporal baseline are after inter-region masking where neurons in CA1 are
predicted from all other brain regions. We highlight two areas (1 and 2) where MtM shows qualitatively better
predictions of activity. (B) The predictions from MtM and the temporal baseline are after intra-region masking
where all neurons in CA1 are predicted from other neurons in the same brain region. We again highlight two
areas (1 and 2) where MtM shows qualitatively better predictions of activity. (C) Activity reconstruction and
behavior decoding across 39 sessions for MtM and temporal masking. Each point represents one session. For
activity reconstruction, we report the average bps. For choice and whisker motion energy decoding, we report the
average accuracy and R2, respectively, across all test trials. We use the NDT1 architecture for all comparisons.

ing and MtM across all 39 sessions (animals). Each model is trained for 1000 epochs, with the best
checkpoint selected for evaluation based on the highest average single-neuron reconstruction R2

across the 50 most active neurons in a session. We fix the learning rate and model architectures for all
experiments. We evaluate the trained models on all metrics introduced in Section 4.2. For additional
details about the hyperparameters and baselines, see Appendix A.3 and A.4.

5.3 Multi-session

MtM vs. temporal masking pre-training. We are also interested in evaluating the performance of
MtM, in comparison to temporal masking, for multi-session pretraining. Although the identity of the
neurons is changing across sessions, we hypothesize that by training across multiple IBL repeated
site datasets, which share anatomical structure, our MtM-based approach should generalize better to
unseen IBL repeated site sessions. To this end, we pretrain all multi-session architectures using MtM
and temporal masking on 10 and 34 sessions of data. We then evaluate these multi-session models
on 5 held-out sessions by fine-tuning their self-supervised loss (MtM or temporal) on each held-out
session. This allows the models to learn session-specific information such as the session embeddings.
We report all metrics across these 5 held-out sessions.

Behavior decoding from individual brain regions. To evaluate how well our fine-tuned, 34-
session pre-trained MtM can generalize to unseen tasks, we also perform behavior decoding using
single brain regions from the 5 held-out sessions. To perform behavior decoding using a single brain
region, we mask out all other regions and predict the rates of the neurons in the specified region.
Then, we train a linear model on these output rates to predict choice and whisker motion energy. For
MtM, we prepend the intra-region prompt token as it is associated with this downstream task. We
compare behavior decoding results for our 34-session pre-trained MtM to the 34-session pre-trained
temporal masking model across all brain regions.

6 Results

For all results in the main text, we utilize NDT1 and NDT1-stitch architectures. We found that the
NDT1 architecture outperformed the NDT2 architecture across all metrics and sessions for both
temporal masking and MtM. We hypothesize that the patching scheme of NDT2 does not generalize
well to spike-sorted, multi-region Neuropixels recordings which have up to ∼676 neurons on average
per session. All NDT2 results are reported in Appendix A.1 and A.2. These results have similar
trends (with overall lower metric scores) as the NDT1 results.
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6.1 Single-session

Masking scheme ablation. The results for the masking scheme ablation on a single session are
shown in Table 1. We report the neuron-averaged activity metrics for all masking schemes, including
the co-smoothing, forward prediction, intra-region, and inter-region activity prediction. As shown in
the table, each masking scheme leads to an improvement on its associated metric (see Section 4.3)
over the temporal masking baseline. This is a promising result as it illustrates how each masking
scheme can teach the model about a different aspect of the neural population. Our MtM method
also shows strong improvements in activity prediction across all 4 metrics in comparison to the
temporal baseline. Although the activity prediction results of the single masking schemes can
sometimes outperform MtM on the associated metric, the overall performance of MtM across all
metrics is high. This demonstrates how training with diverse masking schemes can lead to a more
structured understanding of neural activity. Finally, we show that MtM with prompting is a modest
(in 3/4 metrics) improvement over MtM without prompting. Overall, this masking scheme ablation
demonstrates the strength of our MtM approach for structured learning of neural data.
MtM vs. temporal masking. We show results for our comparison of MtM to temporal masking
across all 39 sessions in Figure 2. As seen in Figure 2, our MtM training approach leads to significant
improvements across all 4 unsupervised activity prediction tasks. The largest improvements of MtM
over temporal masking are for intra and inter-region activity prediction, as temporal masking is
unable to learn this structure. For behavior decoding, we find that MtM and temporal masking have
comparable results for choice decoding and MtM slightly outperforms temporal masking on whisker
motion energy prediction. As we are using the full population of neurons for behavior decoding in
these analyses, the similarity in results between MtM and temporal masking is unsurprising given
that the temporal masking is performed on the full population for each time step. We hypothesize
that when decoding behavior from individual brain regions, the MtM approach should outperform
temporal masking as it learns brain region-specific structure (see Figure 5). These single session
results demonstrate that MtM is a promising method for learning population-level, region-level, and
single-neuron-level dynamics from neural population data.

6.2 Multi-session

Figure 3: Fine-tuning performance comparison of
NDT1-stitch pretrained with MtM vs. temporal masking
for activity reconstruction and behavior decoding across
5 held-out sessions. For activity reconstruction, each
point shows the average bps across all neurons in a held-
out session. For behavior decoding, each point shows
the trial-averaged accuracy (choice) and R2 (WME).

MtM vs. temporal masking pre-training.
We report results for multi-session pretraining
using MtM and temporal masking on 34 ses-
sions of data in Table 2 and Figure 3. In Table
2, we show session-averaged results on the 5
held-out sessions for both the single-session and
34-session pre-trained MtM and temporal mask-
ing. For both single-session and multi-session,
MtM outperforms temporal masking across all
metrics except choice decoding (where the re-
sults are quite similar). Both methods benefit
from multi-session pre-training as all unsuper-
vised and supervised metrics improve for the
34-session pretrained models. Similar to the
single-session results, the biggest improvements
for MtM are for the unsupervised activity met-

Table 2: Fine-tuning performance of NDT1-stitch pretrained with MtM vs. temporal masking on activity
reconstruction and behavior decoding. Activity reconstruction performance is reported in neuron-averaged
bps. For behavior decoding, trial-averaged accuracy and R2 are shown for choice and whisker motion energy,
respectively. All metrics are averaged across 5 held-out sessions, and a higher value indicates better performance.

Training Masking Activity Reconstruction Behavior Decoding

Co-Smooth Forward Pred Intra-Region Inter-Region Choice Whisker Motion Energy

Single-Session Temporal (Baseline) 0.55 0.17 -0.49 0.18 0.87 0.65
MtM (Prompted) 1.00 0.28 0.70 0.83 0.85 0.67

Multi-Session Temporal (Baseline) 0.79 0.43 -0.08 0.34 0.89 0.67
MtM (Prompted) 1.11 0.46 0.85 0.96 0.88 0.68
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rics especially inter- and intra-region prediction. In Figure 3, we show a scatter plot of all metrics
for the 5 held-out datasets for MtM and the temporal baseline. MtM shows improvement over the
temporal baseline for all activity metrics.

The results of our scaling analysis (1, 10, and 34 session training), can be seen in Figure 4. For MtM,
scaling the number of pretraining sessions leads to improved performance on all downstream metrics
except for choice decoding which saturates at 10 sessions. For temporal masking, the performance of
co-smoothing, intra-region, inter-region, choice decoding, and motion energy prediction saturates at
10 session pretraining. These results demonstrate that the MtM is a more promising approach than
temporal masking for scaling neural population models to multi-animal, multi-regional datasets.

Figure 4: Comparison of scaling curves between NDT1-stitch pretrained with the MtM method vs. the temporal
masking baseline. The reported metrics - neuron-averaged bits per spike (bps), choice decoding accuracy, and
whisker motion energy decoding R2 - are averaged over all 5 held-out sessions. We fine-tune each pretrained
model with its self-supervised loss (MtM or temporal) on the 5-heldout sessions and then evaluate with all of our
metrics. "Num of Sessions" denotes the number of sessions used for pretraining.

Behavior decoding from individual brain regions. The results for behavior decoding using single
brain regions on the 5 held-out sessions are shown in Figure 5. From these results, one can see
that MtM provides a significant improvement on brain region behavior decoding in comparison
to temporal masking across both choice decoding and whisker motion energy prediction. This is
especially apparent in hippocampus brain areas (orange) where for session 5dee0eb, the temporal
masking baseline is below chance-level on choice decoding for many sub-areas, but MtM is above
chance level on all sub-areas. These results illustrate the ability of MtM to extract region-specific
information from multi-region neural populations.

ProS
bsc
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DG
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MRN
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VISa
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alv
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Choice
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Figure 5: Comparison of NDT1-stitch pretrained with the MtM method vs. the baseline temporal masking
on behavior decoding from individual brain regions. The rows display choice decoding accuracy and whisker
motion energy decoding R2. Columns represent individual held-out sessions. Each point shows the behavior
decoding performance when using neural activity from a specific brain region, with colors denoting different
brain regions.
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7 Discussion

In this work, we take an important step toward a foundation model of the brain at single-cell, single-
spike resolution. We introduce a novel approach to self-supervised learning, multi-task-masking
(MtM), which is able to learn population-level, region-level, and single-neuron level structure from
neural population activity. We validate this approach on neural recordings taken from a large,
diverse dataset (39 mice across multiple brain regions). We find that MtM significantly outperforms
current state-of-the-art masking modeling schemes for neural data prediction, and enables multi-task
generalization. We also provide scaling results demonstrating that MtM is a promising approach for
large-scale pre-training on neural population data across animals and sessions.

A number of limitations remain. First, the data diversity, while higher than other neural pre-training
datasets [3, 41], is still significantly lower than a full brain-wide map of neural population activity
[17]. Training MtM on the IBL brain-wide map dataset, which contains 300 brain regions and
hundreds of animals, is an exciting future direction. Second, our current architectures, NDT1 and
NDT2, are simple time-series transformers that utilize basic tokenization schemes, i.e. temporal
tokens. Recent work has demonstrated that learning global dependencies across temporal tokens
leads to poor forecasting results on multivariate time-series datasets [21] and that more sophisticated
architectures can outperform the NDT architectures on behavior decoding from neural data [3].
Therefore, improving the underlying architecture of MtM is another direction that should be explored.
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A Appendix / Supplemental Material

A.1 Single-session details

Masking scheme ablation. To understand the importance of each masking scheme, we evaluate
NDT1 and NDT2 trained with various masking schemes, including temporal, neuron, causal, intra-
region, inter-region, as well as the proposed MtM method with and without the prompt token on a
selected single session. For both NDT1 and NDT2, Tables 3 and 4 show that the prompted MtM
model outperformed the baseline temporal (random token) masking model on most evaluation tasks,
except for choice decoding. In addition, each masking scheme performed well on its corresponding
task. Figure 6 compares the baseline random token masking NDT2 to the prompted MtM NDT2
across 39 single sessions. The prompted MtM NDT2 consistently outperformed the baseline random
token masking NDT2 on all activity reconstruction tasks, while performing similarly on behavior
decoding tasks.

Table 3: The performance of single-session NDT1 trained with various masking schemes on activity recon-
struction and behavior decoding tasks. The metric for activity reconstruction is in units of bits per spike (bps),
averaged across all neurons in one session. Behavior decoding is assessed using accuracy for choice and R2 for
whisker motion energy. For all metrics, a higher value indicates better performance.
Masking Activity Reconstruction Behavior Decoding

Co-Smooth Forward Pred Intra-Region Inter-Region Choice Whisker Motion Energy

Temporal (Baseline) 0.84 0.42 -0.20 0.57 0.66 0.56
Neuron 1.04 -0.21 -0.22 0.78 0.68 0.60
Causal 0.44 0.48 -0.36 0.23 0.75 0.59
Intra-Region -9.86 -2.97 0.32 -9.06 0.55 0.38
Inter-Region 0.92 0.01 -0.58 0.90 0.52 0.59
MtM (Not Prompted) 0.99 0.54 0.42 0.83 0.69 0.61
MtM (Prompted) 0.98 0.57 0.43 0.84 0.63 0.61

Table 4: The performance of single-session NDT2 trained with various masking schemes on activity recon-
struction and behavior decoding tasks. The metric for activity reconstruction is in units of bits per spike (bps),
averaged across all neurons in one session. Behavior decoding is assessed using accuracy for choice and R2 for
whisker motion energy. For all metrics, a higher value indicates better performance.
Masking Activity Reconstruction Behavior Decoding

Co-Smooth Forward Pred Intra-Region Inter-Region Choice Whisker Motion Energy

Random Token (Baseline) -6.94 0.50 -0.43 -6.95 0.74 0.58
Neuron 0.91 0.18 -0.26 0.62 0.65 0.62
Causal 0.02 0.52 -0.42 -0.20 0.69 0.59
Intra-Region -10.10 -1.30 0.21 -8.17 0.65 0.43
Inter-Region 0.63 0.18 -0.63 0.66 0.75 0.39
MtM (Not Prompted) 0.90 0.56 0.47 0.80 0.68 0.62
MtM (Prompted) 0.92 0.54 0.46 0.81 0.69 0.62
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Figure 6: Comparison of the random token masking baseline and the proposed MtM method for NDT2 on
activity reconstruction and behavior decoding across 39 sessions. For activity reconstruction, each point shows
the average bps across all neurons in one session. For choice (whisker motion energy) decoding, each point
represents the average accuracy (R2) across all test trials in one session.

Single neuron evaluation. To better understand neural activity prediction performance at a single-
neuron level, we conducted an evaluation of single-session NDT1 on each neuron using bits per spike
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Figure 7: Single neuron activity reconstruction analysis for NDT1 in one session. To evaluate the reconstruction
quality for each neuron, multiple metrics are computed: Bits per spike (Bps), R2 between the ground truth
and predicted peristimulus time histogram (PSTH R2), and the single-trial R2 averaged across all trials (Trial
average R2). Each point represents one neuron, with the color indicating the neuron’s log firing rates in Hertz
(Hz).

(bps), R2 between the ground truth and predicted peristimulus time histogram (PSTH R2), and the
single-trial R2 averaged across all trials (trial average R2), on one session, in Figure 7. We find that
MtM outperforms the temporal baseline across most neurons regardless of firing rate.We did find a
strong correlation between the performance evaluated on each metric and the mean firing rates of
each single neuron. For the bps (bits per spike) metric, scores for active neurons tend to be more
concentrated, while scores for inactive neurons are relatively dispersed, exhibiting both extremely low
and high values. For both R2 metrics, the performance shows a positive correlation with the mean
firing rates. In particular, those neurons with extremely low mean firing rates typically exhibited R2

scores that were extremely low (approaching zero). This observation might be related to the inherent
difficulty in predicting the behavior of neurons with low mean firing rates, or the property of metrics
themselves. For instance, when applied to neurons with low mean firing rates, the R2 metric might
tend to yield values closer to zero. Across all three metrics (Bps/Trial average R2/PSTH R2), our
model demonstrated substantial improvements for neurons with relatively higher mean firing rates.
However, for neurons with lower mean firing rates, notable improvements were only observed in the
bps metric.

A.2 Multi-session details

For NDT2, we report results for pretraining using MtM and the baseline random token masking on
34 sessions of data in Table 5 and Figure 8. In Table 5, we show session-averaged results on the
5 held-out sessions for both the single-session and 34-session pre-trained MtM and random token
masking. For both single-session and multi-session, MtM outperforms random token masking across
all metrics except choice decoding (where the results are quite similar). Both masking schemes
benefit from multi-session pre-training as all unsupervised and supervised metrics improve for the
34-session pretrained models. Similar to the single-session results, the biggest improvements for
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Table 5: Fine-tuning performance of NDT2 pretrained with MtM vs. random token masking on activity
reconstruction and behavior decoding. Activity reconstruction performance is reported in neuron-averaged bps.
For behavior decoding, trial-averaged accuracy (R2) for choice (whisker motion energy) decoding is shown. All
metrics are averaged across 5 held-out sessions, and a higher value indicates better performance.

Training Masking Activity Reconstruction Behavior Decoding

Co-Smooth Forward Pred Intra-Region Inter-Region Choice Whisker Motion Energy

Single-Session Random Token (Baseline) -0.87 0.35 -0.99 -0.75 0.84 0.65
MtM (Prompted) 0.97 0.36 0.64 0.84 0.85 0.67

Multi-Session Random Token (Baseline) 0.26 0.38 -0.49 -0.39 0.89 0.66
MtM (Prompted) 1.01 0.34 0.71 0.87 0.87 0.67
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Figure 8: Fine-tuning performance comparison of NDT2 pretrained with MtM vs. random token masking for
activity reconstruction and behavior decoding across 5 held-out sessions. For activity reconstruction, each point
shows the average bps across all neurons in a held-out session. For choice (whisker motion energy) decoding,
each point represents the average accuracy (R2) across all test trials in one session.

MtM are for the unsupervised activity metrics, especially inter- and intra-region prediction. In Figure
8, we show a scatter plot of all metrics for the 5 held-out datasets for MtM and the random token
baseline.

Figure 9: Comparison of scaling curves between NDT2 pretrained with the MtM method vs. the random
token masking baseline. The reported metrics - neuron-averaged bits per spike, choice decoding accuracy, and
whisker motion energy decoding R2 - are averaged over all 5 held-out sessions used for fine-tuning on both
activity reconstruction and behavior decoding tasks. "Num of Sessions" denotes the number of sessions used for
pretraining.

Scaling analysis. To examine NDT2’s ability of scaling data, Figure 9 shows that NDT2 multi-
session pre-training also benefits from scaling from 1 to 10 sessions, but we only observe marginal
gains or no improvement going from 10 to 34 sessions. NDT2 (Figure 9) benefits less from multi-
session IBL pre-training compared to NDT1-stitch (Figure 4), likely due to the inability of NDT2
with a fixed patch size to handle the large neuron count variations (200 to 1000 neurons) across IBL
sessions. Another reason is the NDT2 takes too many neuron patches at the same time, and it’s very
challenging to deal with this long sequences when data is scaling.

Prompting mode ablation. We also conducted ablation studies on NDT1-stitch of different prompt
mode during behavior decoding. We only apply prompt during the model inference, and observe
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the different prompt effects to our behavior results. As shown in the Table 6, we ablate four prompt
modes.

Table 6: Evaluation of NDT1’s behavior decoding performance when pretrained and fine-tuned using the
MtM approach, tested with different prompt tokens at inference time. Behavior decoding is assessed using
trial-averaged accuracy for choice and trial-averaged R2 for whisker motion energy, with the reported metrics
averaged over 5 held-out sessions. For both metrics, a higher value indicates better performance.

Prompting Behavior Decoding

Choice Whiker Motion Energy

Neuron 0.88 0.68
Causal 0.89 0.68
Intra-Region 0.88 0.68
Inter-Region 0.88 0.68

A.3 Training details

We trained our model using AdamW optimizer [22] for 1000 epochs with a learning rate of 1e−4

using a cosine scheduler. We put a weight decay 0.01 to avoid overfitting. We utilized a relatively
small batch size of 16 during the training. We split our dataset based on the session to training,
validation, and test set with a proportion of 70%, 10%, and 20%. We saved the model checkpoint
based on a trial-average R2 of top-50 active neurons, which we selected top-50 active neurons and
calculated each neuron’s R2 through averaging the trials.

Compute. NDT1-stitch was trained on a machine with a single RTX8000 GPU. NDT2 was trained
using Tesla V100 GPUs with 32Gb memory. The 10-session and 34-session NDT1-stitch models
were trained for 1 and 3 days, respectively, while the 10-session and 34-session NDT2 models took 2
and 5 days, respectively. Single-session NDT1 and NDT2 models, as well as finetuning, were trained
on a single Tesla V100 GPU, requiring 3 to 6 hours. We make sure our experiments are reproducible
by seeding.

A.4 Hyperparameters details

The masking ratio is an important model hyperparameter for NDT1 and NDT2. For neuron, intra-
region, temporal, and our proposed MtM masking schemes, the masking ratio is fixed at 30%, favoring
the performance of the baseline temporal masking method across the activity reconstruction tasks.
The causal (next timestep prediction) and inter-region (mask whole region) schemes do not have this
hyperparameter, making their performance invariant to the selected mask ratio.

For NDT2, the spatiotemporal patch size is another important hyperparameter. Due to computational
constraints, we set it to 128 neurons (≈ 1000 tokens). Future work should analyze how varying the
patch size impacts NDT2’s performance on neural activity reconstruction and behavior decoding
tasks.
Table 7: Effects of masking ratio on NDT1 performance in neural activity reconstruction. The reported metrics
quantify performance in terms of average bits per spike (bps) across all neurons from a selected session. A
higher bps value indicates better performance.

Masking Mask Ratio = 0.1 Mask Ratio = 0.3 Mask Ratio = 0.6

Co-Smooth Forward Pred Intra-Region Inter-Region Co-Smooth Forward Pred Intra-Region Inter-Region Co-Smooth Forward Pred Intra-Region Inter-Region

Temporal (Baseline) 0.87 0.73 -0.19 0.44 1.21 0.88 0.31 0.52 0.92 0.88 0.42 0.56
Neuron 1.41 -0.17 0.29 0.55 1.38 -0.08 0.27 0.79 1.25 0.02 0.66 1.10
Causal 0.92 0.82 0.14 0.46 0.92 0.82 0.14 0.46 0.92 0.82 0.14 0.46
Intra-Region -3.79 -0.76 0.96 -4.06 -3.62 -0.60 0.86 -3.80 -2.18 -0.33 0.43 -2.33
Inter-Region 1.12 0.49 -0.07 1.14 1.12 0.49 -0.07 1.14 1.12 0.49 -0.07 1.14
MtM (Prompted) 1.31 0.79 0.92 1.17 1.24 0.74 0.77 1.08 0.93 0.83 0.71 0.88
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